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Abstract A parametric model for capacity curves and capacity spectra is proposed. The 11

capacity curve is considered to be composed of a linear part and a nonlinear part. The nor- 22

malized nonlinear part is modelled by means of a cumulative lognormal function. Instead, the3

cumulative Beta function can be used. Moreover, this new conceptualization of the capacity4

curves allows defining stiffness and energy functions relative to the total energy loss and5

stiffness degradation at the ultimate capacity point. Based on these functions, a new damage6

index is proposed and it is shown that this index, obtained from nonlinear static analysis, is7

compatible with the Park and Ang index obtained from dynamic analysis. This capacity based8

damage index allows setting up a fragility model. Specific reinforced concrete buildings are9

used to illustrate the adequacy of the capacity, damage and fragility models. The usefulness of10

the models here proposed is highlighted showing how the parametric model is representative11

for a family of capacity curves having the same normalized nonlinear part and how important12

variables can be tabulated as empirical functions of the two main parameters defining the13

capacity model. The availability of this new mathematical model may be a powerful tool for14

current earthquake engineering research, especially in seismic risk assessments at regional15

scale and in probabilistic approaches where massive computations are needed.16

Keywords Capacity curves · Parametric model · Stiffness degradation · Energy loss ·17

Fragility curves · Damage assessment18

1 Introduction19

The capacity spectrum method, CSM (Freeman 1998a, b) is a fundamental tool for perfor-20

mance based design (PBD) (SEAOC 1995) and for estimating the expected seismic damage21
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in existing buildings. This method allows estimating, in a simplified and straightforward way,22

the displacement that a given earthquake, defined by its 5 % damped response spectrum, would23

produce on a given building, defined by its capacity curve. Furthermore capacity spectra are24

used to define fragility curves allowing quantifying the expected seismic damage and risk. The25

capacity curve quantifies the strength of the building to lateral forces and represents the base26

shear as a function of the roof displacement. This curve is usually obtained from nonlinear27

static analysis, also known as pushover analysis. The response spectrum of a seismic action,28

defines the spectral acceleration as a function of the period. The acceleration-displacement29

format of the capacity curve is called capacity spectrum or capacity diagram (Chopra and30

Goel 1999). The inelastic response spectrum, also in the acceleration-displacement format is31

known as demand spectrum. Crossing capacity and demand spectra leads to an easy computa-32

tion of the performance point which defines the spectral displacement that the earthquake will33

produce in the building. The relationships to calculate the capacity spectrum starting from34

the capacity curve and the procedures to obtain the performance point are well described in35

the report ATC-40 (ATC 1996). The spectral displacement of the performance point allows36

checking design requirements and expected performance levels. For damage assessment of37

existing buildings, this spectral displacement allows to evaluate the expected damage that38

the building would suffer when submitted to the earthquake. PBD has been well described39

by Sawyer (1964) and by Bertero (1996, 1997, 2000). Concerning to seismic risk assess-40

ment several approaches based on the CSM can be found in Pujades et al. (2012), Lantada41

et al. (2009), Barbat et al. (2008), Lagomarsino and Giovinazzi (2006) and FEMA (2002).42

Further developments and applications of the CSM can be found in Fajfar (1999), Chopra43

and Goel (1999), Fajfar and Gaspersic (1996) and Freeman et al. (1975). A review of the44

development of the CSM can be found in Freeman (2004). Figure 1 shows the capacity curve45

and the capacity spectrum of a seven stories reinforced concrete building. This building was46

analysed in detail by Vargas-Alzate et al. (2013a). An elastoplastic model was assumed to47

model the nonlinear behaviour of the materials in the pushover analysis. Table 1 shows the48

weights and normalized modal participation factors used to transform the capacity curve into49

the capacity spectrum. The bilinear form of the capacity spectrum is also shown in this figure.50

The bilinear capacity spectrum is widely used in the CSM (see for instance Freeman 1998a, b;51

ATC 1996) and is usually defined by two straight lines fulfilling the following conditions: (1)52

the first line is Sa = ω2 Sd , being Sa the spectral acceleration,Sd the spectral displacement53

and ω the fundamental frequency of the building; for capacity curves, this line is F = K δ,54

where F is the base shear, δ is the roof displacement and K is the initial stiffness; (2) the55
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Fig. 1 Capacity spectrum and capacity curve (right and top axes) for a seven storey reinforced concrete

building. The bilinear form of the capacity spectrum is also shown
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Table 1 Weights, wi , and normalized modal participation factors, �i1 used to transform the capacity curve

of Fig. 1 into the capacity spectrum

Storey 1 2 3 4 5 6 7

wi (kN) 485.16 527.23 479.47 518.76 501.93 553.27 471.65

Φi1 0.14 0.30 0.45 0.60 0.67 0.85 1.00

second line goes through the ultimate capacity point and (3) the areas below the capacity56

spectrum and the bilinear capacity form are the same (energy condition). So, this bilinear57

capacity spectrum is defined by the effective yielding point, (Dy, Ay)=(11.7 cm, 0.25 g), and58

the effective inelastic limit or ultimate capacity point, (Du, Au) = (19.5 cm, 0.26 g). These59

two points are well described in Freeman (1998a). Conditions 2 and 3 must be fulfilled in60

any case. Sometimes, as for instance when an elastoplastic model is assumed for the bilinear61

capacity spectrum, the slope of the first branch of the bilinear capacity spectrum can be lower62

than the one corresponding to the fundamental period of the building.63

The ultimate capacity point was initially defined (Freeman 2004) as the base shear causing64

the most flexible lateral force resisting elements to yield after the more rigid elements yielded65

or failed and it is usually defined by the displacement for which a collapse mechanism has66

been produced so that the strength of the structure has been exhausted. This paper proposes a67

model that re-conceptualizes capacity curves in the context of the CSM. The core of the model68

lies into the separation of the linear and nonlinear behaviors of the structures when submitted69

to lateral loads. It is explicitly shown that the normalized nonlinear part fully represents the70

degradation of the building from sound to collapse states for a family of structures and that71

this can be represented by only two parameters. Based on this reconceptualization, a new72

damage model is then proposed. The damage model allows separating the contributions to73

damage of stiffness degradation and that of energy loss resulting in a new damage index.74

This index is analyzed and compared with other indices widely used for seismic damage and75

risk assessment. Finally several of the advantages of the models in the current earthquake76

engineering practice are highlighted and discussed.77

2 Capacity model78

This section is devoted to describe the parametric model for capacity curves. In a first step the79

capacity curve is analysed and separated into two functions, linear and nonlinear, composing80

the true capacity curve. The derivatives of these two functions are also fundamental for the81

formulation of the model. Afterwards the model itself is formulated and, finally, it is shown82

how the true capacity curve can be reconstructed from five parameters.83

2.1 Anatomy of the capacity curve84

Capacity curves can be considered composed of a linear part and a nonlinear part. The linear85

part would be the capacity curve assuming that the building has a linear and elastic behaviour86

and it is represented by a straight line whose slope is defined by the period of the fundamental87

mode of vibration of the structure. The nonlinear part would contain strictly the nonlinear88

response of the building and can be obtained by subtracting the true capacity curve from the89

linear curve. Thus, the nonlinear part, FN L(δ), can be obtained by means of the following90

equation:91
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Fig. 2 a Capacity curve and its linear and nonlinear parts. b First derivatives of the capacity curve and of its

linear and nonlinear parts

FN L(δ) = FL(δ) − F(δ) = m δ − F(δ) (1)92

where δ is the roof displacement, F(δ) is the true pushover curve and FL (δ) = m δ is its linear93

part being m the slope of the first leg of the capacity curve that is linked to the fundamental94

period of the building. Figure 2a shows the capacity curve F(δ) of Fig. 1 and its linear and95

nonlinear parts; Fig. 2b shows the corresponding derivatives: d F(δ)/dδ, d FN L(δ)/dδ and96

d FL(δ)/dδ = m.97

In this case m is 43.15 kN/cm and circle markers indicate the beginning of the nonlinear98

behaviour of the structure. The value of the displacement at this point is δ = 10.1 cm. From99

Eq. (1) it follows that the function d FN L(δ)/dδ fulfils the following equation:100

d

dδ
FN L (δ) = m − d

dδ
F(δ) (2)101

The first derivative of the capacity curve and indeed that one of the nonlinear part, (see Fig. 2b)102

allow observing the progressive degradation of the structure. The model here proposed is103

based on the fit of the normalized nonlinear part of the capacity curve and, therefore, the104

same model is valid for both capacity curves and capacity spectra. Another advantage of the105

model lies in its ability to simultaneously fitting both the capacity curve and their first and106

second derivatives. The derivatives are related to the tangent stiffness and to the progressive107

degradation of the strength of the structure.108

2.2 Parameters of the capacity model109

The first step to fit a parametric model is the normalization of the nonlinear part of the110

capacity curve and its first derivative. The model assumes that the normalized first derivative111

of the nonlinear part is well represented by a cumulative lognormal function as defined in112

Eqs. (4) and (5). That is, the scaled first derivative, � ′, and the derivative of this, � ′′, satisfy113

the following equations:114

� ′(Aδ) = B
d FN L(δ)

dδ
0 ≤ Aδ ≤ 1 (3)115

� ′′(Aδ) = 1

(Aδ) σ
√

2π
e

−(ln(Aδ)−ln(µ))2

2σ2 0 ≤ Aδ ≤ 1 (4)116

� ′(Aδ) =
∫ Aδ

0

� ′′(ξ) d(ξ) 0 ≤ Aδ ≤ 1 (5)117
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FN L(Aδ) = 1

B

∫ Aδ

0

� ′(ξ) dξ, 0 ≤ Aδ ≤ 1 (6)118

A and B, are scaling constants. The following equation defines these constants.119

A = 1/δmax and
1

B
= 1

m − m∗ (7)120

Where m is the slope at the beginning of the capacity curve, or equivalently, the slope of the121

linear part of the capacity curve and m∗ is the slope at the end of the capacity curve. Observe122

that m and m∗ also are respectively the maximum and minimum values of the first derivative123

of the capacity curve (grey colour curve in Fig. 2b); m = 43.19 kN/cm, m∗ = 1.12kN/cm,124

A = 27.54 cm and B = 42.07 kN/cm in this case. Thus, the scaled first derivative is defined125

for normalized displacements, δN = Aδ, taking values between zero and one and ranging126

also between zero and one the values of this function. � ′′(Aδ) is the standard lognormal127

distribution function defined by the parameters µ and σ . A least squares fit between the128

target and computed, FN L(Aδ), functions allows to determine the two parameters of the129

model. Instead of the lognormal function, the cumulative Beta function can be used. In this130

case, Eq. (4) is substituted by the following equation:131

� ′′(x) = 1

B(λ, ν)
xλ−1 (1 − x)ν−1 0 ≤ x ≤ 1 (x = Aδ) (8)132

being B(λ, ν) =
1
∫

0

t (λ−1)(1 − t)(ν−1)dt = Ŵ(λ)Ŵ(ν)
Ŵ(λ+ν)

and Ŵ(α) =
∞
∫

0

e−t t (α−1)dt .133

For random variables defined by a lognormal probability density function as defined in134

Eq. (4), or with a Beta probability density function as defined in Eq. (8), the mean, ML, and135

variance VL, or MB and VB respectively, are functions of the parameters of the lognormal136

distribution (µ, σ) or of the Beta distribution (λ, σ). To avoid confusion with other more137

standard definitions of the lognormal distribution, where the first parameter of the distribution138

is defined as µ
′ = ln(µ) (see for instance Limpert et al. 2001), the equations used to infer139

mean and variance values are reproduced herein.140

ML = e

(

ln µ+ σ2

2

)

, VL = e
(

2 ln µ+σ 2
)

(

eσ 2 − 1
)

and MB = λ

λ + ν
,141

VB = λν

(λ + ν + 1)(λ + ν)2
142

(9)143

The model of Eq. (4), with ln(µ) instead of µ′, has been preferred because now µ is close to144

ML and can be estimated approximately from the normalized first derivative of the non-linear145

part of the capacity curve, thus allowing constraining the variability of the µ parameter in146

the search by the least squares fit procedure. The same election was taken in the Risk-UE147

project to model fragility curves (Milutinovic and Trendafiloski 2003). Moreover, as it can148

be seen in Table 2, this choice also leads to comparable mean values and variances of the149

fitted lognormal and Beta distributions. Table 2 shows the parameters of the fit.150

In this table µ and σ are the parameters of the lognormal function as defined in Eq. (4);151

λ and ν are the parameters defining the Beta function. ML and VL, and MB and VB are the152

mean values and variances of the distribution functions, for the lognormal and Beta cases153

respectively. Figure 3 summarizes the results of the fit. The capacity curve, the linear part154

and the nonlinear part, together with their first and second derivatives, are shown.155
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Table 2 Parameters of the models fitting the capacity curve of Fig. 2

Lognormal Beta

µ σ Mean (ML) Variance (VL) λ ν Mean (MB) Variance (VB)

0.608 0.12 0.6124 0.0054 21.10 13.07 0.618 0.007

The corresponding mean values and variances are also shown
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Fig. 3 Capacity curve, linear and nonlinear parts (top left). First (bottom left) and second (bottom right)

derivatives. Target and fitted curves are shown for lognormal and Beta models. Top right plot shows the

differences, in %, between target and fitted capacity curves

The differences between the observed and fitted capacity curves are also shown (top156

right). The differences are very small and always below 1 %. The mean value, dm, and the157

standard deviation, dstd, of the vector of differences, for the lognormal, L, and Beta, B,158

cases respectively, are: dmL = 0.013 %, dstdL = 0.18 and dmB = −0.04 %, dstdB = 0.21.159

The parametric model has been tested with a significant number of capacity curves and160

capacity spectra, with excellent results in all the cases. The errors have been comparable161

to those obtained in the example presented here. Similar results are obtained when using162

lognormal and Beta functions. So, either of the two can be used. Probably these adequate163

fits are due to the fact that the model matches well the physical processes involved in the164

structural degradation. In this article the lognormal function has been preferred because it is165

widely used in many problems in earthquake engineering (ATC 1985, 1991; FEMA 2002;166

Lagomarsino and Giovinazzi 2006; Barbat et al. 2008; Pujades et al. 2012) and because the167

interpretation of the model parameters is more direct. However, the fact that the lognormal168

function has an asymptotic trend, while the non-linear part of the capacity curve is limited169

to δmax and normalized at this point, the Beta function would be more appropriate because170

is defined in the limited domain.171

Summary of the fitting procedure172

The steps followed for the adjustment of the capacity curve of Fig. 3 are summarized here.173

(i) The first derivative of the capacity curve is calculated and the slope, m = 43.15 kN/cm,174

that defines the linear part of the capacity curve is inferred. Considering that in the linear175
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part of the capacity spectrum, Sa = ω2Sd = mcs Sd , being ω the angular frequency of the176

fundamental mode of vibration of the building, the slope mcs of the linear part of the capacity177

spectrum, can be also obtained from the fundamental period of the building, assuming that178

the proper units are used, for instance, cm/s2 and cm respectively for Sa and Sd; mcs = 20.96179

s−2 in this case. When the capacity curve is used, the factors converting the capacity curve to180

capacity spectrum allow calculating m from mcs . (ii) The nonlinear part of the capacity curve181

is obtained (see Eq. (1), Fig. 2). (iii) Abscissae and ordinates are scaled dividing by their182

maximum values, which in this case are 27.54 cm for abscissae and 441.61 kN for ordinates.183

(iv) Optionally, the derivative of the nonlinear part of the capacity curve (see Fig. 3) can be also184

calculated and normalized; in fact, this step gives an idea of the approximate parameters of185

the lognormal function of the parametric model, thus allowing constraining the search range186

of the parameters. (v) For each pair of parameters, (µ, σ ), the function defined in Eq. (6) is187

obtained by using Eq. (4); this function is also normalized on abscissae and ordinates; a least188

squares fit between the curve so calculated and the curve found in step iii), provides the best189

parameter pair of the fit. In the example of Fig. 3, µ has been varied between 0.46 and 0.72,190

with a resolution of 0.005 units and σ between 0.01 and 2, with a resolution value of 0.01; the191

final values of the fits are shown in Table 2. (vi) Equations (1–6) allow the reconstruction of all192

the functions involved, simply undoing the normalizations made. Figure 3 shows the results193

of the implementation of these 6 steps. The results using Lognormal and Beta functions are194

displayed. The differences between the target curve and the parametric curve are also shown195

in this figure, giving a precise idea of the goodness of the fits. An additional advantage of196

the model is its ability to represent well not only the target curve but also its successive197

derivatives. Taking into account that a simple scaling allows converting capacity curves into198

capacity spectra and, given the normalizations involved in the fitting method, it is important199

to outline that the same model holds for capacity curves and capacity spectra. As the case200

presented here shows a clearly defined linear portion, yielding point and hardening slope, a201

capacity curve showing neither clear linear portion nor yielding point and exhibiting negative202

stiffness (softening) after the post-peak response will be analyzed below.203

2.3 Synthesis of the capacity spectrum204

In addition to µ and σ , capacity spectra also depend on the following parameters: (1) the205

slope m of the linear part; (2) the ultimate spectral displacement, Sdu ; and (3) the spectral206

acceleration, Sau , of the ultimate capacity point. Therefore, a capacity curve is entirely defined207

by the following five independent parameters: µ, σ , m, Sdu and Sau . Consequently, families208

of capacity spectra have the same lognormal or Beta model. The construction of these curves209

is simple and straightforward undoing the steps explained above (see Eqs. 3–8). Figure 4210

shows an example of reconstruction of a capacity spectrum from these 5 parameters. The211

numerical values of the parameters are also shown in this figure. As pointed out above, the212

initial stiffness m and the fundamental period of the building are directly related. Therefore213

it may be more intuitive to use the fundamental period, instead than m, as one of the five214

independent parameters.215

3 Damage model216

In this section a new damage model is proposed. The model is based on stiffness degradation217

and energy dissipation relative to the residual stiffness and total energy at the ultimate capacity218

point.219
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Fig. 4 Capacity spectrum defined by five independent parameters

A reinforced concrete building is used to illustrate the practical computation of the model.220

Incremental dynamic analysis is performed to obtain the Park and Ang (1985) damage index.221

Then, the new damage index is calculated and calibrated so that it is equivalent to the Park222

and Ang index. This new damage index is obtained from the capacity curve by means of223

simple and straightforward calculations.224

3.1 Definition of the new damage index225

Cosenza and Manfredi (2000) review the ground motion parameters that, directly or indirectly,226

can be linked to structural and non-structural damage. They consider parameters related to the227

acceleration time histories, to the response spectra and to the step-by-step dynamic analysis.228

Park and Ang (1985) propose an index to assess the expected structural seismic damage in229

reinforced concrete buildings (see also Park 1984). Buildings are weakened and damaged due230

to two combined effects: (1) large displacements caused by their response to large stresses231

and (2) cyclic drifts in response to cyclic strains. Consequently, Park and Ang claim that232

the assessment of damage must consider not only the maximum structural response but also233

repeated cyclic loads typical of seismic actions, mainly depending on their duration. The234

Park and Ang index is widely used and it can be defined by Eq. (10) or, equivalently, by235

Eq. (11).236

DIP A(δ) = δ

δu

+ β

Q yδu

δ
∫

0

d E (10)237

DIP A(δ) = δ

δu

+ β

δ
∫

ξ=0

(

ξ

δu

)α
d E

Ec(ξ)
(11)238

δ is the maximum deformation of the building under the earthquake motion, δu is the ultimate239

deformation under monotonic loads and Q y is the strength at the yielding point. If the strength,240

Qu , at the ultimate point, δu , is lower than Q y , then Q y is substituted by Qu . Ec(ξ) is the241

hysteretic energy dissipated in each cycle of load at the deformation ξ , d E is the incremental242

hysteretic energy absorbed; α and β are non-negative parameters.243

In the elastic response range, theoretically, the value of DIP A is null, but its effective244

calculus through Eqs. (10) or (11) may result in positive negligible values. DIP A ≥ 1 implies245

total damage or collapse. Thus, the structural damage is a function of the deformation and246

of the energy dissipated. Both quantities depend on the load history, while the parameters α,247
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β, δu , Qu and Ec(ξ) are independent of the load history. Equation (11) takes into account248

the effects of cyclic loads at different levels of deformation, while in Eq. (10) it is assumed249

that this effect is uniform and the same at all deformations. So, DIP A can be defined by a250

linear combination of the maximum displacement of response and dissipated energy. Indeed,251

Williamson and Kaewkulchai (2004) define DIP A, in a simplified way, by means of the252

following equation:253

DIP A(δ) = α U (δ) + β W (δ) (12)254

α and β are constants, U (δ) is a function that depends on the maximum deformation reached255

and W (δ) is a function that depends on the energy dissipated. α and β can be adjusted to256

take into account different ratios of damage accumulation, thus representing a wide variety257

of response models proposed in the literature (Williamson 2003).258

Coming back to the capacity curve, we have seen how the information of the structural259

degradation is in its nonlinear part. In relative terms, that is, as a fraction of the total degrada-260

tion in the ultimate deformation, this information is also well represented by two functions261

that depend only on the nonlinear part of the capacity curve, once abscissae and ordinates have262

been normalized. These two functions are defined next. Let’s call E(δ) and K (δ) functions263

respectively related to energy dissipation and stiffness degradation.264

E(δ) is easily obtained from the integration of the nonlinear part of the capacity curve;265

that is:266

E(δ) =
δ

∫

0

FN L(ξ)dξ ; 0 ≤ δ ≤ δu; 0 ≤ E(δ) ≤ E(δu) (13)267

FN L(ξ) is the nonlinear part of the capacity curve and has dimensions of force; δ and ξ are268

displacements; thus, E(δ) has dimensions of energy and is related to the energy dissipated269

by the structure when it reaches a displacement δ. It is worth noting that even though E(δ)270

has dimensions of energy, it is not directly related to the cyclic hysteretic dissipation, as it271

is implicit in the Park and Ang index as defined in Eqs. (10–12). We will see that it is more272

general and useful to work with the function normalized in abscissae and in ordinates. The273

following equation defines this normalized function EN (δN ):274

EN (δN ) = E(δ/δu)

E(δu)
; 0 ≤ δN ≤ 1; 0 ≤ EN (δN ) ≤ 1; (14)275

EN (δN ) is the ratio between the energy dissipated as a function of the relative displacement,276

δN = δ/δu , and the total energy that the structure has dissipated at the ultimate displacement277

E(δu).278

The second function is related to stiffness and is defined by the following equation:279

K (δ) = F(δ)

δ
(15)280

K (δ) also can be transformed into another one varying between 0 and 1 and depending only281

on the nonlinear part. Actually, considering that the linear part is defined as FL(δ) = mδ and282

that F(δ) = FL(δ) − FN L(δ) it can be shown that:283

KN L(δ) =

[

FN L (δ)
δ

]

máx
− FN L (δ)

δ
[

FN L (δ)
δ

]

máx
−

[

FN L (δ)
δ

]

mín

=

[

F(δ)
δ

]

máx
− F(δ)

δ
[

F(δ)
δ

]

máx
−

[

F(δ)
δ

]

mín

;284

0 ≤ KN L ≤ 1; 0 ≤ δ ≤ δu (16)285
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Fig. 5 Geometry and model of the building: a 3D sketch; b 2D model

and using normalized displacements:286

KN (δN ) = KN L(δ/δu); 0 ≤ δN ≤ 1; 0 ≤ KN (δN ) ≤ 1; (17)287

KN (δN ) is defined by the ratio between the stiffness variation with respect to the maximum,288

and the total variation of stiffness. As the stiffness tends to decrease with increasing displace-289

ment, KN (δN ), increases with the displacement so that is zero in the linear range and is one290

at δN = 1, that is at δ = δu .291

Since, according to Eq. (12), DIP A is a linear combination of a function that depends292

on the displacement and a function that depends on the energy, the following new damage293

index, DICC (δN ), is defined:294

DICC (δN ) = aKN N (δN ) + (1 − a)EN N (δN ) ∼= DIP A(δN ) (18)295

where KN N (δN ) = DIP A(δu) KN (δN ), EN N (δN ) = DIP A(δu) EN (δN ) and for δN = 1296

KN N (1) = EN N (1) = DIP A(δu) ≈ 1 (19)297

Thus, DIP A can be used to calibrate the value of the parameter a. This new damage index298

is called from now, capacity curve damage index, DICC (δN ). KN (δN ) and EN (δN ) can299

be calculated in a very simple way, both from the capacity curve and from the capacity300

spectrum and, if the parametric model proposed above is available, these curves are also301

fully determined by the lognormal or Beta functions of the capacity model. A practical302

example of the computation and calibration of DICC is shown in the following.303

3.2 Computation and calibration of the capacity curve damage index304

The structure used for illustrating the practical computation of the damage model is a rein-305

forced concrete building with four stories and frames with three spans. This building was306

designed specifically for this work and it was also used in Vargas-Alzate (2013) to check307

several techniques for calculating the seismic performance as well as various methods of dam-308

age assessment. The main geometrical characteristics and the structural model are shown in309

Fig. 5a. Due to its symmetry, the building is modeled as the two-dimension frame shown in310

Fig. 5b. The characteristics of beams and columns are given in Table 3.311
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Table 3 Characteristics of the

structural model of Fig. 5

b, h and ρ are length, width and

amount of steel of the

cross-section of the structural

element respectively

Storey Columns Beams

b (m) h (m) ρ b (m) h (m) ρ

1 0.5 0.5 0.03 0.45 0.6 0.0066

2 0.5 0.5 0.02 0.45 0.6 0.0066

3 0.45 0.45 0.015 0.45 0.6 0.0066

4 0.4 0.4 0.015 0.45 0.6 0.0066
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Fig. 6 Capacity spectrum of the building of Fig. 5. The observed and modeled spectra are shown together

with their first and second derivatives. Circle marker corresponds to the yielding point computed from the

modeled spectrum, square marker corresponds to the one computed from the observed spectrum

The constitutive model used for beams and columns follows an elastoplastic hysteresis rule312

with 5 % hardening. Yielding surfaces are defined by the bending-compression interaction313

diagram for columns and by the moment-curvature for beams.314

The nonlinear behavior of the materials was considered by using the Takeda modified315

hysteretic rule (Otani 1974). To construct the damping matrix, the Rayleigh method was316

used. The loads were applied following the recommendations of Eurocode 2 for concrete317

structures (BS EN 2005). The parametric model was applied to the pushover curve of the318

building. Due to the normalizations involved in the fitting procedures, the model parameters319

are the same for the capacity curve and for the capacity spectrum. Figure 6 shows the capacity320

spectrum and the yielding point. The first and second derivatives of the capacity spectrum321

are also shown in this figure.322

The curves modeled by means of the lognormal function are also plotted. A good fit323

also has been obtained with the Beta function. The errors are always lower than 2 % for the324

lognormal fit. Table 4 shows the parameters of the lognormal and Beta functions.325
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Table 4 Parameters of the lognormal and Beta models for the capacity curve of Fig. 6

Lognormal Beta

µ σ Mean (ML) Variance (VL) λ ν Mean (MB) Variance (VB)

0.254 0.27 0.263 0.0052 41.2 127.77 0.244 0.0011

The mean value and the variance of both distributions are also shown

Table 5 Yielding (Sdy,Say) and ultimate (Sdu,Sau) capacity points of the capacity spectrum of Fig. 6

Sdy f i t (cm) Say f i t (g) Sdu (cm) Sau (g) m (g/cm) T (s)

1.66 0.76 6.41 0.95 0.463 0.29

fit stands for the fitted spectrum. The slope, m, of the linear part of the capacity curve and the fundamental

period, T , of the building are also shown

The yielding point defining the bilinear capacity spectrum was calculated by using the326

actual and the fitted spectrum. Virtually the same point was obtained. Table 5 shows the3 327

yielding and the ultimate capacity points corresponding to the fitted spectrum, along with the328

slope and the period defining the linear part.329

The Park and Ang index for this building was estimated by means of incremental dynamic330

analysis (Vamvatsikos and Cornell 2001). The Ruaumoko program (Carr 2000) was used331

to carry out the dynamic analyses. The seismic action was defined by means of an actual332

accelerogram whose response spectrum is compatible with the response spectrum provided333

by the Eurocode 8 (CEN 2004) for great earthquakes (type 1, MS > 5.5) and soft soil334

(soil class D).This spectrum is called herein as EC8 1D. The accelerogram was selected335

from the European strong motion database (Ambraseys et al. 2002, 2004) according to the336

procedure described in Vargas-Alzate et al. (2013b) and it corresponds to the Friuli earthquake337

(06/May/1976, Mw = 6.6, depth = 6 km) as recorded at an epicentral distance of 48 km.338

Figure 7 shows the accelerogram normalized at a Peak Ground Acceleration (PGA) of 1 g.339

In this figure, the Fourier amplitude spectrum and the 5 % damped elastic response spectrum340

are also shown. For comparison purposes, the EC8 1D spectrum, together with the response341

spectrum of the accelerogram and the fundamental period of the building, is also shown in342

Fig. 7d.343

Incremental dynamic analysis was performed scaling this accelerogram for PGA values344

between 0.01 and 0.9 g, with 0.01 g intervals. Figure 8a shows the DIP A, the capacity345

curve and its bilinear form. Figure 8b shows the relationship obtained between PGA and the346

maximum displacement at the roof of the building, δ. In these two figures, the thresholds of347

the damage states adopted in the Risk-UE project (Barbat et al. 2006a, b; Lagomarsino and348

Giovinazzi 2006) are also depicted. These damage states and thresholds are described below349

in the following section devoted to the fragility model.350

Figure 9a shows how the new damage index, DICC A (δN ), is calibrated by using the Park351

and Ang index. DIP A I D A (δN ), and the functions that define the energy index, EN N A(δN )352

and the stiffness index, KNN A(δN ). The subscript A in these functions indicates they were353

calculated directly from the actual capacity curve. Virtually identical results were obtained354

using the parametric model. The parameter, α, was obtained by means of a least squares fit355

of Eq. (18). For the case discussed here, a = 0.78. Figure 9b shows the differences between356

the new index DICC A (δN ) calculated from the actual capacity curve and DIP A I D A (δN ).357
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Fig. 7 Accelerogram selected for the incremental dynamic analysis: a PGA normalized accelerogram;

b Fourier amplitude spectrum; c 5 % damped elastic acceleration response spectrum; d comparison between

the accelerogram response spectrum and the EC8 1D spectrum. In b–d the fundamental period of the building

is also shown
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Fig. 8 a Capacity curve and Park and Ang damage index, DIP A . b Maximum displacement as a function of

PGA. The damage states thresholds adopted from Risk UE project are also shown

The following three cases are shown in this figure: (1) differences between the new dam-358

age index, DICC A (δN ), calculated from the actual capacity curve and the Park and Ang359

index, DIPA IDA (δN ); (2) differences between the new damage index, DICC M (δN ) calcu-360

lated from the lognormal model and DIPA IDA (δN ); and (3) differences between the new361

index calculated from actual capacity curve, DICC A (δN ) and the one calculated from the362

lognormal model, DICC M (δN ). Note the goodness of the fits when the actual capacity and363

the lognormal model of the capacity curve are used. The maximum difference is lesser than364

0.04 damage index units. The value of the parameter α for the actual capacity curve is 0.78,365

and 0.77 for the parametric model. The variances of the difference vectors are respectively366

4.0E−5 and 6.5e−5 indicating the goodness of both fits. The differences between the new367

damage indices calculated from the actual and from the modeled capacity curve are very368

small too. The maximum difference is lesser than 0.02 damage index units. The parameter α369
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Fig. 9 a Calibration of the new damage index DICC A obtained from the actual capacity curve. The Energy

and stiffness functions are also displayed. Circle marker corresponds to the value of the Park and Ang index

at δN = 1. b Differences between the new damage indexes obtained from the actual, DICC A, and modeled,

DICC M , capacity curves and the DIPA IDA. The differences between the new damage index obtained from

the actual and modeled capacity curve are also displayed

is crucial for the damage model. Observe that DIPA IDA (δN ) is obtained for a specific seismic370

action. It can be expected that different seismic actions will lead to different Park and Ang371

indexes and, therefore, to different values of this important parameter. Thus the parameter α372

allows the new index, DICC M (δN ), properly fitting the response and the expected damage373

when the building is subjected to different seismic actions. Ongoing work will contribute to374

evaluate the sensitivity of this parameter to seismic actions with different response spectra375

and with different durations.376

4 Fragility model377

To assess the seismic expected damage, mechanical methods (Giovinazzi 2005; Lagomarsino378

and Giovinazzi 2006) usually consider four non-null damage states: (1) Slight, (2) Moderate,379

(3) Severe and (4) Complete. It is important to note that the Complete damage state has been380

incorrectly identified at times as the state of Collapse. Actually, this damage state comes381

from the union of the Extensive and Collapse damage states as defined, for instance, in the382

European macroseismic scale (Grünthal 1998); to see how these damage states are used in383

practical applications see also Lantada et al. (2010). So, the Complete damage state here384

strictly means Irreparable Damage, that is, the condition of the building holding this damage385

state, makes it more expensive to repair than to demolish and rebuild. For each damage state,386

the corresponding fragility curve defines the probability of exceeding the damage state as a387

function of the spectral displacement.388

4.1 The risk-UE model389

In this section, the method for determining the damage states thresholds and the fragility390

curves as proposed in the Risk-UE project (Milutinovic and Trendafiloski 2003) is analyzed391

and discussed. This method has been used to assess the seismic damage and risk in European392

cities (see for instance Lantada et al. 2009; Pujades et al. 2012). Lagomarsino and Giovinazzi393

(2006) propose a simple technique that allows obtaining the four fragility curves from the394

bilinear capacity spectrum through the following assumptions: (1) for each damage state,395

k, the corresponding fragility curve follows a lognormal cumulative distribution defined by396

the parameters µk and βk ; consequently the value of the fragility curve at µk is 0.5; (2) the397
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damage is distributed according to a binomial probability distribution and (3) µk thresholds398

are defined from the bilinear capacity spectrum according to the following equations:399

µ1 = 0.7 Dy µ2 = Dy; µ3 = Dy + 0.25(Du − Dy); µ4 = Du (20)400

and, using the normalized form by dividing this equation by Du, leads to:401

µN1 = 0.7 DyN ; µN2 = DyN ; µN3 = DyN + 0.25(1 − DyN ) = 0.25 + 0.75DyN ;402

µN4 = 1 (21)403

Assumption 2 is based on damage observed in real earthquakes (Grünthal 1998) and it allows404

determining the damage states probabilities at each damage state threshold; assumption 3 is405

based on expert opinion. Besides, assumptions (2) and (3) allow obtaining the values of the406

four fragility curves at each damage state threshold, µk or µNk ; finally a least squares fit407

allows obtaining the corresponding βNk . The details of the construction of fragility curves408

are well explained in Lantada et al. (2009) and in Pujades et al. (2012). Figure 10 shows409

the fragility curves corresponding to the capacity spectrum of Fig. 8a, but using normalized410

values. The points used for the least squares fits are also shown in this figure. The parameters411

of the fragility curves are shown in Table 6. Once the fragility curves, Fk(Sd), k = 1, . . . , 4,412

are known, for each spectral displacement, Sd, damage states histograms, Pj (Sd), define the413

probability of the damage state j . Equation (22) shows how these probabilities are obtained414

from fragility curves:415

P0(Sd) = 1−F1(Sd); Pj (Sd) = F j (Sd)−F j+1(Sd) j = 1, . . . , 3; P4(Sd) = F4(Sd);
(22)416

The following equation defines the mean damage state D(Sd) and the normalized mean417

damage state, M DS(Sd):418

D(Sd) =
4

∑

i=0

i Pi (Sd) = 4 M DS(Sd) (23)419

D(Sd) takes values between 0 (no damage) and 4 (Complete damage state); M DS(Sd) is420

obtained by dividing the mean damage state by the number of non-null damage states, namely421

by 4 in this case. M DS(Sd) takes values between zero (no damage) and 1 (Complete damage422

state). In turn, this normalized mean damage state is the parameter of the binomial distrib-423

ution that defines the probabilities Pi (Sd), i = 0, . . . , 4, so that unambiguously determines424

the damage states histograms and, by using Eq. (22), the fragility curves. For easier com-425

parison with the following developments, normalized spectra, normalized fragility curves426

and normalized mean damage states will be used from now. Figure 10 shows the obtained427

fragility curves, F j (SdN ), and the normalized mean damage state, M DS as a function of the428

normalized spectral displacement SdN429

The correlation between the Park and Ang damage index, DIP A, and the Risk UE based430

mean damage state, MDS in Fig. 10, must be tackled carefully because their senses are431

different. Obviously both are related to damage but MDS has a statistical meaning while432

DIP A must be interpreted as a physical pointer. Risk-UE based thresholds are defined by433

those displacements for which the probability of exceeding the corresponding damage state434

is 50 % and its simplified definition from capacity curve is based on expert opinion. In turn,435

no doubt, the expert opinion is based on the progressive degradation of the bearing capacity436

of the building. This delicate discussion will be resumed below.437
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Fig. 10 Fragility curves and mean damage state for the building of Fig. 5

4.2 Fragility curves based on the new damage index438

Park et al. (1985) calibrated the DIP A index from damage observed in nine reinforced con-439

crete buildings, concluding that DIP A ≤ 0.4 corresponds to a reparable damage, DIP A > 0.4440

denotes a damage level making the building difficult to repair and DIP A≥1.0 represents441

total collapse. In later works (Park et al. 1985; Cosenza and Manfredi 2000) it was found442

out that DIP A ≥ 1.0 implies the collapse, for DIP A ≤ 0.5 the damage is repairable and443

for 0.5 < DIP A < 1 the collapse of the building does not occur but the building cannot be444

considered repairable. Moreover, when DIP A < 0.2 it is considered that the damage is negli-445

gible. So, based on these results, critical values of the Park and Ang damage index have been446

used to propose new damage states thresholds. Specifically, the normalized displacements447

corresponding to damage indices of 0.05, 0.2, 0.4, and 0.65 have been allotted respectively448

to the thresholds of the damage states Slight, Moderate, Severe, and Complete. It is worth to449

recall that the Complete damage state means here not-repairable-damage. The probabilities450

of exceedance at the damage states thresholds are kept at 0.5. To find these thresholds we451

have used the DIP A I D A and the new DICC index obtained from the capacity curve. Results452

obtained using the actual capacity curve and the modeled according to the model proposed453

here are almost identical. So only the results obtained from the actual capacity curve, DICC A,454

are shown here. Table 6 shows the parameters of the fragility curves corresponding to the455

following three cases: (1) Risk-UE based fragility curves, (2) fragility curves based on the456

DIP A I D A and 3) fragility curves based on the new DICC A damage index. The µNk and457

βNk of the four normalized fragility curves are given in this table. The variances of the fits458

are also shown.459

Figure 11a shows the fragility curves corresponding to the case based on the new DICC A460

damage states thresholds. The corresponding mean damage state function (MDS) is also461

shown in this figure. The Risk-UE based case has been shown above in Fig. 10. Figure 11b462

compares the mean damage states functions, as defined in Eqs. (22) and (23), corresponding to463

the three cases. The mean damage state function corresponding to the fragility curves whose464

damage states thresholds have been fixed using the DIP A I D A and from the DICC A are465

virtually identical. The values of the mean damage state functions (MDS) at the damage states466
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Table 6 Parameters which define the fragility curves based on the Risk-UE, DIP A I D A and DICC A damage

states thresholds

Type 1: Slight 2: Moderate 3: Severe 4: Complete

µN1 βN1 VN1 µN2 βN2 VN2 µN3 βN3 VN3 µN4 βN4 VN4

Risk-UE 0.18 0.34 0.1E−3 0.27 0.42 2.1E−3 0.43 0.59 1.1E−3 1.0 1.0 0.10E−3

DIP A I D A 0.23 0.32 0.2E−3 0.32 0.32 0.2E−3 0.44 0.31 0.1E−3 0.63 0.33 0.03E−3

DICC A 0.22 0.33 0.2E−3 0.32 0.30 0.3E−3 0.43 0.33 0.1E−3 0.64 0.37 0.02E−3

The variances VNk of the fits are also given
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Fig. 11 a Fragility curves and MDS function obtained by using the damage states thresholds based on the

new DICC A . b Comparison of the mean damage state functions

thresholds are also shown in Fig. 11b. It can be seen how the Risk-UE based mean damage467

state function overestimates the damage beneath the Severe damage state and underestimates468

the expected damage above this damage state threshold. It is worth noting that beneath Severe469

damage state, Risk-UE damage model overestimates the expected damage because it takes470

into account that some damage occurs also in the linear branch of the capacity curve due471

to non-structural elements. Above this damage state, in later versions of the Risk-UE based472

damage models (see for instance Giovinazzi 2005; Lagomarsino and Giovinazzi 2006), the473

damage states thresholds have been shifted to consider non-reparable damage. Otherwise,474

this disagreement can also be reduced by assigning other Park and Ang index values to the475

damage states thresholds. In the case here analyzed, the values of the Park and Ang indices476

corresponding to the Risk-UE damage states thresholds are 0.002, 0.1, 0.4 and 0.9, instead of477

0.05, 0.2, 0.4 and 0.65, respectively for the Slight, Moderate, Severe and Complete damage478

states. As we will discuss later on, in our view, these expert opinion based decisions need479

further analyses and calibration.480

5 Usefulness of the model481

Due to improvements in computational capabilities the use of nonlinear time history analysis,482

is increasing so that it could be argued that the capacity spectrum method is less popular483

these days than it has been and, therefore, the usefulness of the models here proposed for484

the current earthquake engineering research or practice could be questioned. In this respect,485
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Gencturk and Elnashai (2008) claim that notwithstanding that it is the most accurate method486

of earthquake assessment, inelastic dynamic analysis is not always feasible owing to the487

involved computational and modeling effort, convergence problems and complexity. This is488

one of the reasons why nonlinear static analysis is still preferred and new improvements are489

proposed (Fajfar et al. 2005a, b; Casarotti and Pinho 2007; Pinho et al. 2008, 2009). Moreover,490

nonlinear static procedures can be applied even to asymmetric 3D buildings (Chopra and Goel491

2004; Bhatt and Bento 2011, 2013). Therefore, the availability of a new mathematical model492

for capacity curves/spectra can be a powerful tool for current earthquake engineering research493

or practice. This is particularly true in probabilistic assessments of structures (Vargas-Alzate494

et al. 2013a, b, c, d) involving hundreds or even thousands of nonlinear structural analyses.495

In fact it is in the framework of such kind of analyses that the models here presented were496

conceived. Indeed the model permits to simulate, in a straightforward manner, any type497

of capacity spectrum allowing classifying great amounts of buildings to set up complete498

parametric definitions of building typology matrices as well as to tabulate critical points of499

capacity spectra to be used in massive computations. In fact, the model has been tested on a500

large collection of capacity curves, both actual and synthetic, with excellent results in all the501

cases, showing a great usefulness, versatility and robustness.502

In the following several examples of the usefulness of the models are shown. The first503

one allows obtaining empirical functions linking the parameters of the capacity model to the504

maximum structural ductility; in this framework a new easy method to estimate the yielding505

point and indeed the maximum ductility is proposed. The second one allows examining how506

elastoplastic, hardening and softening capacity curves/spectra may share the same nonlinear507

part and indeed the same degradation, damage and fragility models. However, it also must508

be noted that, for a given seismic action defined by its 5 % damped response spectrum, the509

damage expected will be different because the spectral displacement of the performance510

point also depends on the other two parameters that define the full capacity model, namely511

the initial slope, m, or the fundamental period T , and the spectral acceleration, Au, at the512

ultimate capacity point and, therefore, the damage expected depends on the overall shape513

of the capacity spectrum. Finally two less usual cases concerning to buildings with singular514

capacity spectra are presented to show the ability of the model to deal also with these kinds515

of capacity spectra.516

5.1 Yielding point and ductility517

As stated in the Introduction, the bilinear form of a capacity spectrum is defined by the yield-518

ing point, (Dy, Ay), and the ultimate capacity point, (Du, Au). Remind that an important519

condition to be fulfilled is that the areas under the capacity spectrum and its bilinear form520

must be the same. In this subsection we show how Dy also can be obtained from the nor-521

malized nonlinear part of the capacity spectrum. Indeed, both the capacity spectrum and its522

bilinear form can be decomposed into their linear and nonlinear parts. Meanwhile, the linear523

part is the same for both curves and the nonlinear part of the bilinear form is a simple triangle,524

whose area should be equal to the area under the curve that defines the nonlinear part of the525

capacity spectrum. Let SC and SB be respectively the areas under the capacity spectrum and526

under its nonlinear part; in turn, let SC_L , SB_L , SC_N L and SB_N L be the respective areas527

of the linear and nonlinear parts. Given that the capacity spectrum, C , and its linear, CL , and528

nonlinear, CN L , parts meet the condition CN L = C −CL , the following equation is fulfilled:529

SC_N L = SC_L − SC for the capacity spectrum530

SB_N L = SB_L − SB for the bilinear form (24)531
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Fig. 12 Illustration of the new method to obtain DyN : a For the capacity spectrum of Fig. 1; b For the

model fitted. The circlecorresponds to the yielding point; squares define the triangle used to compute the area

SB N_N L in Eq. (26)

Taking into account that SC and SB must be equal and that the linear parts SC_L and SB_L are532

identical, the condition over the areas of Eq. (24) is reduced to SC_N L = SB_N L . Equations533

(24) also apply to curves normalized in both axes, given that normalized curves are obtained534

by dividing by the same constant of normalization in both sides of these equations. Moreover,535

calling DyN the normalized spectral displacement of the yielding point, SB N_N L the area536

under the normalized nonlinear part of the bilinear spectrum and SC N_N L the area under the537

normalized nonlinear part of the capacity spectrum, it is verified that:538

SB N_N L = (1 − DyN )/2 ⇒ DyN = 1 − 2SB N_N L = 1 − 2SC N_N L (25)539

Thus, the yielding point of the bilinear capacity spectrum can be calculated easily using the540

following steps: (1) use Eq. (1), or Eq. (6) for the modeled curve, to calculate the normalized541

nonlinear part of the capacity spectrum; note that this step also implies normalizing abscissae542

and ordinates; (2) calculate the area under this curve and use Eq. (25) to get DyN ; (3) finally,543

Dy, Ay and q are obtained by using the following equations:544

Dy = DyN Du; Ay = m Dy; q = Du/Dy = 1/DyN (26)545

where q is the ductility factor. For the empirical capacity spectrum of Fig. 1 the same value546

DyN = 0.599 is obtained when computed by means of the conventional technique and by547

means of the new method here proposed. If we use the model that fits this curve (parameters548

in Table 2), this value is 0.602. The values obtained by means of the classical and the549

new method match perfectly. Moreover, the differences between the values obtained for the550

actual and modeled spectrum are 0.5 %, showing the goodness of both the model and the551

new calculation method. Figure 12 illustrates the new simpler method to calculate DyN .552

Figure 12a corresponds to the actual spectrum shown in Fig. 1, whereas Fig. 12b shows the553

case of the modeled spectrum using the lognormal model with parameters µ = 0.608 and554

σ = 0.12 (Table 2). In Fig. 12, the normalized nonlinear capacity spectrum and its bilinear555

form are shown.556

It can be seen the two areas to be equaled. Figures at the middle and bottom show the first557

and second derivatives, normalized, of the nonlinear part of the capacity spectrum. Circle558
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Fig. 13 Ductility q as a function of the parameters µ and σ that define the model for capacity curves: a surface

showing the three parameters; b iso-q curves; c iso-σ curves; d iso-µ curves

marker in these figures show the position of the normalized yielding point DyN . Note that559

DyN is very close to the µ value, but not identical. In fact low σ values lead to DyN similar to560

µ. As µ and σ increase the differences between DyN and µ also increase. So, for instance, for561

µ = 0.608 and σ = 0.8, DyN is equal to 0.354 and for µ = 0.85 and σ = 0.8, DyN is equal562

to 0.4. Moreover, the simplicity of the model allows to establish an easy relationship between563

the lognormal distribution parameters, µ and σ , and the normalized yielding displacement,564

DyN , or equivalently, between µ, σ and the ductility, q . Since the determination of DyN565

requires a double integration of the lognormal probability density function, these relationships566

will be non-parametric. These non-parametric functions are plotted in Fig. 13 and tabulated567

in Table 7 for the maximum ductility factor q .568

It is worth noting that, since we have shown that the ductility factor q , or DyN , depends569

only on µ and σ , all the capacity spectra with the same model and the same Sdu , have the570

same Sdy , regardless of the parameters Sau and m, and vice versa. This remark is important,571

given that it shows that all the capacity curves with the same model have the same degradation572

pattern, and indeed the same fragility curves.573

To deepen this statement, different kinds of capacity spectra holding the same parametric574

model are shown in the following subsection. However, as argued above, we have to remind575

that, for a given seismic action, the performance point and therefore the damage expected,576

depends on the shape of the whole capacity spectrum.577
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Fig. 14 Examples of synthesis of capacity spectra with identical µ and σ : a m constant and m∗ variable;

b m variable and Sau constant

5.2 Elastoplastic, hardening and softening models578

The slope, m∗, at the end of the nonlinear capacity spectrum is another interesting parameter.579

It can be shown that m∗ and the slope, mC F , at the end of the capacity spectrum are related as:580

mC F = m −m∗. Thus mC F is positive, null and negative for m > m∗, m = m∗ and m < m∗,581

respectively. In structural analysis, these three cases are typified as stiffness degradation582

models, namely and respectively, softening (SO), elastoplastic (EP) and hardening (HA)583

models. Furthermore, m∗ is not an independent parameter, since it satisfies the following584

equation:585

m∗ = C

D
(m Sdu − Sau) (27)586

C is the value of the cumulative lognormal function with parameters µ and σ at x = 1, and D587

is the value of the integral of the cumulative lognormal function also at x = 1 but now scaled588

at Sdu . Thus, C and D are calculated directly, from µ, σ and Sdu . The other parameters of589

the Eq. (27) are known. Alternatively, m∗ may be considered as independent parameter and590

Sau as dependent. Figure 14a shows the case for m constant and m∗ variable. Figure 14b591

shows the case for m variable and Sau constant. In both cases the bilinear spectra are also592

shown. The patterns for SO, EP and HA models can be clearly seen in this figure. Table 8593

shows the numerical values of the parameters involved.594

Note how the same function, defined by parameters µ and σ , may represent large families595

of capacity spectra, also with identical Sdy and Sdu values, and vice versa.596

5.3 Special cases597

The usefulness of the model for more complex capacity spectra is shown herein. The first598

case corresponds to a spectrum showing neither clear linear portion nor yielding point and599

exhibiting negative tangent stiffness (softening) after the post-peak response. These types of600

capacity spectra correspond to relatively low µ and, in particular, to high σ values. Figure 15601

shows the case of µ = 0.3 and σ = 1; the other three parameters defining this capacity602

spectrum are Sdu = 10 cm, Sau = 0.56 g and the initial tangent stiffness corresponds603

to a slope m = 0.25 g/cm. Concerning to the bilinear capacity spectrum, in these cases it604

is frequent to use a slope corresponding to an initial secant stiffness. Figure 15 shows the605

capacity spectrum together with its linear and nonlinear parts. Two bilinear spectra are also606

shown in this figure. The slope of the first branch of the first bilinear capacity spectrum607

corresponds to the tangent stiffness, while that of the second one is m = 0.20 g/cm that608

123

Journal: 10518-BEEE Article No.: 9670 TYPESET � DISK LE CP Disp.:2014/9/9 Pages: 30 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Bull Earthquake Eng

Table 8 Parameters of the capacity spectra of Fig. 14

Independent parameters Dependent parameters Type

µ σ m (g/cm) Sdu (cm) Sau (g) Sdy (cm) Say (g) m∗ (g/cm)

Figure 14a 0.4 0.3 0.050 10 0.354 3.89 0.195 0.025 HA

0.282 0.038 HA

0.209 0.050 EP

0.136 0.062 SO

0.063 0.075 SO

Figure 14b 0.4 0.3 0.035 10 0.210 3.89 0.137 0.024 HA

0.045 0.176 0.041 HA

0.050 0.195 0.050 EP

0.055 0.215 0.058 SO

0.065 0.254 0.076 SO

HA hardening, SO softening, EP elastoplastic
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Fig. 15 Parametric model for a capacity spectrum that gradually softens, showing neither clear linear por-

tion nor yielding point, and exhibiting negative stiffness (softening) after the post-peak response (left) and

corresponding first derivatives (right)

corresponds to a secant stiffness. As discussed above, these slopes can be also defined by the609

corresponding periods being 0.40 and 0.45 respectively for the tangent and secant cases. Note610

that even when initial secant stiffness is preferred for the bilinear capacity spectrum, Eqs. (25)611

and (26) can be used to obtain the yielding point, but considering a kind of pseudo-non-linear612

part obtained by considering the linear component with the secant stiffness chosen. As it can613

be seen in Fig. 15, this procedure leads to obtain negative nonlinear parts leading to negative614

areas which must be subtracted from positive contributions, so that different secant stiffness’s615

lead to different SC N_N L areas and indeed to different normalized yielding displacements616

DyN .617

As it can be seen in Fig. 15, the yielding points (Dy, Ay) are (2.40 cm, 0.61 g) and618

(3.27 cm, 0.66 g) respectively for the tangent and secant cases. All these curves can be619

seen in Fig. 15 as well as the first derivatives of the capacity spectrum and of the linear and620

nonlinear parts for the tangent and secant bilinear cases. However to fit the capacity curve,621

whichever model is preferred, lognormal or Beta, the use of the tangent initial stiffness622

corresponding to the fundamental period of the building is mandatory.623
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Fig. 16 Synthetic piecewise capacity spectrum. The parameters of the piece functions are shown in Table 9

Table 9 Parameters of the piecewise capacity spectrum of Fig. 16

Piece No. Parameters defining the four picewise funtionss

Sdi (cm) Sdu (cm) Sai (g) Sau (g) m m∗ µ (cm) σ

1 0.0 4.0 0.00 0.25 0.150 0.040 0.20 0.12

2 4.0 6.0 0.20 0.25 0.040 0.017 0.34 0.2

3 6.0 8.0 0.21 0.24 0.017 0.016 0.20 0.2

4 8.0 10.0 0.20 0.22 0.016 0.003 0.60 0.05

Overall fit 0.0 10.0 0.00 0.22 0.150 −0.004 0.12 0.92

The parameters of each of the four piece-functions are shown. The parameters of the fit of the overall capacity

spectrum are also included. See the explanation of the parameters in the text

The second special case corresponds to capacity spectra showing abrupt losses of strength624

that usually are caused by partial failures of structural elements of the buildings. These625

capacity spectra, common in the literature, can be defined by piecewise functions and, each626

part or piece may be fitted by using the parametric model here proposed. Then, as many627

as desired pieces can be joined properly to get the overall capacity spectrum. Obviously628

a mean model for the whole capacity spectrum can be also obtained. Figure 16 shows a629

synthetic typical case of this kind of capacity spectrum. Table 9 shows the parameters that630

define each piece-function. In this table Sdi, Sai, Sdu and Sau are the initial and final spectral631

displacements and accelerations of each piece function; m and m∗ are respectively the initial632

and final slopes of each piece of capacity spectrum, as defined above; µ and σ are the633

parameters of the lognormal model defining the corresponding nonlinear part of each piece-634

function. The parameters of the fit of the overall capacity spectrum also are included in this635

table and the corresponding plot can be seen in Fig. 16. However, it is not self-evident that636

it is possible to use, and how, stepwise functions.637

6 Probabilistic capacity and damage models638

The building of Fig. 5 is now used to deal with the problem from a probabilistic point of639

view (Vargas-Alzate et al. 2013b, c, d; Barbat et al. 2013). This way, the application of the640

capacity and damage models to more than one case can be shown and the uncertainties641

involved can be estimated as well. The concrete compressive strength, fc, and the steel yield642

strength, fy , have been modeled as normal random variables with respectively mean values643

and standard deviations of 30 and 1.5 Mpa for fc and 420 and 21 Mpa for fy . The same644

123

Journal: 10518-BEEE Article No.: 9670 TYPESET � DISK LE CP Disp.:2014/9/9 Pages: 30 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

Bull Earthquake Eng

0 2 4 6 8 10 12
0

200

400

600

800

1000

δ (cm)

 F
 (

k
N

)

Probabilistic

Median

Median+σ

Deterministic

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

δ
N

 (adim.)

F
N

L
 N

 (
a

d
im

.)

Probabilistic

Probabilistic (fit)

Median

Median+std

Median of the fits

Fit of the median

Fig. 17 Probabilistic capacity curves (left) and corresponding normalized nonlinear parts
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Fig. 18 Maximum displacement as functions of the PGA (left) and corresponding Park and Ang damage

indices, DIPA IDA (right)

probability distributions were used by Vargas-Alzate et al. (2013b). Then, one hundred of645

probabilistic capacity curves have been generated by means of Monte Carlo simulations. We646

refer to the capacity curve of Fig. 8 as deterministic curve. Figure 17 shows the capacity647

curves obtained. The median capacity curve, the median plus one standard deviation (SD)648

and the deterministic curves are also depicted. Figure 17 also shows the normalized nonlinear649

capacity curves (FNL N).650

Concerning to the damage model, the building corresponding to the deterministic capacity651

curve has been submitted to incremental dynamic analyses by using the 20 seismic actions652

described in Vargas-Alzate et al. (2013b). These seismic actions were selected from the653

European strong motion database (Ambraseys et al. 2002, 2008) in such a way that they654

were compatible with the EC8 1D spectrum shown in Fig. 7. The characteristics of these655

20 accelerograms are described in the appendix of Vargas-Alzate et al. (2013b). The roof656

displacement, δ, and the Park and Ang damage index, DIPA IDA, have been obtained for each657

time history as functions of the PGA. PGA has been increased in the range between 0.01 and658

0.9 g with 0.01 g increments. Figure 18 shows the δ(PGA) and the DIPA IDA(δ) functions659

obtained. The median values and the deterministic functions are also shown in this figure.660

Then the deterministic capacity curve has been used to determine the parameter α used661

to fit the Energy and Stiffness damage functions to the Park and Ang index according to the662

damage model explained above. Figure 19 shows the results obtained. In this figure the Park 4663

and Ang indices obtained are shown together with the corresponding fits. Median values of664

the Park and Ang indices and of the fits are also shown. Moreover the fit of the median Park665

and Ang indices and the damage model corresponding to the median α value are also shown.666

It can be seen that equivalent values are obtained by using the median of the fits, the fit of the667

median Park and Ang indices and the damage model corresponding to the median α value;668
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Fig. 19 Probabilistic damage model. Median values are shown together with the results of twenty simulations

and the corresponding fits of the damage model

Table 10 Statistics of the probabilistic approach

Median Mean SD c.o.v. (%)

m (kN/cm) 285.1 285.6 0.31 0.1

T (s) 0.29 0.29 0.003 0.9

δu (cm) 8.70 8.78 1.20 13.7

Fu (kN) 770.83 773.24 32.55 4.2

µ 0.24 0.25 0.04 15.8

σ 0.31 0.31 0.07 21.2

α 0.69 0.70 0.04 6.4

Median, mean, standard deviations (SD) and coefficients of variations (c.o.v.) are shown for the five parameters

of the capacity curve, for the fundamental period, T , and for the parameter α that defines the damage model

the median α value is the same that the one obtained by fitting the damage model to the669

median of the Park and Ang damage functions, namely α = 0.69.670

Uncertainties in the α parameter are slightly over 6 %. Note that the damage model is671

also highly influenced by the normalization of the roof displacement of DIPA IDA(δ) function672

by δu .673

Table 10 summarizes the statistics of the obtained results for the capacity and damage674

models. The five parameters that define the capacity model are shown. The fundamental675

period is also included. It can be seen how the uncertainties in the initial slope, m, and indeed676

in the fundamental period, T , are very small, less than 1 %;. Conversely the uncertainties in677

the ultimate base shear force, Fu , and in the ultimate roof displacement, δu , are significant,678

mainly in δu where uncertainties of about 14 % are obtained. This high uncertainties are679

transferred to the parameters, µ and σ , controlling the normalized nonlinear capacity curve.680

It must be reminded that the construction of the normalized nonlinear capacity curve involves681

the use of δu and Fu in the normalization procedure. Uncertainties in the α parameter are682

slightly over 6 %. Note that the damage model is also highly influenced by the normalization683

of the roof displacement of DIPA IDA(δ) function by δu .684

These facts indicate the importance of the ultimate capacity point in the capacity and685

damage models here proposed. We have seen above that this ultimate capacity point is also686

crucial in the fragility models.687
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7 Summary and discussion688

The separation of the linear and nonlinear components of the capacity curve has allowed689

focusing attention on the nonlinear component, which represents the progression of the690

degradation of the structure with increasing displacements. Because of its normalization in691

abscissae and ordinates, this Nonlinear Normalized Component (CNLN) is the same for692

capacity curves and for capacity spectra. The CNLN has been modeled by means of the693

cumulative integral of a cumulative lognormal function, being fully defined by two parameters694

µ and σ . The cumulative beta function with parameters λ and ν, also provides excellent fits.695

An important property of the model is that it is infinitely differentiable and it fits well at696

least the first two derivatives of the CNLN. Furthermore, the CNLN is independent of the697

fundamental period of the building and of the ultimate capacity point, so that a specific698

model is representative of a large family of capacity curves/spectra. Thus, any capacity699

curve/spectrum is defined by five independent parameters. These parameters are, in addition700

to µ and σ , the slope, m, of the linear part of the capacity curve, and the coordinates, Du701

and Au, of the ultimate capacity point. The slope at the ultimate capacity point, m∗, can be702

estimated from these five parameters.703

Concerning to expected damage, two new damage-related functions have been defined.704

The first one is associated to the relative variation of the secant stiffness; the second one is705

linked to the dissipated energy. The incremental nonlinear dynamic analysis, applied to a706

reinforced concrete building, has allowed observing how the Park and Ang damage index707

can be obtained directly by means of a linear combination of these two functions, being708

the contribution of the stiffness degradation about 80 losses, about 20 %, for the building709

studied herein. However, the partition coefficient between the contributions of the stiffness710

and energy functions may depend on the characteristics of the seismic action. For instance, a711

longer duration of the earthquake may increase the contribution to the damage of the function712

of energy.713

Moreover, the relationship between the Park and Ang damage index and the observations714

of damage pointed out by Park et al. (1985) and other authors has been used to define new715

damage states thresholds that, in our opinion, improve previous proposals. The acceptance716

of the hypothesis that the damage is distributed according a binomial distribution, allows717

constructing generalized fragility curves, which depend only on the parameters of the model;718

that is, µ and σ for the lognormal function. Thus, these fragility curves are representative for719

a broad family of capacity curves/spectra with different initial slopes and different ultimate720

capacity points. However, there are two critical issues in this simple formulation of the721

damage model and fragility curves: (i) the definition of the ultimate capacity point; (ii) the722

damage states thresholds, defined as the normalized displacements where the probability of723

exceedance of the damage state is 0.5. Suitable values have been taken here in order to show724

the potentiality of the use of the CNLN in assessments of seismic damage and risk.725

The massive use of this model has allowed focusing attention on the CNLN and establish-726

ing new procedures to calculate, in a simple and straightforward way, the yielding point of727

the bilinear capacity spectrum and the expected damage. Concerning to the yielding point, its728

displacement, normalized by the displacement of the ultimate capacity point, is the inverse729

of the ductility factor, and, can be calculated, also in a very simple manner, starting from the730

area under the CNLN. Thus, this normalized displacement and, consequently, also the duc-731

tility, can be tabulated as an empirical function of µ and σ . Moreover, the bilinear capacity732

spectrum is a special case for µ equal to the normalized displacement of the yielding point733

and σ null.734
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The method has been tested on a large number of reinforced concrete buildings with735

different seismic actions, always with excellent results. More work, with different building736

types and different seismic actions, will establish better the variability of the contributions737

to damage of the stiffness degradation and energy functions, as well as, it will allow a better738

setting of the damage states thresholds of the new generalized fragility curves. Once these739

thresholds are determined, as our new generalized fragility curves only depend on the CNLN,740

the parameters of each fragility curve may be also tabulated as functions of µ and σ , likewise741

we have tabulated the ductility factor.742

The availability of this new mathematical model for capacity curves/spectra can be a743

powerful tool for current earthquake engineering research. In particular, this model can be744

very useful in probabilistic approaches, as well as in seismic risk analyses at territorial745

scale since the simple modeling of the capacity curves/spectra may significantly reduce746

computation times.747

To finish, permit us a brief digression. Fost (2007) quotes Frédéric Chopin: “Simplicity748

is the final achievement. After one has played a vast quantity of notes and more notes, it is749

simplicity that emerges as the crowning reward of art”. The phrase “Simplicity is the ultimate750

sophistication” although it appears in the novel by Gaddis (1955) and was used by Apple751

as a slogan in 1984, is attributed to Leonardo Da Vinci (Granat 2003). The Art relates to752

capturing beauty through simple strokes, Science to the search for simple models able to753

explain complex phenomena. The capacity spectrum method (CSM) achieves to pick up on754

the pushover curve, the structural response of buildings and structures of great complexity and755

is a shining example of this idea. The CNLN and its parametric model are also surprisingly756

simple but their potentiality may be significant.757
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