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Abstract

Parametric modeling of electromagnetic (EM) behaviors has become important

for EM design optimizations of microwave components. The EM based design, such

as design optimization, what if analysis and yield-driven design, can be time con-

suming because it usually requires repetitive EM simulations with varying values

of geometrical parameters as design variables. Parametric models can be devel-

oped from the information of EM responses as functions of geometrical parameters.

The developed parametric models allow faster simulations and optimizations with

varying values of geometrical parameters and subsequently can be implemented in

high-level circuit and system design optimizations.

This thesis proposes a novel technique to develop combined neural network and

pole-residue-based transfer function models for parametric modeling of EM behav-

iors of microwave components. In this technique, neural networks are trained to

learn the relationships between pole/residues of the transfer functions and geomet-

rical parameters. The orders of the pole-residue transfer functions may vary over

different regions of geometrical parameters. We develop a pole-residue tracking

technique to solve this order-changing problem. After the proposed modeling pro-

cess, the trained model can be used to provide accurate and fast predictions of the

EM behavior of microwave components with geometrical parameters as variables.

An advanced pole-residue tracking technique is proposed to exploit sensitivity

information to solve the challenges of pole-residue tracking especially when the

amount of training data are reduced and/or the geometrical step sizes between the

data samples are enlarged. The proposed technique takes advantages of sensitivity
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information to split one pole into two separate new poles to achieve the increase

of the orders of the transfer functions and ultimately form transfer functions of

a constant order over the entire region of geometrical parameters. The proposed

technique addresses the challenges of pole-residue tracking when training data are

limited.

As a further advancement, we introduce EM sensitivity analysis into the pole-

residue-based neuro-transfer function modeling technique. The purpose is to in-

crease the model accuracy by utilizing EM sensitivity information and to speedup

the model development process by reducing the number of training data required

for developing the model. The proposed parametric model consists of the original

and adjoint pole-residue based neuro-TF models. New formulations are derived for

calculating the second order derivatives for training the adjoint pole-residue based

neuro-TF model. By exploiting the sensitivity information, the proposed technique

can further speed up the model development process over the existing pole-residue

parametric modeling method without using sensitivity analysis. The proposed para-

metric modeling techniques in this thesis are demonstrated by several microwave

examples.

KEY WORDS: Electromagnetic, parametric modeling, neural network, trans-

fer function, sensitivity analysis.
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Chapter 1

Introduction

1.1 Introduction and Motivation

Nowadays, as the frequency of microwave circuits increases from gigahertz to ter-

ahertz, the wavelengths become even smaller. When the sizes of the devices are

comparable to the operating wavelength, the three-dimensional EM simulations be-

come important for describing the characteristics of the microwave devices. There

are three important reasons to simulate EM behaviors of microwave circuits and

systems: to understand the physics of a complex system of interacting elements; to

verify new concepts; and to optimize designs.

EM based design, such as design optimization, what if analysis and yield-driven

design, can be time consuming because it usually requires repetitive EM simulations

with geometrical parameters as design variables. To speedup the process of obtain-

ing EM responses, parametric modeling of electromagnetic (EM) behaviors has be-

come important for EM design optimizations of microwave components. Parametric

models can be developed from the information of EM responses as functions of ge-
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ometrical parameters. The developed parametric models allow faster simulations

and optimizations with varying values of geometrical parameters and subsequently

can be implemented in high-level circuit and system designs [1]−[5].

Artificial neural network (ANN) has been a recognized vehicle for the EM para-

metric modeling and design optimization [1]−[12]. ANN can represent general non-

linear relationships between EM behaviors of the microwave components and the

geometrical parameters after a proper training process. As a further development

of ANN parametric modeling, the sensitivity analysis has been used to speed up the

model development process by utilizing EM sensitivity information to reduce the

number of training data required for developing the model [13]−[15]. To improve

the accuracy and reliability of the EM parametric modeling and optimization, the

knowledge-based/space-mapping modeling method is developed [16]−[18]. Different

space-mapping techniques have been introduced to map the prior knowledge such

as coarse models onto EM behaviors of microwave components [19]−[25].

An advanced modeling approach, which combines neural networks and transfer

functions (neuro-TF), was developed to perform parametric modeling of EM re-

sponses [26], [27]. This approach can be used even if accurate equivalent circuits

or empirical models are unavailable. In this method, transfer functions are used to

represent the EM responses of passive components versus frequency. However, the

coefficients of transfer functions have discontinuity problems when there are large

geometrical variations. In the reference [28], a training method for developing para-

metric neuro-TF model of microwave passive components in the frequency domain

has been presented under the rational transfer function formulation. The solution
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of the discontinuity of coefficients in transfer functions over the geometrical vari-

ables is addressed in the reference [28]. The sensitivities of the coefficients of the

rational transfer function with respect to geometrical parameters become high when

the order of transfer function is high and/or the geometrical variations are large.

This limits the accuracy and robustness of the model. Reference [29] presented an

alternative pole-residue approach to the transfer function. However, the method

to address discontinuity in the reference [28] applicable to rational functions is not

applicable to pole-residue-based transfer functions, which requires a quite different

approach. The order-changing problem for the pole/residue formulation remains an

open problem when the geometrical variations are large.

In this thesis, a novel parametric modeling technique combining neural networks

and pole-residue-based transfer functions is proposed to develop parametric mod-

els of EM behaviors for microwave components. This new method is proposed to

address the discontinuity issue of the pole-residue-based transfer function. A novel

order-changing technique is developed for pole-residue-based transfer functions to

handle the problem of order variations as geometrical parameters change in a large

region. As a further advancement, we also introduce sensitivity analysis into the

proposed pole-residue-based neuro-transfer function parametric modeling technique.

The model developed by the proposed method can obtain good accuracy with fewer

training data. After the proposed modeling process, the trained model can be used

to provide accurate and fast prediction of the EM responses with respect to the

geometrical variables and can be subsequently used in the high-level circuit and

system design.
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1.2 List of Contributions

The main objective of this thesis is to investigate and develop an accurate and

robust parametric modeling method of EM behavior of microwave components. In

this thesis, a novel parametric model is developed addressing the condition that no

coarse model are available. In addition, the developed model should be formulated

such that it can be conveniently incorporated into existing circuit simulators for

high-level circuit simulations and design optimizations. In this thesis, the following

significant contributions are made:

• A novel technique is proposed to develop a combined neural network and

pole-residue-based transfer function (pole-residue-based neuro-TF) model for

parametric modeling of EM behaviors of microwave components [30]. A pole-

residue format of transfer function is used to represent the frequency response

of the EM behaviors of microwave components addressing the condition with

no available coarse model. Neural networks are used to establish the nonlin-

ear mapping relationship between geometrical variables and pole/residues of

transfer function. An order-changing technique is developed for pole-residue-

based transfer functions to address the discontinuity issue of the pole-residue-

based transfer function. The accuracy of the model developed by the proposed

method remains good even when the order of the model is high. After the

proposed modeling process, the developed model can be used to provide accu-

rate and fast predictions of the EM responses with respect to the geometrical

variables and can be subsequently used in the high-level circuit and system
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design.

• An advanced pole-residue tracking technique is proposed to exploit sensitiv-

ity information to solve the challenges of the pole-residue tracking especially

when the amount of training data are reduced and/or the geometrical step

sizes between the data samples are enlarged [31]. The proposed technique

takes advantages of sensitivity information to split one pole into two separate

new poles to achieve the increase of the orders of the transfer functions and

ultimately form transfer functions of a constant order over the entire region

of geometrical parameters. The proposed technique addresses the challenges

of pole-residue tracking when training data are limited.

• For the first time, sensitivity analysis is introduced into the neuro-transfer

function parametric modeling method [31], [32]. In this proposed technique,

not only the input-output behavior of the modeling problem but also the sen-

sitivity analysis information generated from EM simulators are used in the

model development. New formulations are derived to calculate the second-

order derivatives required for developing the proposed sensitivity-analysis based

neuro-TF model. By exploiting sensitivity information for training, the pro-

posed modeling method can obtain accurate parametric models with fewer

training data (or obtain better accuracy with the same amount of training

data).
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1.3 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 presents a literature review of popularly used parametric modeling

technique for EM behavior modeling. An overview of artificial neural network

(ANN), ANN with sensitivity analysis, and knowledge based neural network tech-

niques are presented. Classical space mapping methods such as implicit space map-

ping, output space mapping, tuning space mapping and the recently developed

coarse and fine mesh space mapping, parallel space mapping, portable space map-

ping are also reviewed. Recent neuro-transfer function parametric modeling method

are also discussed.

Chapter 3 presents a novel technique is proposed to develop a combined neu-

ral network and pole-residue-based transfer function (pole-residue-based neuro-TF)

model for parametric modeling of EM behavior of microwave components. This

proposed method addresses the condition that no coarse model are available. Three

application examples are used to illustrate the proposed technique.

Chapter 4 presents an advanced pole-residue tracking technique using EM sen-

sitivity analysis. The purpose is to exploit the sensitivity information to track the

splitting of poles as geometrical parameters change. The proposed technique ad-

dresses the challenges of tracking pole splitting when training data are limited. This

technique is illustrated using a coupled-line filter example.

Chapter 5 presents a further advancement, which introduce sensitivity analysis

into the proposed pole-residue-based neuro-transfer function parametric modeling
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method. By exploiting sensitivity information for training, the proposed modeling

method can obtain accurate parametric models of wider geometrical range with the

same amount of training data. This proposed technique is demonstrated by three

microwave examples.

Finally, Chapter 6 presents the conclusions and discussions on possible directions

for future work.
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Chapter 2

Literature Review

Parametric modeling of electromagnetic (EM) behavior has become important for

EM design optimization of microwave components. The EM based design can be

time consuming because it usually requires repetitive EM simulations with geomet-

rical parameters as design variables. Parametric models can be developed from the

information of EM responses as functions of geometrical parameters. The developed

parametric models allow faster simulations and optimizations with varying values of

geometrical parameters and subsequently can be implemented in the high-level cir-

cuit and system design optimizations. A variety of parametric modeling techniques

have been introduced for modeling EM behavior of passive and active components.

Here reviews frequently used parametric modeling techniques.

2.1 Artificial Neural Network

Artificial neural networks (ANNs) are recognized vehicles for electromagnetic (EM)-

based modeling and optimization in microwave area [1]−[12]. EM design optimiza-

tion can be expensive because it requires repetitive EM simulations due to adjust-
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ments of the values of geometrical parameters. Through an automated training

process, ANN can learn the relationship between EM responses and geometrical

parameters. The trained model provides accurate and fast prediction of the EM

behavior of microwave components with geometrical parameters as variables, and

can be subsequently implemented in high-level circuit and system design [1].

In the past decades, significant advances have been made in development of arti-

ficial neural network to overcome RF/microwave modeling and design difficulties [2].

Neural network can learn and represent the general input-output behavior of a de-

vice/component even when the detailed internal formulas of the device/component

are unavailable. Once developed, these neural network models can be used instead

of computationally expensive EM models of passive/active components to speed up

RF/microwave circuit design [4], [33]−[36].

Researchers have investigated a variety of important applications utilizing the

ability of artificial neural networks to perform parametric modeling and optimiza-

tion of microwave components and circuits, such as high-speed VLSI interconnects

[37], [38], bends [17], [39], vias [40], spiral inductors [36], [41], microwave FETs

[35], [42], HBTs [43], [44], HEMTs [45], waveguides [46], laser diodes [47], filters

[48]−[50], amplifiers [4], [51], mixers [51], antennas [52], coplanar waveguide (CPW)

components [27], [53], embedded passives [26], [54], multilayer circuit packages [55].

A variety of ANN structures have been developed in recent days [56]−[67], such

as multilayer perceptron neural networks [62], recurrent neural networks [51], [58],

[60], [61], time-delay neural networks [8], radial basis function neural networks [9],

[63], dynamic neural networks [56], [57], and the recently introduced state-space
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dynamic neural networks (SSDNN) [64]−[67]. In the references [16], [68]−[70], au-

tomated model generation method is described to automate the structure selection

process of the ANN modeling.

As a further approach, the knowledge-based neural network has been developed

to improve the accuracy and reliability of modeling and design optimization [35]. In

the knowledge-based approach, models are developed using neural networks com-

bined with prior knowledge such as analytical expressions [16], empirical models

[17] or equivalent circuits [35], [71]. The idea of the knowledge-based model is to

exploit existing knowledge in the form of empirical or equivalent circuit models

together with neural networks to develop a faster and more accurate model. For

the microwave design, there exist many empirical or equivalent circuit models that

are computationally efficient and widely used in practical design. However, such

models are often valid only in a limited parameter range, beyond which the model

predictions become inaccurate.

2.1.1 Neural Network Structures

A neural network has at least two physical components, which are the processing

elements and the connections between them. The processing elements are named

neurons while the connections between the processing elements are called links.

Every link has a weighting parameter. Each neuron receives the stimulus from the

other neurons which are connected to it, processes the information and generates

an output response. Neurons who receive stimulus from the outside of the neural

networks are named input neurons. Neurons whose outputs are used externally
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are named output neurons. Neurons who receive stimulus from other neurons and

whose output is a stimulus for other neurons in the neural network are named hidden

neurons. Different neural network structures can be constructed by using different

processing elements or by the different manner how they are connected.

Multilayer Perceptrons (MLP) are the most popular type of neural networks,

which are used in many different applications. In the structure of MLP, the neurons

are divided into different layers. The first layer is called input layer and the last

layer is called output layer. The rest of layers in between of these two layers are

called hidden layers. In general, an MLP consists of one input layer, one or more

hidden layers, and one output layer, as shown in Fig. 2.1.

According to the universal approximation theorem for MLP proved by Cybenko

[72] and Hornik et al. [73], a three layer perceptron (a perceptron is defined as an

algorithm for supervised learning) provided by enough hidden neurons, is able to

approximate any arbitrary nonlinear function with any desired accuracy. In practice,

how to choose the exact number of hidden neurons needed for specific modeling

problem remains an open question. The ongoing research in this direction includes

algorithms such as constructive algorithms [74], network pruning [75], regularization

[76], and automatic model generation [69].

Practically, three-layer and four-layer perceptrons are most commonly used in

neural network applications. In general, four-layer perceptrons have better perfor-

mances in modeling higher nonlinear problem than three-layer perceptrons which

may need too many hidden neurons. Three-layer perceptrons are usually preferred

when generalization capability of the function approximation is a major concern
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Figure 2.1: Multilayer perceptrons (MLP) structure containing one input layer, one
output layer, and several hidden layers.
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[77], because fewer hidden neurons are needed in the resulting neural network. Four-

layer perceptrons perform better in boundary definitions which usually preferred in

pattern classification problems [78].

Radial basis function (RBF) neural network is another popular neural network

structure which has a single hidden layer using radial basis activation functions for

hidden neurons [63], [79]. A typical RBF neural network is illustrated in Fig. 2.2.

It consists of one input layer, one output layer, and one RBF hidden layer. The

Gaussian and multiquadratic functions are the most common radial basis activation

functions used in RBF neural networks.

The idea of combining wavelet theory with neural networks results in another

type of neural network structure, called wavelet networks [80]−[82]. Wavelet func-

tions are used as hidden neuron activation function in the wavelet networks. Net-

work construction methods are developed using theoretical features of the wavelet

transform. These methods help to determine the number of hidden neurons and the

weight parameters during training process. The wavelet network has been used in

modeling passive and active microwave components.

One specific type of neural network which allows time-domain behaviors of a

dynamic system is described. This type of neural network is established depending

not only on the present inputs but also on the history of the system states and

inputs, as called recurrent neural network (RNN) [83]−[85]. A recurrent neural

network structure with feedback of delayed neural network is shown in Fig. 2.3.

The combined history of the inputs and outputs of the system forms a vector

of extra inputs to be presented to the neural network which can be any of the
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Figure 2.2: The structure of Radial basis function (RBF) neural network.

feedforward neural network structure such as MLP, RBF, and wavelet networks.

The feedforward network together with the time delay and feedback mechanisms

results in a recurrent neural network structure.

Another specific type of nerual network is called dynamic neural network (DNN).

Dynamic neural network is described for large siganal modeling of nonlinear bahav-

ior of the circuits in the circuit simulation. The stucture for dynamic neural network

is illustrated in Fig. 2.4.
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. . . . . .

N

Figure 2.3: A recurrent neural network structure with feedback of delayed neural
network output.

2.1.2 Neural network Training

A neural network cannot represent any device/circuit behavior unless it is well

trained with corresponding data. A systematic neural model development process

is described including data generation, data scaling, training, validation, and testing.

Let x represent an nx-vector containing the design parameters of a RF/microwave

component, called as input vector. Let y represent an ny-vector containing the

EM/electrical behavior of the component. The theoretical relationship between x

and y can be represent by a neural network function, formulated as

y = fANN(x,w) (2.1)

where w represents a vector containing all neural network weights. A fast and

accurate neural model is developed by training the neural network function fANN

with a set of simulated/measured data called the training data. The training data
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Figure 2.4: The structure of dynamic neural network.

is denoted by input-output sample pairs {(xk,dk), k ∈ Tr}, where dk represents the

measured/simulated output data for the input xk, and Tr represents the index set

of training data.

For training purpose, the error function E(w) is formulated as,

E(w) =
1

2

∑

k∈Tr

‖fANN(xk,w)− dk)‖
2 (2.2)

The primary objective of neural network training is to minimize E(w) by ad-

justing the weigh parameters w. Multiple training algorithms are developed for
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RF/microwave neural modeling such as backpropagation, conjugate gradient, Quasi-

Newton, Levenberg-Marquardt, Genetic Algorithms and Simulated Annealing. Once

trained, an independent set of data, called test data, is used to test the accuracy of

the neural network model. Normally, the test data should be generated within the

same input range as the training data but contains the input-output samples which

are never used in training stage. If both training and testing results are satisfied

with the use desired accuracy, the neural network model are well trained and can

be used in circuit simulation and design optimization.

2.2 Knowledge-Based Neural Network

The knowledge-based neural network (KBNN) is a modeling method combining

prior knowledge with the learning ability of neural networks by incorporating the

empirical information into the internal structure of neural networks. Fig. 2.5 illus-

trates the comprehensive structure of the knowledge-based neural network.

In KBNN, the microwave knowledge is embedded as part of the neural network

internal structure. The KBNN structure includes six layers that are not fully con-

nected to each other, called the input layer, the knowledge layer, the boundary layer,

the region layer, the normalized region layer, and the output layer. The knowledge

layer contains the microwave knowledge, complementing the ability of learning and

generalization of neural networks with additional knowledge. The boundary layer

incorporates knowledge in the form of problem dependent boundary functions. The

region layer contains neurons for constructing regions from boundary neurons. The

normalized region layer contains rational function based neurons to normalize the
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Figure 2.5: Illustration of the structure of knowledge-based neural network (KBNN)
[35].

outputs of the region layer. The output layer consists of second-order neurons com-

bining normalized region neurons and knowledge neurons.

The KBNN exploits existing knowledge in the form of empirical functions or

equivalent circuit model together with a neural network model to develop faster

and more accurate models. Extrapolation capability of KBNN is also enhanced by

embedding knowledge in the model. Another parametric modeling and optimization

technique with prior knowledge, using an advanced optimization concept named

space mapping, is discussed in next section.
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2.3 Space Mapping

Space mapping (SM) is a recognized engineering optimization methodology in the

microwave area [19], [20]. The space mapping concept combines the computational

efficiency of coarse models with the accuracy of fine models [19]. The coarse models

are typically empirical functions or equivalent circuit models, which are computa-

tionally efficient. However, such models are often valid only in a limited region of

input space, beyond which the model predictions become inaccurate. On the other

hand, detailed or fine models can be provided by an electromagnetic (EM) simula-

tor, or even by direct measurements. The detailed models are accurate, but can be

expensive (e.g., CPU-intensive simulations). The space mapping technique estab-

lishes a mathematical link between the coarse and the fine models and directs the

bulk of the CPU-intensive computations to the coarse model, while preserving the

accuracy offered by the fine model [19]. Fig. 2.6 shows the illustration of the space

mapping concept. Typically, space mapping algorithms provide excellent results

after a few evaluations of the fine model.

Efforts on space mapping have focused on several areas, such as implicit space

mapping [86], [87], output space mapping [88]−[90], neural space mapping [91]−[95],

generalized space mapping [96], tuning space mapping [97], [98], portable space

mapping [99], parallel space mapping [25], coarse and fine mesh space mapping

[100], [101]. Recent improvements in space mapping such as constrained parameter

extraction using implicit space mapping [102], space mapping optimization using

EM-based adjoint sensitivity [103], and fast EM modeling using shape-preserving
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Figure 2.6: The illustration of the space mapping concept.

response prediction and space mapping [104] focus on reducing the number of fine

model evaluations.

2.3.1 Space Mapping Concept

Let Rf (xf ) denotes the response vector of a fine model corresponding to a vector

of design variables xf . The original optimization problem is formulated as follows

x∗
f = argmin

xf

U(Rf (xf )) (2.3)

where U is a suitable objective function, which represents the error function of

Rf (xf ) with respect to the design specifications; x∗
f is the optimal fine model de-
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sign to be found. We assume that solving problem (2.3) by means of direct EM

optimization is computationally expensive. Instead, we exploit an inexpensive sur-

rogate model; e.g., we establish a surrogate model which combines the coarse model

with the input mapping function as

xc = PSM(xf ) (2.4)

such that

Rs(xf ) = Rc(xc) = Rc(PSM(xf )) (2.5)

where xc is a vector of design variables of the coarse model andRc(xc) represents the

response vector of the coarse model corresponding to xc. Rs(xf ) is a response vector

of the surrogate model and xf is a vector containing all the design optimization

variables. PSM represents the space mapping function. The surrogate is trained to

be very close to the fine model as

Rc(PSM(xf )) ≈ Rf (xf ) (2.6)

Thus, the design optimization using surrogate model can represent that using fine

model described in (2.3). The optimal solution of the surrogate model is denoted

as

x∗
f = argmin

xf

U(Rc(PSM(xf ))) (2.7)

Fig. 2.7 shows the mathematical representation of the space mapping methodology

presented in the reference [19].
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2.3.2 Input Space Mapping

At the beginning of the space mapping concept is presented, input space mapping

is introduced as the most standard space mapping methodology [19]. Input space

mapping focus on reducing the misalignment between the fine and coarse models

by establishing a mapping between the input spaces (e.g., design parameter spaces)

of the fine and coarse models. Input mapping with the linear mapping function is

also called as original space mapping, defined as

xc = PSM(xf ) = BSMxf + cSM (2.8)

where BSM and cSM represent the coefficients of a linear mapping function.
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2.3.3 Implicit Space Mapping

Implicit space mapping [86], [87] explores the flexibility of the preassigned parame-

ter such as dielectric constant, substrate height in the design optimization process.

Selected preassigned parameters (e.g., dielectric constant and substrate height) are

extracted to match the coarse and fine models. The idea of using preassigned pa-

rameters was introduced in the reference [87] within an expanded space mapping

design framework. This method selects certain key preassigned parameters based on

sensitivity analysis of the coarse model. These parameters are extracted to match

corresponding coarse and fine models. A mapping from optimization parameters

to preassigned parameters is then established. Let xaux represent the auxiliary pa-

rameters (i.e., preassigned parameters) and Rc(xc,xaux) represent the coarse model

response. As illustrated in Fig. 2.8, implicit space mapping aims at establishing an

implicit mapping QSM between the spaces xf , xc, and xaux,

QSM(xf ,xc,xaux) = 0 (2.9)

such that

Rf (xf ) ≈ Rc(xc,xaux) (2.10)

Implicit mapping produces a good match between the coarse and fine models in the

first iteration when input space mapping alone cannot obtain a good match.

2.3.4 Output Space Mapping

It is important for the performance of space mapping that the surrogate model re-

sponse can represent the fine model response well with a proper input or implicit
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mapping. However, with only input or implicit space mapping, the surrogate model

response may not be enough to precisely represent the fine model response. There-

fore, a so-called output space mapping has been introduced [96], [105]. Output

space mapping enhances the surrogate model by a correction term which is the

difference between the fine model and the original space mapping response at the

current iteration, [106]−[108], formulated as,

Rs(xf ) = Pcorr(xf ) +Rc(PSM(xf )) (2.11)

where Pcorr(xf ) represents the added correction term at the output space in surro-

gate model.

The surrogate model is further enhanced by using the Jacobin of the surrogate

model (to satisfy first order consistency between the surrogate model and fine model

at the current design). If the misalignment between the fine and coarse models is

not significant, SM-based optimization algorithms typically provide excellent results
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after only a few evaluations of the fine model. Having a large number of space

mapping types results in a even larger number of combinations for space mapping.

So the need to choose the suitable coarse model and SM approach for a design

problem is crucial. A suitable choice of SM approach requires both knowledge of

the problem and engineering experience.

2.3.5 Tuning Space Mapping

Tuning space mapping (TSM) [98] is a special type of SM technique that caters

to tuning of EM structures. The surrogate model is replaced by a tuning model

which introduces circuit components in to the fine model structure. The tuning

model is optimized within a circuit simulator. With the optimal tuning parameters,

thus obtained, they are mapped or transformed into the design variables using fast

space-mapping surrogate or analytical formulas if available. Tuning models require a

significant engineering expertise for a successful implementation of the optimization

process using TSM approach.

2.3.6 Neuro Space Mapping

The most frequently used space mapping technique is developed to use linear map-

pings to establish a mathematical link between the coarse model and the fine data.

However, when the modeling range becomes large, linear mappings only are not

enough. Neuro space mapping is presented to solve this problem [17]. The neural

networks are used to provide a nonlinear computational approach to bridge the gap

between the empirical/equivalent circuit model and the new EM simulation data.
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This is achieved with the space mapping concept using neural networks to repre-

sent the nonlinear mappings between the empirical/equivalent circuit model and

the EM data. Fig. 2.9 illustrate the neuro space mapping concept. Extrapolation

capability is also enhanced because of the embedded knowledge in the model [35].

Several approaches for the structure selection of the neuro space mapping model

are described in the existing literature [91]−[95].

2.3.7 Parallel Space Mapping

Parallel computation is a powerful method to speed up intensive computational pro-

cesses and utilize computer’s number crunching ability more effectively [109]. Many

researches on parallel method have been done in several areas [110]−[117]. Parallel

automatic model generation technique is proposed in the reference [110], using par-
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Figure 2.10: Illustration of multiple fine model points used to train the surrogate
model.

allel adaptive sampling and parallel data generation to save the model development

time. In the reference [115], the EM data is generated by running multiple EM

simulations in parallel on a multi-processor environment. This technique is used

to speed up the design optimization of microwave circuits. In the references [116],

[117], distributed fine model evaluation technique has been presented.

In the reference [25], a parallel space mapping optimization algorithm is pre-

sented. The surrogate model developed in each iteration is trained to match the

fine model at multiple points, thereby making the surrogate model to be valid in

a larger neighborhood. The formulation of multi-point surrogate model training is

inherently suited to and implemented through parallel computation. This includes

multiple fine model evaluation in parallel and multi-point surrogate training using
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Figure 2.11: The flowchart of the parallel space mapping algorithm.

parallel algorithm. Fig. 2.10 illustrate the multiple fine model points used to train

the surrogate model. Fig. 2.11 shows the flowchart of the parallel space mapping al-

gorithm. The parallel space mapping further reduces the number of space mapping

iterations and speeds up the optimization process.

The standard space mapping technique needs prior knowledge, called as coarse

model, in order to perform parametric modeling and design optimization. Recent

advanced parametric modeling and optimization techniques with no coarse model

needed are reviewed in next section.
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2.4 Overview of Parametric Modeling and Opti-

mization with No Available Coarse Model

In recent days, EM simulations more focus on 3D and complex structures, whose

equivalent circuits or empirical equations are difficult to formulate. Under that sit-

uations, developing parametric modeling techniques with no available coarse model

becomes a popular research direction. Here discusses an overview of several para-

metric modeling and optimization techniques without available coarse model.

2.4.1 Coarse and Fine Mesh Space Mapping

The space mapping normally requires an equivalent circuit as the coarse model. The

coarse and fine mesh space mapping addresses the situation when an equivalent cir-

cuit coarse model is not available [100], [101]. In the coarse and fine mesh space

mapping, fine model uses a fine mesh for EM simulation. Fine model simulation and

mesh refinement are performed iteratively until the simulation results between suc-

cessive iterations converge. Fine mesh simulation is accurate but computationally

expensive. On the other hand, coarse model uses a coarse mesh for EM simulation,

i.e., local mesh without mesh convergence. Also, a coarse model is computationally

fast but less accurate. A simple illustration of coarse mesh and fine mesh with a

microstrip bandstop filter example is shown in Fig. 2.12. The coarse and fine mesh

space mapping uses mostly coarse mesh EM evaluation and occasionally fine mesh

EM evaluation to achieve optimal EM solutions with fine mesh accuracy.
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Figure 2.12: The illustration of coarse mesh and fine mesh with a microstrip band-
stop filter example.

2.4.2 Cognition-Driven Formulation of Space Mapping for

Equal-Ripple Optimization of Microwave Filters

Existing space-mapping approaches belong to the class of surrogate-based optimiza-

tion methods. In the reference [118], a cognition-driven formulation of space map-

ping that does not require explicit surrogates is discussed. This method is applied

to EM-based filter optimization. This technique utilizes two sets of intermediate

feature space parameters, including feature frequency parameters and ripple height

parameters. The design variables are mapped to the feature frequency parameters,

which are further mapped to the ripple height parameters. By formulating the

cognition-driven optimization directly in the feature space, this method increases

optimization efficiency and the ability to avoid being trapped in local minima. The

technique is suitable for design of filters with equal-ripple responses.
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2.4.3 Parallel EM Optimization using Transfer Function-

based Surrogate Model

In existing EM optimization, surrogate models are constructed using single point fine

model data, or accumulated fine model data from previous iterations [19], [20]. In

the reference [25], multiple samples using star distribution are used for constructing

surrogate model. The availability of a fast coarse model or problem-dependent

prior knowledge is a pre-requisite for these techniques. In reality, not all designs

can satisfy this pre-requisite.

The method in the reference [119] aims to address EM optimization without the

use of coarse models. In this way, the proposed technique is useful for EM optimiza-

tion even when the empirical or equivalent circuits models for the EM structure are

not available. In the reference [119], a widely accepted transfer functions to repre-

sent the EM behavior for constructing the surrogate. The surrogate model response

is expressed as a transfer function in the rational function format. A further re-

search [120] uses decomposition technique for parallel EM optimization with transfer

function-based surrogate model. This method can handle more geometrical param-

eters as design variables by using the decomposition technique while performing the

EM optimization.

2.4.4 Parametric Modeling using Combined Neural Net-

works and Transfer Functions

Recently, advanced modeling approach, which combines neural networks and trans-

fer functions (neuro-TF), was developed to perform parametric modeling of EM
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responses [26], [28], [29]. This approach can be used even if accurate equivalent

circuits or empirical models are unavailable. In this method, transfer functions are

used to represent the EM responses of passive components versus frequency.

The model consists of transfer functions and neural networks. The outputs of

the overall model are the S -parameters of the EM behavior of microwave compo-

nents and the inputs of the model are geometrical variables of the EM structure and

frequency. As the values of geometrical parameters change, the coefficients of trans-

fer functions change accordingly. Due to the relationship between the coefficients of

transfer functions and the geometrical parameters is nonlinear and unknown, neu-

ral networks are used to learn and represent this nonlinear relationship. The initial

training data of neural networks are obtained by the vector fitting technique [121].

With vector fitting, the coefficients of transfer functions corresponding to a given

set of EM responses are obtained. The neural networks are trained to learn the

nonlinear mapping between geometrical parameters and the coefficients of transfer

functions.

2.5 Conclusion

In this chapter, a literature review of popularly used EM parametric modeling and

design optimization techniques has been discussed. An overview of artificial neural

network methods has been presented. The structure of artificial neural network and

its training methods have been reviewed. The knowledge-based neural network has

also been discussed as an advanced type of neural networks with prior knowledge

as part of internal neural network structure. Another knowledge-based technique
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called space mapping methods such as input space mapping, implicit space mapping,

output space mapping, tuning space mapping, neural space mapping, and recently

developed parallel space mapping has also been presented. Further, recent advanced

EM parametric modeling and optimization methods addressing the situation with

no available coarse model have also been reviewed. In the next chapter, a novel

parametric modeling of EM behavior of microwave components using combined

neural networks and pole-residue-based transfer functions is proposed.
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Chapter 3

Parametric Modeling Using

Pole-Residue-Based

Neuro-Transfer Functions

This chapter describes a novel and advanced technique to develop combined neural

network and pole-residue-based transfer function models for parametric modeling of

electromagnetic (EM) behavior of microwave components. In this technique, neural

networks are trained to learn the relationship between pole/residues of the trans-

fer functions and geometrical parameters. The order of the pole-residue transfer

function may vary over different regions of geometrical parameters. We develop a

pole-residue tracking technique to solve this order-changing problem. After the pro-

posed modeling process, the trained model can be used to provide accurate and fast

prediction of the EM behavior of microwave components with geometrical parame-

ters as variables. The proposed method can obtain better accuracy in challenging

applications involving high dimension of geometrical parameter space and large ge-

ometrical variations, compared with conventional modeling methods. The proposed
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technique is effective and robust especially in solving high-order problems. This

technique is illustrated by three examples of EM parametric modeling.

3.1 Introduction

In the field of parametric modeling for microwave components, an advanced model-

ing approach, which combines neural networks and transfer functions (neuro-TF),

was developed to perform parametric modeling of EM responses [26], [27]. This

approach can be used even if accurate equivalent circuits or empirical models are

unavailable. In this method, transfer functions are used to represent the EM re-

sponses of passive components versus frequency. However, the coefficients of transfer

functions have discontinuity problems when there are large geometrical variations.

In the reference [28], a training method for developing parametric neuro-TF model

of microwave passive components in the frequency domain has been presented un-

der the rational transfer function formulation. The solution of the discontinuity of

coefficients in transfer functions over the geometrical variables is addressed in the

reference [28]. The sensitivities of the coefficients of the rational transfer function

with respect to geometrical parameters become high when the order of transfer func-

tion is high and/or the geometrical variations are large. This limits the accuracy and

robustness of the model. Reference [29] presented an alternative pole-residue ap-

proach to the transfer function. However, the method to address discontinuity in the

reference [28] applicable to rational functions is not applicable to pole-residue-based

transfer functions, which requires a quite different approach. The order-changing

problem for the pole/residue formulation remains an open problem when the geo-
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metrical variations are large.

In this chapter, a novel technique is proposed to develop a combined neural net-

work and pole-residue-based transfer function (pole-residue-based neuro-TF) model

for parametric modeling of EM behavior of microwave components. A new method

is proposed to address the discontinuity issue of the pole-residue-based transfer func-

tion. In our method, a novel order-changing technique is developed for pole-residue-

based transfer functions to handle the problem of order variations as geometrical

parameters change in a large region. With high dimension of geometrical param-

eter space and large geometrical variations, our proposed method produces more

accurate models than the existing order-changing method using rational transfer

function in the reference [28], exploiting the advantage that pole/residues have low

sensitivities w.r.t geometrical parameters than rational function coefficients do. The

accuracy of the model developed by the proposed method remains good even when

the order of the model is high. After the proposed modeling process, the trained

model can be used to provide accurate and fast prediction of the EM response with

respect to the geometrical variables and can be subsequently used in high-level cir-

cuit and system design. The proposed technique is effective and robust especially

in solving high-order problems.
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3.2 Proposed Technique for Developing a Pole-

Residue-Based Neuro-TF Model

3.2.1 Formulation of The Pole-Residue-Based Neuro-TF Model

The structure of the proposed pole-residue-based neuro-TF model is illustrated in

Fig. 3.1. The model consists of pole-residue-based transfer functions and neural

networks. The outputs of the overall model are the S -parameters of the EM behavior

of microwave components and the inputs of the model are geometrical variables of

the EM structure and frequency.

Let x be a vector containing the geometrical variables, representing the inputs of

the overall model. Let the frequency response H(s) be a function of pole/residues,

which is defined using a pole-residue-based transfer function as follows,

H(s) =
N∑

i=1

ri
s− pi

(3.1)

where pi and ri represent the poles and residues of the transfer function respectively,

and N represents the order of the transfer function.

As the values of geometrical parameters change, the pole/residues change ac-

cordingly. Due to the relationship between the pole/residues and the geometrical

parameters is nonlinear and unknown, we propose to use neural networks to learn

and represent this nonlinear relationship. The three layer MLP is used as the neural

network structure with linear functions as the output layer activation functions and

sigmoid functions as the hidden layer activation functions. The initial training data

of neural networks are obtained by the vector fitting technique [121]. With vector
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Figure 3.1: The structure of the pole-residue-based neuro-TF model. x represents
the geometrical variables. y represents real and imaginary parts of the outputs
of the pole-residue-based transfer function (e.g., S-parameters). d represents the
outputs of the EM simulations.

fitting, we obtain the poles and residues of the transfer function corresponding to a

given set of EM responses. The neural networks are trained to learn the nonlinear

mapping between x and the pole/residues. Let y be a vector representing real and

imaginary parts of the outputs of the pole-residue-based transfer function. Let d be

a vector representing the outputs of the EM simulations (e.g., real and imaginary

parts of S -parameters). The objective here is to minimize the error between y and

d for different x, by adjusting the neural network internal weights.

We use the vector fitting process [121] to extract the coefficients (or pole/residues)

of the transfer function. When the frequency range is large with respect to the cen-

tral frequency point, higher order transfer function needs to be used in order to

obtain a good vector fitting accuracy. However, high order transfer function results
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in non-uniqueness and discontinuity problems of the coefficients of the rational for-

mulation (or pole/residues) of the transfer functions. In order to perform vector

fitting to obtain accurate results with the minimum orders of the transfer functions,

we scale and shift the frequency range to a small range relatively far away from the

zero frequency. As illustrated in Table 3.1, for the rational transfer function, when

the frequency range is small (e.g., varying around 1 to ignore the influence of sj), all

the poles pi are close to each other. When the value of frequency s is in the middle

of all the pi, the value of
∏N

i=1(s− pi) becomes very small, which makes the H(s)

too sensitive with respect to the coefficients aj and bj of the rational transfer func-

tion. On the other hand, the sensitivity of the H(s) with respect to all the poles

and residues remains low no matter how large the order of the transfer function

becomes. This feature of the pole-residue-based transfer function makes the model

more robust than the rational transfer function formulation when dealing with high

order modeling problems. In this work, we use frequency scaling and shifting to

achieve the minimum order, and use poles and residues as intermediate variables

instead of the coefficients of the rational transfer function of [26],[28].

3.2.2 The Issue of Discontinuity in Poles and Residues with

respect to Geometrical Parameters

The proposed technique for developing a pole-residue-based neuro-TF model begins

with samples of EM data (xk, dk) for different values of geometrical parameters,

where the subscript k is the index indicating the kth sample of geometrical param-

eters, k ∈ Tr = {1, 2, ..., ns}. Tr is the index set of training samples of geometrical
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Table 3.1: Comparisons of Different Sensitivities of Transfer Functions

parameters and ns is the total number of training samples. Training samples are

generated with respect to inputs x including the geometrical parameters except

frequency which is a separate variable swept by the EM simulator during data gen-

eration. In our method, frequency is an additional input of the pole-residue-based

transfer function. d represents real and imaginary parts of S -parameters generated

from EM simulations.

The discontinuity of pole/residues in transfer functions with respect to the ge-

ometrical variables is a major issue for modeling. When geometrical variations

are large, the corresponding EM responses will lead to different orders of transfer

functions. A repetitive parameter extraction process is required to extract the pole-

residues of transfer functions for each sample of geometrical variables. One way is

to set the orders to the maximum one among all geometrical samples. In that case,

high order transfer function is used to deal with low order problems for subsets of

geometrical samples. That causes non-unique and arbitrary numerical solutions for
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the vector fitting process, resulting in the discontinuity of pole/residues.

Another way is to use a minimum order of the pole-residue-based transfer func-

tion for each geometrical sample [29]. That may result in different orders of transfer

functions for different geometrical samples. These varied orders will result in abrupt

changes of the values of poles and residues, and/or abrupt changes in the function

structure of poles and residues as functions of geometrical parameters. These abrupt

changes also lead to the discontinuity of pole/residues. Table 3.2 illustrates an ex-

ample of this discontinuity problem of pole/residues occurring when a new pole

is added resulting in the change of the orders. Assume that when the length (L)

and width (W ) (i.e., geometrical parameters) of the components change across the

boundary from [L1 W1]
T to [L1+∆L W1+∆W ]T , causing the order to change from

two to three, a new pole p1+∆p′1 is split from the first pole. By using the brute-force

minimum order method, the values of H1(s) and H2(s) are the same, when ∆L and

∆W approach to zeros. However, the pole/residues {P1 P2 P3 R1 R2 R3} in H1(s)

and H2(s) do not approach each other. In other words, the limits of pole/residues of

H2(s) and H1(s) are quite different from each other. In this case, the pole/residues

obtained using the brute-force minimum order method in some columns of Table

3.2 are discontinuous (i.e., change abruptly) when the orders of transfer functions

are changed over the variations of geometrical parameters. By similar analysis, the

discontinuity problem will occur no matter which pole should be split. Such discon-

tinuity problem cannot be solved by the order changing method in [28]. The order

changing process in [28] works well for transfer function in rational format, since

the newly added coefficients of transfer functions after order changing always corre-
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Table 3.2: Discontinuity of Pole/Residues When The Orders of Transfer Functions
are Changed

spond to the highest order terms in the transfer function. However, the sequence of

pole/residues for a geometrical sample and the relationship of pole/residues among

different geometrical samples cannot be easily decided using [28]. Thus we need to

develop a new algorithm to track the poles for order changing of transfer functions

in pole-residue format.

In subsequent subsections, we introduce a novel pole-residue tracking technique

to overcome the discontinuity problems of pole/residues in transfer functions. The

idea is based on splitting one pole into two separate new poles to achieve the in-

crease of the order of the pole-residue-based transfer function. This new approach

generates a group of new pole/residues based on those in the minimum order trans-

fer functions and ultimately form transfer functions of constant order. The method

solves the discontinuity problems of pole/residues while maintaining the accuracy

of the transfer functions.
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3.2.3 Vector Fitting for Parameter Extraction

Firstly, vector fitting process [121] is performed to obtain a group of poles p and

residues r, using the minimum order of the pole-residue-based transfer function for

each geometrical sample. In the vector fitting process, the given information is EM

data d (i.e., S -parameters) versus frequency for a geometrical sample. Expected

solutions are poles and residues of the transfer function.

A scaling and shifting process for the frequency range is set up during the vector

fitting process to get all poles and residues in complex values.

Let ck represent a vector containing the poles and residues of the transfer func-

tion of the kth geometrical sample obtained after vector fitting, defined as

ck =




p(k)

r(k)


 = [p

(k)
1 p

(k)
2 · · · p(k)nk

r
(k)
1 r

(k)
2 · · · r(k)nk

]T (3.2)

where nk represents the order of the transfer function for the kth geometrical sam-

ple. p(k) is a vector of poles for the kth geometrical sample, defined as p(k) =

[p
(k)
1 p

(k)
2 · · · p

(k)
nk ]

T . r(k) is a vector of residues for the kth geometrical sample, defined

as r(k) = [r
(k)
1 r

(k)
2 · · · r

(k)
nk ]

T .

We want to build a mapping function to map the pole/residues over geometrical

variables. Because the mapping relationship is nonlinear and unknown, we use neu-

ral networks as the mapping function. Since there are different minimum orders for

different geometrical values, the number of elements in vector ck will be different for

different geometrical sample. This variation of the numbers of pole/residues among

different geometrical samples will cause difficulty in training the neural networks.
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We proposed a novel pole-residue tracking technique to handle the change in the

order of transfer functions.

3.2.4 Pole-Residue Tracking Technique for Order-Changing

In this section, a novel pole-residue tracking technique solving the problem due to

the change in the order of transfer functions is proposed. The main purpose for

this technique is to add groups of new pole/residues to bridge the gap of transfer

function orders between different geometrical samples while keeping the responses

of the transfer functions unchanged. In this way, we ultimately obtain the transfer

functions of constant order with respect to all geometrical samples, overcoming

non-uniqueness problem of pole/residues.

Vector fitting with frequency scaling and shifting is performed to obtain mini-

mum order transfer function for each geometrical sample. Since all the poles and

residues are complex numbers, the order of each sample, i.e., nk should be an even

number.

The first step of pole-residue tracking technique is to compact the poles and

residues into the effective poles and residues. Based on the pole-residue-based

transfer function in (3.1), each pole has a related residue. We will use complex

pole/residues to formulate a systematic pole-residue tracking process. Since each

complex pole or residue has a conjugate, we remove all of the poles which has nega-

tive imaginary part, and the corresponding residues. After that process, the number

of pole/residues are reduced by half, and the remaining ones are regarded as effec-

tive pole/residues. We define the effective order Nk of the transfer function for the
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kth sample as

Nk = nk/2 (3.3)

The maximum and the minimum effective orders among all geometrical samples

are defined as

Nmax = max
k∈Tr

{Nk} (3.4)

Nmin = min
k∈Tr

{Nk} (3.5)

where Tr is the index set of training samples for training the neural networks,

defined as Tr = {1, 2, ..., ns}, and ns is the total number of the training samples of

geometrical parameters. The effective poles include all the poles which have positive

imaginary parts. The effective residues include all the residues corresponding to the

effective poles.

The second step is to sort the effective pole/residues. Poles are sorted in an

ascending sequence according to the values of their imaginary parts, while residues

are sorted with their corresponding poles. Binary tree sorting method is used in this

step. The average cost of this sorting algorithm is Nk logNk for each geometrical

sample, where Nk is the effective order of the transfer function for the kth sample.

The sorting process guarantees the relative correspondence of pole/residues between

different samples (i.e., between different sets of geometrical values), therefore, en-

suring a smooth and continuous model with respect to varying values of geometrical

parameters.

The third step is the main pole-residue tracking process. Since the transfer

functions created with the effective poles and residues have different effective orders
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Table 3.3: Elimination of Discontinuity of Pole/Residues Using Pole-Residue Track-
ing Technique

for different geometrical samples, varying from Nmin to Nmax, we want to add new

effective pole/residues without introducing non-uniqueness problem, such that ulti-

mately the orders for all geometrical samples will be equal to the maximum effective

order Nmax. The pole-residue tracking process is an iterative process. During this

process, the minimum effective order is iteratively increased by one, i.e., after each

iteration, the minimum effective order becomes Nmin = Nmin + 1. After a certain

number of iterations, the minimum effective order becomes equal to the maximum

effective order, i.e., Nmin = Nmax. The order of the transfer functions of all the

geometrical samples then become the same as Nmax, i.e., Nk = Nmax, ∀k ∈ Tr.

More specifically, in each iteration, we search for all the samples to find those

whose order is equal to Nmin. For each sample with order Nmin, say, the k
th sample,

we choose one pole to be split into two overlapping poles according to the informa-

tion of the neighboring sample. The neighboring sample (defined as the Lth sample)

is the one which has the shortest geometrical distance to the kth sample among all
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the ones whose orders are equal to Nmin + 1, defined as,

L = L(k) = argmin
l∈Ts

{
nx∑

i=1

∥∥∥∥∥
x
(l)
i − x

(k)
i

δi

∥∥∥∥∥

}
(3.6)

where Ts is the sub-set containing all the training samples whose orders are equal

to Nmin + 1, and nx is the number of the geometrical parameters. xi is the ith

parameter in x. δi is the smallest variance of xi among all the samples, defined as,

δi = min
l,k∈Tr
l 6=k

{∥∥∥x(l)
i − x

(k)
i

∥∥∥
}

(3.7)

After (3.6), the Lth sample is selected as the neighbor of the kth sample. A given

sample may have more than one neighboring samples.

To determine which pole should be selected to be split, we perform Nmin times

of trials. In the mth trial, we split the mth pole and calculate the sum of differences

between the imaginary parts of the present poles after splitting and the poles in the

neighboring sample whose order is Nmin+1. Assume the order of the kth geometrical

sample isNk = Nmin, while the L
th sample is the neighboring sample which has order

NL = Nmin + 1. The formulation of the sum of differences is defined as follows

Dm =
m∑

i=1

∥∥∥Im(p
(k)
i ) − Im(p

(L)
i )
∥∥∥
2

+

Nmin∑

i=m

∥∥∥Im(p
(k)
i ) − Im(p

(L)
i+1)
∥∥∥
2

(3.8)

This process is performed iteratively for Nmin times with m = 1, 2, ..., Nmin. Be-

cause the poles should move continuously when the values of geometrical parameters

change slightly, the correct splitting pole should be the one that leads to the mini-
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mum sum of differences between the poles of the present sample (present geometrical

sample) and the poles of the neighboring sample (whose values of geometrical pa-

rameters are slightly different from that of the present sample). Subsequently, we

select the pole to be split according to the ranking of its Dm value. The pole with

the minimum Dm value is selected as the splitting pole,

M = arg min
m ∈ {1, 2, ..., Nmin}

{Dm} (3.9)

The M th pole of the kth training sample is selected to be split since DM is

the minimum sum of differences among the various trials of pole-splitting. The

splitting of pole pM means that, as the geometrical parameters change, the pole pM

will be split into two new poles, whose values are both equal to pM at the moment

of splitting. Consequently, the M th residue which is related to the selected pole

should also be split into two separate residues. Each of the new residues has half

the value of the original residue. The splitting of theM th pole/residue is represented

as follows

rM
s− pM

=
r′M

s− pM
+

rNmin+1

s− pNmin+1

(3.10)

where

pNmin+1 = pM

rNmin+1 = r′M =
rM
2

(3.11)

Now the order of the transfer function of the kth training sample has increased

by one. Then we sort the poles and corresponding residues again to make the

pole/residues in a continuous sequence. Using p′j and r′j to represent the poles and
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residues after sorting, the sorting process is defined as follows

p′j =





pj, j = 1, 2, ...,M

pNmin+1, j = M + 1

pj−1, j = M + 2,M + 3, ..., Nmin + 1

r′j =





rj, j = 1, 2, ...,M − 1

r′j, j = M

rNmin+1, j = M + 1

rj−1, j = M + 2,M + 3, ..., Nmin + 1

(3.12)

The proposed pole-residue tracking technique resolves the discontinuity problem

of pole-residues, illustrated in Table 3.3. Not only the values of H1(s) and H2(s)

are the same, but also the pole/residues {P1 P2 P3 R1 R2 R3} in H1(s) and H2(s)

approach each other, when ∆L and ∆W approach to zeros. As shown in Table

3.3, the pole/residues in each column of the table are continuous when the transfer

function changes from H1(s) to H2(s) as [L1 W1]
T changes to [L1+∆L W1+∆W ]T .

This pole-residue tracking process is performed iteratively for all the samples

whose order is equal to Nmin. After this process is finished, the minimum order

Nmin of the entire training set increases by one, i.e., Nmin = Nmin + 1. The pole-

residue tracking process terminates when the minimum effective order is equal to

the maximum effective order, i.e., Nmin = Nmax, thus, all the samples now have the

same orders.
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The overall pole-residue tracking algorithm is shown in the flowchart in Fig.

3.2. We implement this tracking technique by developing a C program based on

the flowchart in Fig. 3.2 that automatically searches and splits the pole/residues

for all the samples. The input file given to the program contains the minimum-

order pole/residues produced from vector fitting for each geometrical sample. Such

minimum-order may vary from sample to sample. The output file contains the

constant-order pole/residues for all geometrical samples after the pole-residue track-

ing process.

Let vector Ck represent the poles and residues including both the original and

newly added ones after the pole-residue tracking process

Ck =




P (k)

R(k)




= [P
(k)
1 P

(k)
2 · · ·P

(k)
Nmax

R
(k)
1 R

(k)
2 · · ·R

(k)
Nmax

]T

(3.13)

where P (k) is a vector of poles including both the original and newly added ones of

the kth sample, defined as P (k) = [P
(k)
1 P

(k)
2 · · ·P

(k)
Nmax

]T . R(k) is a vector of residues

including both the original and newly added ones of the kth sample, defined as

R(k) = [R
(k)
1 R

(k)
2 · · ·R

(k)
Nmax

]T . The pole-residue-based transfer function is rewritten

as follows

H(Ck, s) =
Nmax∑

i=1

(
R

(k)
i

s− P
(k)
i

+
R

∗(k)
i

s− P
∗(k)
i

)
(3.14)

where superscript “∗” means complex conjugate. After order-changing process, we

obtain the transfer functions of constant order. We use those poles and residues

(including original and newly added ones) to build our proposed pole-residue-based
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Figure 3.2: The flowchart of the overall pole-residue tracking algorithm to handle
order-changing problem as geometrical parameters change.

neuro-TF model.

3.2.5 Preliminary Training of Neural Networks

We propose a two stage training process. In the first stage, we perform a prelimi-

nary training process. During this process, neural networks are trained to learn the

relationships between all the pole/residues of the transfer function and the geomet-

rical parameters. The training data for this phase is (xk, Ck), k ∈ Tr, i.e., samples

of geometrical parameters as model inputs and pole/residues including both the
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original and newly added ones as model outputs.

The nonlinear relationship between poles and geometrical parameters are usually

different from that of residues. Subsequently, poles and residues are provided by

separate neural networks. Let pNN represent the outputs of the neural network

for poles corresponding to geometrical variables x and neural network weights wp.

Let rNN represent the outputs of the neural network for residues corresponding to

geometrical variables x and neural network weights wr. During the preliminary

training, a certain amount of training error (e.g., 5%-10%) can be tolerated because

the sensitivities of the transfer function with respect to the pole/residues are low

and the solution can be further refined in next training phase. With this relaxed

error criteria, less hidden neurons can be used in the neural networks. The neural

networks thus have lower nonlinearity, which makes the pole-residue-based neuro-

TF more robust. After preliminary training of the neural networks, an overall model

refinement process is performed to further refine the final model described next.

3.2.6 Refinement Training of the Pole-Residue-Based Neuro-

TF Model

In the second stage of the training process, a model refinement is performed to

further refine the overall pole-residue-based neuro-TF model. The training data for

this phase is (xk, dk), k ∈ Tr, i.e., samples of geometrical parameters as model

inputs and EM responses (i.e., S-parameters) as model outputs. The mechanism for

the refinement training process of the overall pole-residue-based neuro-TF model is

shown in Fig. 3.3. It consists of the pole-residue-based transfer function of (3.14)
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Figure 3.3: The mechanism for the refinement training process of the overall pole-
residue-based neuro-TF model. The objective is to minimize the training error of the
overall model. The variables of this training process are the weighting parameters
in neural networks pNN and rNN .

and the neural networks whose initial values are the optimal solutions from the

preliminary training. This model refinement process consists of both training and

testing of the model. Training is performed by optimizing the weights inside the

neural networks to minimize the error function
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ETr(wp, wr)

=
1

2ns

∑

k∈Tr

∑

i∈Ω

‖y(pNN(xk, wp), rNN(xk, wr), si) − dk,i‖
2

(3.15)

where Tr is the index set of training samples of various geometrical parameters, and

ns is the total number of training samples. Ω is the index set of frequency samples.

wp and wr represent the weights in the neural networks for poles pNN and residues

rNN , respectively. y represents the outputs of the overall model, which ultimately

is a function of geometrical variables xk, frequency si, and neural network weights

wp and wr.

The training process terminates when the training error becomes lower than a

user defined threshold Et. After the training process, an independent set of testing

data which are never used in training is used for testing the quality of the trained

pole-residue-based neuro-TF model. The testing error ETe is defined as the error

between the model response and the testing data. If the testing error is also lower

than the threshold error Et, the model refinement process terminates and the pole-

residue-based neuro-TF model is ready to be used for high-level design. Otherwise,

the overall model training process will be repeated with different numbers of hidden

neurons. A flowchart illustrating the overall pole-residue-based neuro-TF model

development process is shown in Fig. 3.4.
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Figure 3.4: The flowchart of the overall pole-residue-based neuro-TF model devel-
opment process.

3.3 Application Examples

3.3.1 Parametric Modeling of a Microwave Junction

In this example, we illustrate the development of pole-residue-based neuro-TF model

for parametric modeling of the EM behavior of a microwave junction [14], as shown
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Figure 3.5: The geometrical parameters of the junction and the 3D configuration
for EM simulation. A parametric model with respect to these seven geometrical
parameters is to be developed.

in Fig. 3.5, where g is the gap between two conductive walls. hc is the height of

the tuning cylinder. rc is the radius of the tuning cylinder. tw is thickness of the

conductive walls. ws is width of the slot on the upper conductive wall. ls is the

length of the slot on the upper conductive wall. h is the height of the junction

cavity.

This model has seven input geometrical variables, i.e., x = [g hc rc tw ws ls h]
T ,

as defined in the structure of the junction example, shown in Fig. 3.6. Frequency is

an additional input. The model has eight outputs, i.e., y = [RS11 IS11 RS21 IS21

RS31 IS31 RS41 IS41]
T , which are the real and imaginary parts of S11, S21, S31 and

S41, respectively.

The CST Studio Suite 2014 software is used to perform the full-wave EM simu-

lation and generate training and testing data for modeling. A parallel computation

method is used in data generation. MPI is used for parallel processing with dis-

tributed memory. We use a cluster of Dell PowerEdge computers with Intel Xeon
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Figure 3.6: The structure of the pole-residue-based neuro-TF model for the junction
example.

E5-2440 processors. We use six cores (two cores per computer from three comput-

ers) to generate the data. Design of experiments (DOE) [122] method is used as the

sampling method for both training and testing data.

The proposed modeling method is applied to two different cases, i.e., Case 1

with a narrower parameter range and Case 2 with a wider parameter range as

defined in Table 3.4. In Case 1, the minimum orders nk of transfer functions stay

unchanged at order eight for all samples, k = 1, 2, ..., 81, where the total number

of geometrical samples is ns = 81. In Case 2, the minimum orders nk of transfer

functions vary from six to eight among different samples of geometrical parameters,

which results Nmin = 3 and Nmax = 4. In both cases, nine levels of DOE are

used for defining samples of the training data, i.e., a total of 81 samples of training

data, while seven levels of DOE are used for the testing data, i.e., a total of 49

samples of testing data. The ranges of training data and testing data for the two

different cases are defined in Table 3.4. The total time for training data generation
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Table 3.4: Definition of Training and Testing Data for The Junction Example

(for 81 samples of data) is about 15 minutes, while the total time for testing data

generation (for 49 samples of data) is about nine minutes. If we use more computers

to perform the parallel data generation, the time of data generation will be even

shorter. The original frequency range is 7 GHz-9 GHz. We scale and shift the

frequency range to 0.9 GHz-1.1 GHz. Pole-residue tracking technique for order-

changing is applied. The pole-residue-based neuro-TF model is trained using the

NeuroModelerPlus software. The average training error is 0.516%, while the average

testing error is 0.558% for Case 2. The overall model training time is 9.6 minutes,

including parameter extraction, preliminary training and refinement training.

For comparison purpose, we also apply brute-force pole-residue-based neuro-TF
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modeling method which directly uses the maximum orders for all the samples of

geometrical parameters and the recent bilinear rational neuro-TF modeling method

with order-changing technique [28] for the two cases. Table 3.5 compares these

various modeling methods in terms of ANN structures, coefficient (or pole/residue)

continuity, coefficient (or pole/residue) sensitivity, and average training and testing

error. In Case 1, since the geometrical parameters vary within a small range and

the orders of transfer function stay unchanged, all methods obtain comparatively

small training and testing errors. In Case 2, the geometrical parameters vary within

a wider range and the orders of transfer function vary. The brute-force pole-residue-

based neuro-TF modeling method has obvious discontinuity problems which result

a high testing error. The overall model training time is 21.3 minutes for brute-force

pole-residue-based neuro-TF modeling method using 15 hidden neurons. In the bi-

linear rational neuro-TF modeling method, the transfer function is more sensitive to

its coefficients, thus the model needs more hidden neurons to achieve good training

accuracy and cannot guarantee the testing error, where the values of geometrical

parameters for testing are never used in training. The overall model training time

is 18.6 minutes for bilinear rational neuro-TF modeling method using 15 hidden

neurons.

When we use bilinear rational neuro-TF method, the transfer function is more

sensitive to its coefficients, and the coefficients are more nonlinear than the pole/residues

over geometrical parameters from sample to sample. When we use the brute-force

method, the pole/residues have much discontinuity problem which also result in

high nonlinearity of pole/residues from sample to sample. Thus the model trained
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using the two methods cannot obtain a good training error with a small amount of

hidden neurons. To achieve good training accuracy, we need to increase the num-

ber of hidden neurons in the model. In this example, however, such increase of

the number of hidden neurons makes testing error even worse, further indicating

the high-nonlinearity (or high sensitivity) of coefficient of transfer function with re-

spect to changes in geometrical parameters, or high nonlinearity (or high sensitivity)

of the pole/residues in brute-force method with respect to changes in geometrical

parameters.

Our proposed method can achieve better accuracy in testing than the two other

methods in the comparison. Fig. 3.7 shows the output S11 of the proposed pole-

residue-based neuro-TF model for three different test geometrical samples of junc-

tions, i.e., test geometrical samples #1, #2, and #3, and its comparison with model

response using different methods and EM data. The geometrical variables for three

samples of junctions are as follows.

Test geometrical sample #1: x = [18.25 2.1 2.3 0.86 2.3 19.65 10.1]T (mm)

Test geometrical sample #2: x = [19.75 2.1 2.9 0.98 2.9 19.95 10.7]T (mm)

Test geometrical sample #3: x = [21.25 2.1 3.5 1.1 3.5 20.25 11.3]T (mm)

It is observed that our model can achieve good accuracy for different geometrical

samples even though these samples are never used in training. The comparisons

of other outputs (i.e., S21, S31, and S41) of the models developed using different

modeling methods and EM data are similar with that of the output S11. Once the

pole-residue-based neuro-TF model training is completed, we can implement the

trained model into the design optimization where the geometrical parameters can
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Table 3.5: Comparisons of Different Modeling Methods for The Junction Example

be repetitively adjusted during optimization. As an example of using the trained

model for junction optimization, we perform EM optimization of three separate

junctions with different design specifications:
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(a)

(b)

(c)

Figure 3.7: Comparison of the magnitude in decibels of S11 of the models developed
using different modeling methods and CST EM data: (a) test geometrical sample
#1, (b) test geometrical sample #2, and (c) test geometrical sample #3 for the
junction example. As shown in the figure, the proposed pole-residue-based neuro-
TF model matches well with CST EM data even though the testing geometrical
samples in the figures are never used in training.
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Specifications for junction #1: |S11| ≤ -40 dB, |S21| ≤ -40 dB, |S31| ≥ -3 dB,

and |S41| ≥ -3 dB at specified frequency of 7.8 GHz.

Specifications for junction #2: |S11| ≤ -40 dB, |S21| ≤ -40 dB, |S31| ≥ -3 dB,

and |S41| ≥ -3 dB at specified frequency of 8 GHz.

Specifications for junction #3: |S11| ≤ -40 dB, |S21| ≤ -40 dB, |S31| ≥ -3 dB,

and |S41| ≥ -3 dB at specified frequency of 8.1 GHz.

The initial values are x = [20 2.5 3 1 3 20 10]T (mm). We perform design

optimizations of the junction using the pole-residue-based neuro-TF model. The

optimization took only about 20 seconds to achieve optimal solution for the each

junction. The optimized geometrical values for the three separate junctions are:

xopt #1: x = [19.7995 3.17042 3.38173 0.950288 3.51267 20.2755 11.1084]T (mm)

xopt #2: x = [19.8 3.38746 3.10196 1.0438 2.58472 20.0805 10.6083]T (mm)

xopt #3: x = [19.8 3.21313 3.21363 0.975674 2.43511 19.8437 10.5227]T (mm)

The CST full-wave EM simulations at the model optimal solutions are shown in

Fig. 3.8. For comparison purpose, we also use CST to perform direct EM optimiza-

tion of the junction with the same initial value and same design specifications for

the three junctions described above. The comparison is illustrated in Table 3.6.

For pole-residue-based neuro-TF optimization, the model development time is

0.7 hours including EM data generation and model training. Once the model is

trained, it can be re-used again and again for additional optimizations (i.e., for

specifications for junctions 2 and 3). In Table 3.6, the total CPU time for model

development and junction optimization using the pole-residue-based neuro-TF ap-

proach is 0.72 hours versus 7.7 hours for direct EM optimization. The more we
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(a)

(b)

(c)

Figure 3.8: The magnitude in decibels of S11, S21, S31, and S41 of CST EM data
at (a) xopt #1, (b) xopt #2, and (c) xopt #3, for three different sets of design
specifications of the junction example. As shown in the figure, the proposed pole-
residue-based neuro-TF model behaves well in design optimization with different
specifications.
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Table 3.6: CPU Time of Optimizations for The Junction Example

re-use the pole-residue-based neuro-TF model, the more time will be saved.

3.3.2 Parametric Modeling of an Ultra-Wideband Antenna

In this example, we illustrate the proposed technique using an ultra-wideband

(UWB) antenna, as shown in Fig. 3.9, where Rl is the radius of the two large

pads. dl is the distance between the two large pads. t is the thickness of the

substrate. gs is the gap between the small pad and the large pad which are both

connected to the port. rs is the radius of the small pad.

The model has five input geometrical variables, i.e., x = [Rl dl t gs rs]
T , as de-

fined in the structure of the UWB antenna example, shown in Fig. 3.10. Frequency

is an additional input. The model has two outputs, i.e., y = [RS11 IS11]
T , which

are the real and imaginary parts of S11.

The CST Studio Suite 2014 software is used to perform the full-wave EM sim-

ulation. A parallel computation method with 6 cores is used in data generation.

Design of experiments (DOE) method is used as sampling method.
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Figure 3.9: The geometrical parameters of the UWB antenna and the 3D configura-
tion for EM simulation. A parametric model with respect to these five geometrical
parameters is to be developed.
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Figure 3.10: The structure of the pole-residue-based neuro-TF model for the UWB
antenna example.

The proposed modeling method is applied to three different cases, i.e., Case

1 with a narrower parameter range, Case 2 and Case 3 with a wider parameter

range, as defined in Table 3.7. The frequency range for Case 1 and Case 2 is 0-15

GHz, while the frequency range for Case 3 is 0-30 GHz. In Case 1, the minimum

orders nk of transfer functions vary slightly from 20 to 22, which results Nmin = 10
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and Nmax = 11 among different samples of geometrical parameters, where the total

number of geometrical samples is ns = 81. In Case 2, the minimum orders nk of

transfer functions vary from 20 to 24, which results Nmin = 10 and Nmax = 12

among different samples of geometrical parameters. In Case 3, the minimum orders

nk of transfer functions vary from 32 to 36, which results Nmin = 16 and Nmax = 18

among different samples of geometrical parameters. In all the three cases, nine levels

of DOE are used for defining samples of the training data, i.e., a total of 81 samples

of training data, while seven levels of DOE are used for the testing data, i.e., a

total of 49 samples of testing data. The ranges of training data and testing data are

defined in Table 3.7. For Cases 1 and 2, the total time for training data generation

(for 81 samples of data) is about 2.2 hours, while the total time for testing data

generation (for 49 samples of data) is about 1.2 hours. The overall model training

time for Case 2 is 23.4 minutes, including parameter extraction, preliminary training

and refinement training. For Case 3, the total time for training and testing data

generation is about 3.8 hours and 2.1 hours, respectively. For all the three cases,

we scale and shift the frequency range to 0.9 GHz-1.1 GHz. The NeuroModelerPlus

software is used for training the pole-residue-based neuro-TF model. The average

training error for the three cases are shown in Table 3.7.

For comparison purpose, we also apply brute-force pole-residue-based neuro-TF

modeling method which directly uses the maximum orders for all the samples of

geometrical parameters and the recent bilinear rational neuro-TF modeling method

with order-changing technique [28] for the three cases. Table 3.8 compares the

model training and testing errors using these various modeling methods. In Case 1,
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Table 3.7: Definition of Training and Testing Data for The UWB Antenna Example

all methods obtain comparatively small training and testing errors since the geomet-

rical parameters vary within a small range. In Case 2, the geometrical parameters

vary within a large range and the orders of transfer function have large variations.

Both the brute-force pole-residue-based neuro-TF modeling method and the bilin-

ear rational neuro-TF modeling method have high testing errors. The overall model

training time is 54.1 minutes for brute-force pole-residue-based neuro-TF modeling

method using 40 hidden neurons and 43.8 minutes for bilinear rational neuro-TF

modeling method using 30 hidden neurons. Our proposed method can achieve better

accuracy in testing than the two other methods in the comparison. Fig. 3.11 shows

the outputs of the proposed pole-residue-based neuro-TF model for three different

test geometrical samples of the UWB antenna, trained using data in Case 2, i.e.,

test geometrical samples #1, #2, and #3, and its comparison with model response
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using different methods and EM data. The geometrical variables for three samples

of UWB antennas are as follows.

Test geometrical sample #1: x = [13.55 0.82 0.86 0.25 0.50]T (mm)

Test geometrical sample #2: x = [13.75 1.02 0.98 0.15 0.70]T (mm)

Test geometrical sample #3: x = [14.05 0.90 0.86 0.15 1.30]T (mm)

It is observed that our model can achieve good accuracy for different geometrical

samples even though these samples are never used in training. In Case 3, we further

increase the frequency range to 0-30 GHz, leading to high order transfer functions.

Case 3 uses the same sets of training and testing geometrical samples as Case

2. Fig. 3.12 shows the outputs of the proposed model for the above three test

geometrical samples, trained using data with wider frequency range in Case 3, and

its comparison with model response using different methods and EM data. We can

implement the trained model into the design optimization, after the pole-residue-

based neuro-TF model training is completed. As an example of using the trained

model for UWB antenna optimization, we perform design optimization of three

separate UWB antennas with different design specifications:

Specifications for antenna #1: |S11| ≤ -15 dB at frequency range of 2.7 GHz-10.6

GHz.

Specifications for antenna #2: |S11| ≤ -15 dB at frequency range of 2.7 GHz-10.9

GHz.

Specifications for antenna #3: |S11| ≤ -15 dB at frequency range of 2.7 GHz-11.3

GHz.

The initial values are x = [13.8 1 1 0.6 0.6]T (mm). The design optimization
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Table 3.8: Comparisons of Different Modeling Methods for The UWB Antenna
Example
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Figure 3.11: Comparison of the magnitude in decibels of S11 of the models devel-
oped using different modeling methods and CST EM data: (a) test geometrical
sample #1, (b) test geometrical sample #2, and (c) test geometrical sample #3
for the UWB antenna example. As shown in the figure the proposed pole-residue-
based neuro-TF model matches well with CST EM data even though the testing
geometrical samples in the figures are never used in training.
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Figure 3.12: Comparison of the magnitude of S11 of the models developed using
different modeling methods and CST EM data in a wider frequency range of the
UWB antenna example: (a) test geometrical sample #1, (b) test geometrical sample
#2, and (c) test geometrical sample #3. As shown in the figure the proposed pole-
residue-based neuro-TF model matches well with CST EM data even for responses
with much higher order of the transfer function.
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Table 3.9: CPU Time of Optimizations for The UWB Antenna Example

using the pole-residue-based neuro-TF model took only about 20 seconds to achieve

the optimal design solution for the each UWB antenna. The optimized geometrical

values for the three separate UWB antenna optimizations are:

xopt #1: x = [13.866 1.00512 0.938627 0.395753 0.796849]T (mm)

xopt #2: x = [13.802 0.986955 0.922442 0.289713 0.774063]T (mm)

xopt #3: x = [13.584 0.958071 0.913669 0.246313 0.699169]T (mm)

The CST full-wave EM simulations at the model optimal solutions are shown

in Fig. 3.13. For comparison purpose, we also use CST to perform direct EM

optimization of the UWB antenna with the same initial value and same design

specifications for the three UWB antennas described above. The comparison is

illustrated in Table 3.9.

For pole-residue-based neuro-TF optimization, the model development time is

3.9 hours including EM data generation and model training. Once the model is

trained, it can be re-used again and again for additional optimizations (i.e., for

specifications for antennas 2 and 3). In Table 3.9, the total CPU time for model
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Figure 3.13: The magnitude in decibels of S11 of CST EM data at (a) xopt #1,
(b) xopt #2, and (c) xopt #3, for three different sets of design specifications of the
UWB antenna example. As shown in the figure, the proposed pole-residue-based
neuro-TF model behaves well in design optimization with different specifications.
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Figure 3.14: The geometrical parameters of the coupled-line filter and the 3D con-
figuration for EM simulation. A parametric model with respect to these five geo-
metrical parameters is to be developed.

development and UWB antenna optimization using the pole-residue-based neuro-

TF approach is 3.92 hours versus 35.2 hours for direct EM optimization.

3.3.3 Parametric Modeling of a Coupled-Line Filter

In this example, we illustrate the proposed method for a coupled-line filter [14],

as shown in Fig. 3.14, where S1 and S2 are the spacing between the microstrip

lines. D1, D2, and D3 are the offset distances from the ends of each lines to the

corresponding fringes, respectively. The CST Studio Suite 2014 software is used

to perform the full-wave EM simulation and generate training and testing data for

modeling.

This model has five input geometrical variables, i.e., x = [S1 S2 D1 D2 D3]
T , as
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Figure 3.15: The structure of the pole-residue-based neuro-TF model for the
coupled-line filter example.

defined in the structure of the filter example, shown in Fig. 3.15. Frequency is an

additional input. The model has two outputs, i.e., y = [RS11 IS11]
T , which are the

real and imaginary parts of S11.

The proposed modeling method is applied to two different cases, i.e., Case 1 with

a narrower parameter range and Case 2 with a wider parameter range as defined

in Table 3.10. In Case 1, the minimum orders nk of transfer functions vary slightly

from eight to ten, which results Nmin = 4 and Nmax = 5 among different samples of

geometrical parameters, where the total number of geometrical samples is ns = 81.

In Case 2, the minimum orders nk of transfer functions vary from eight to twelve,

which results Nmin = 4 and Nmax = 6 among different samples of geometrical

parameters. In both cases, nine levels of DOE are used for defining samples of the

training data, i.e., a total of 81 samples of training data, while seven levels of DOE

are used for the testing data, i.e., a total of 49 samples of testing data. The ranges of

training data and testing data are defined in Table 3.10. The total time for training
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Table 3.10: Definition of Training and Testing Data for The Coupled-Line Filter
Example

data generation (for 81 samples of data) is about one hour, while the total time for

testing data generation (for 49 samples of data) is about 0.6 hours. The original

frequency range is 2 GHz-3 GHz. We scale and shift the frequency range to 0.9

GHz-1.1 GHz. The overall model training takes 14.2 minutes for Case 2. The Q

factor for this Coupled-Line Filter is around 420 for different geometrical samples,

calculated using the EM simulator. After the modeling process, the average training

error is 0.687%, while the average testing error is 0.954%.

For comparison purpose, we also apply brute-force pole-residue-based neuro-TF

modeling method which directly uses the maximum orders for all the samples of

geometrical parameters and the recent bilinear rational neuro-TF modeling method

with order-changing technique [28] for the two cases. Table 3.11 compares these

various modeling methods. In Case 1, since the geometrical parameters vary within
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a small range and the orders of transfer function change slightly, all methods obtain

comparatively small training and testing errors. In Case 2, when the geometrical

parameters vary within a wider range and the orders of transfer function have larger

variations, The brute-force pole-residue-based neuro-TF modeling method and the

bilinear rational neuro-TF modeling method has a high testing error. The overall

model training takes 32.6 minutes and 28.3 minutes for the brute-force pole-residue-

based method and the bilinear rational method, respectively. Our proposed method

can achieve better accuracy in testing than the two other methods in the comparison.

Fig. 3.16 shows the outputs of the proposed pole-residue-based neuro-TF model for

three different test geometrical samples of filters, i.e., test geometrical samples #1,

#2, and #3, and its comparison with model response using different methods and

EM data. The geometrical variables for three samples of filters are as follows.

Test geometrical sample #1: x = [32.5 45.5 9 -9 -7]T (mm)

Test geometrical sample #2: x = [35.5 39.5 3 -5 -5]T (mm)

Test geometrical sample #3: x = [38.5 45.5 1 -3 -9]T (mm)

It is observed that our model can achieve good accuracy for different geometrical

samples even though these samples are never used in training.

As another case to demonstrate the proposed technique, we further change the

metal of the microstrip lines into perfect electric conductor (PEC), increasing the Q

factor for this Coupled-Line Filter to around 580 for different geometrical samples.

The same sets of geometrical samples as in Case 2 in Table 3.10 is used for generating

training and testing data for training and validating the model of this higher Q

filter. The slopes of S-parameters around pole frequencies for this higher Q filter
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Table 3.11: Comparisons of Different Modeling Methods for The Coupled-Line Filter
Example

are steeper than those of the original filter. After the modeling process, the average

training error is 0.725%, while the average testing error is 0.917%. Fig. 3.17 shows

the outputs of the proposed pole-residue-based neuro-TF model of the higher Q
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(a)

(b)

(c)

Figure 3.16: Comparison of the magnitude in decibels of S11 of the models devel-
oped using different modeling methods and CST EM data: (a) test geometrical
sample #1, (b) test geometrical sample #2, and (c) test geometrical sample #3 for
the coupled-line filter example. As shown in the figure the proposed pole-residue-
based neuro-TF model matches well with CST EM data even though the testing
geometrical samples used in the figures are never used in training.
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filter and original filter responses for the three test geometrical samples of filters

defined above, and their comparisons with EM data.

It is observed that similar training and testing error are achieved for both higher

Q filter and original filter. By utilizing pole-residue-based transfer functions as part

of the neuro-TF model, this technique can model examples for low Q or high Q

response.

Once the pole-residue-based neuro-TF model training is completed, we can im-

plement the trained model into the design optimization where the geometrical pa-

rameters can be repetitively adjusted during optimization. As an example of using

the trained model for filter optimization, we perform optimization of three separate

filters with different design specifications:

Specifications for filter #1: |S11| ≤ -20 dB at frequency range of 2.3 GHz-2.54

GHz.

Specifications for filter #2: |S11| ≤ -20 dB at frequency range of 2.32 GHz-2.56

GHz.

Specifications for filter #3: |S11| ≤ -20 dB at frequency range of 2.34 GHz-2.58

GHz.

The initial values are x = [36 43 6 -2 -2]T (mm). We perform design optimiza-

tions of the coupled-line filter using the pole-residue-based neuro-TF model. The

optimization took only about 20 seconds to achieve optimal solution for the each

filter. The optimized geometrical values for the three separate filter solutions are:

xopt #1: x = [36.8889 44.068 8.10735 -0.120832 0.236612]T (mm)

xopt #2: x = [36.4979 43.7801 4.61309 -3.9472 -3.62018]T (mm)
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(a)

(b)

(c)

Figure 3.17: Comparison of the magnitude of S11 of the proposed model of the
higher Q filter and original filter responses and EM data for the coupled-line filter
example: (a) test geometrical sample #1, (b) test geometrical sample #2, and (c)
test geometrical sample #3. As shown in the figure the proposed pole-residue-based
neuro-TF model matches the EM data of both higher Q and original filter response
well.
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Table 3.12: CPU Time of Optimizations for The Coupled-Line Filter Example

xopt #3: x = [36.0017 43.5694 0.948699 -7.83401

-7.35138]T (mm)

The CST full-wave EM simulations at the model optimal solutions are shown

in Fig. 3.18. For comparison purpose, we also use CST to perform direct EM

optimization of the filter with the same initial value and same design specifications

for the three filters described above. The comparison is illustrated in Table 3.12.

For pole-residue-based neuro-TF optimization, the model development time is

1.93 hours including EM data generation and model training. Once the model is

trained, it can be re-used again and again for additional optimizations (i.e., for

specifications for filters 2 and 3). In Table 3.12, the total CPU time for model de-

velopment and filter optimization using the pole-residue-based neuro-TF approach

is 1.95 hours versus 22.7 hours for direct EM optimization. The more we re-use the

pole-residue-based neuro-TF model, the more time will be saved.
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Figure 3.18: The magnitude in decibels of S11 of CST EM data at (a) xopt #1,
(b) xopt #2, and (c) xopt #3, for three different sets of design specifications of the
coupled-line filter example. As shown in the figure, the proposed pole-residue-based
neuro-TF model behaves well in design optimization with different specifications.
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3.4 Conclusion

In this chapter, a new approach to parametric modeling of EM behavior of mi-

crowave components using combined neural networks and pole-residue-based trans-

fer function has been proposed. In the proposed method, a novel pole-residue track-

ing technique has been developed for pole-residue-based transfer function to deal

with the problem of changing orders when geometrical parameters undergo large

variations. With high dimension of geometrical parameter space and large geomet-

rical variations, the model obtained by the proposed method is more accurate and

robust than that obtained by the existing modeling method using rational trans-

fer function formulation. The proposed method can also obtain good modeling

accuracy even when the orders of the models are high. Once trained, the pole-

residue-based neuro-TF model developed by the proposed method provides fast

and accurate prediction of the EM responses w.r.t the geometrical variables. The

developed pole-residue-based neuro-TF models can be also used for the high-level

optimizations with geometrical parameters as design variables.
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Chapter 4

Advanced Pole-Residue Tracking

Technique Using EM Sensitivity

Analysis

This chapter proposes an advanced pole-residue tracking technique using EM sen-

sitivity analysis. The purpose is to exploit the sensitivity information to track the

splitting of poles as geometrical parameters change. This pole-residue tracking tech-

nique allows the model to bridge the differences of the orders of transfer function

over different regions of the geometrical parameters, and ultimately form smooth

and continuous functions between the pole/residues and the geometrical variables.

The proposed technique addresses the challenges of tracking pole splitting when

training data are limited.

4.1 Introduction

The discontinuity of pole/residues in transfer functions with respect to the geomet-

rical variables is a major issue for modeling. When geometrical variations are large,
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the corresponding EM responses will lead to different orders of transfer functions.

A repetitive parameter extraction process is required to extract the pole-residues of

transfer functions for each sample of geometrical variables. One way is to set the

orders to the maximum one among all geometrical samples. In that case, high order

transfer function is used to deal with low order problems for subsets of geometrical

samples. That causes non-unique and arbitrary numerical solutions for the vector

fitting process, resulting in the discontinuity of pole/residues.

Another way is to use a minimum order of the pole-residue-based transfer func-

tion for each geometrical sample [29]. That may result in different orders of transfer

functions for different geometrical samples. These varied orders will result in abrupt

changes of the values of poles and residues, and/or abrupt changes in the function

structure of poles and residues as functions of geometrical parameters. These abrupt

changes also lead to the discontinuity of pole/residues.

In the previous chapter, we introduce a pole-residue tracking technique to over-

come the discontinuity problems of pole/residues in transfer functions. The idea

is based on splitting one pole into two separate new poles to achieve the increase

of the order of the pole-residue-based transfer function. This approach generates

a group of new pole/residues based on those in the minimum order transfer func-

tions and ultimately form transfer functions of constant order. The method solves

the discontinuity problems of pole/residues while maintaining the accuracy of the

transfer functions.

This chapter presents a further advance over the work of the pole-residue track-

ing technique. An advanced pole-residue tracking technique using EM sensitivity
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analysis is proposed in this chapter. The purpose is to exploit sensitivity informa-

tion to solve the challenge of pole splitting especially when the amount of training

data are reduced and/or the geometrical step sizes between the data samples are en-

larged. This proposed technique takes advantage of sensitivity information to split

one pole into two separate new poles to achieve the increase of the order of transfer

function and ultimately form transfer functions of constant order over the entire

region of geometrical parameters. The proposed technique addresses the challenges

of tracking pole splitting when training data are limited.

4.2 Advanced Pole-Residue Tracking Technique

Using EM Sensitivity Analysis

The transfer functions in pole/residue format are used in the proposed neuro-TF

model. Poles and residues of the transfer function will change as the geometrical

parameters change. Because the relationship between the pole/residues and the

geometrical parameters is non-linear and unknown, neural networks are used to

represent the relationship. Let x represent the input vector of the neuro-TF model

such as geometrical parameters of microwave passive components. Let y represent

the outputs of the neuro-TF model such as S-parameters. The outputs y contains

the real/imaginary parts of transfer function response H, which is formulated in

pole/residue format [30],

H(s,x,w) =
N∑

i=1

ri(x,w)

s− pi(x,w)
+

N∑

i=1

r∗i (x,w)

s− p∗i (x,w)
(4.1)
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where N represents the effective order of transfer function. pi and ri represent the

effective poles and residues, respectively. The superscript “∗” means complex con-

jugate. s represents the frequency in Laplace domain. w represents the weighting

parameters in the neural networks. Let p and r represent vectors containing all the

poles and residues, respectively. Separate neural networks are used to represent the

real and imaginary parts of the pole/residues in order to maintain real value neural

network structures, defined as

p(x,w) = α(x,w) + jβ(x,w)

r(x,w) = η(x,w) + jξ(x,w)

(4.2)

where α and β represent the vectors containing the real and imaginary parts of

the poles p, respectively, while η and ξ represent the vectors containing the real

and imaginary parts of the residues r, respectively. w represents the weighting

parameters in the neural networks. α, β, η, and ξ represent the functions of neural

networks with respect to x and w.

4.2.1 Pole-Residue Extraction

In the proposed method, pole-residue-based transfer function formulation is used for

the proposed neuro-TF model. Firstly, we perform parameter extraction to obtain

the data for preliminary training of the neural networks α(x,w), β(x,w), η(x,w),

and ξ(x,w). Pole-residue extraction is to obtain the data of poles and residues with

respect to geometrical parameters x for training the original neural networks.

Different samples of geometrical parameters, which are also called as training
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samples, are generated with respect to the inputs x containing all the geometrical

parameters except frequency which is a separate variable swept by the EM simulator

during data generation. Let d represent the data of the outputs generated from

EM simulations (e.g., S -parameters). Let d′ represent the derivative data of the

outputs with respect to geometrical parameters from EM sensitivity analysis. EM

derivative data d′ is generated using EM sensitivity analysis simultaneously with

the generation of EM output data d in the EM simulator. Let Tr represent the index

set of the training samples of different values of geometrical parameters, i.e., Tr =

{1, 2, ..., ns}, where ns is the total number of the training samples of geometrical

parameters.

Pole-residue extraction is performed using a vector fitting process [121]. We

use vector fitting to obtain a group of effective poles and residues from the EM

output data d versus frequency, using the minimum order of transfer function for

each geometrical sample. With minimum order of transfer function, we can avoid

non-unique and arbitrary numerical solutions of pole/residues from the vector fit-

ting process. However, by doing so, the orders of transfer function may vary among

different geometrical samples. Let Nk represent the effective order of transfer func-

tion for the kth geometrical sample, where k represents the index of the geometrical

samples, i.e., k ∈ Tr. Nk is initially equal to the minimum effective order of transfer

function for the kth sample determined from the vector fitting process.

To make the output data for the neural network real values, the real and imagi-

nary parts of the effective poles and residues are used in our formulation to form the

transfer function. Let α̃ and β̃ represent the real and imaginary parts of the poles
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of the transfer function whose order may vary among different geometrical samples.

Let η̃ and ξ̃ represent the real and imaginary parts of the corresponding residues,

respectively. Let c̃ represent a vector containing these real and imaginary parts of

poles and residues, defined as

c̃ =
[
α̃T β̃T η̃T ξ̃T

]T
(4.3)

Let c̃k represent c̃ at a particular sample, i.e., the kth sample, containing α̃k, β̃k,

η̃k and ξ̃k, which represent real and imaginary parts of poles and residues at the

kth sample.

During the calculation of c̃k, we use minimum orders of the transfer function for

each geometrical sample to avoid non-unique and arbitrary numerical solutions of

pole/residues from the vector fitting process. However, that may result in varied

orders of the transfer function for different geometrical samples. The varied orders

can lead to abrupt changes in values of poles and residues, and/or abrupt changes

in the function structure of poles and residues as geometrical parameters change.

These abrupt changes will lead to the discontinuity of pole/residues with respect to

changes in geometrical parameters. The technique dealing order changing problem

for the rational format of neuro-transfer function in the references [28], [32] is not

applicable for the pole-residue based neuro-transfer function used in this chapter.

An advanced pole-residue tracking technique is proposed in the next sub-section to

overcome the discontinuity problem of pole/residues.

91



4.2.2 Advanced Pole-Residue Tracking Technique Using Deriva-

tive Information

The orders of transfer function may vary over different values of geometrical pa-

rameters. For example, the number of poles may increase when the geometrical

parameters are changed. In order to track how the few poles change to more poles

when the geometrical parameters change, we derive a pole splitting method where

one of the poles is split into two new poles as geometrical parameters are changed.

In this sub-section, an advanced pole-residue tracking technique using derivative

information is proposed to perform the pole splitting.

After pole-residue extraction and derivative data calculation, we obtain c̃k and

Ak for each geometrical sample, i.e., the kth sample. By using pole splitting, we

want to increase the effective orders of transfer function Nk by adding new effective

pole/residues without introducing non-uniqueness problem, such that the orders of

transfer function for all geometrical samples will ultimately be equal to the max-

imum effective order N . By doing so, the pole/residues become continuous with

respect to changes in geometrical parameters. The maximum effective order N is

defined as

N = max
k∈Tr

{Nk} (4.4)

The pole-residue tracking process is an iterative process. In the first iteration,

the effective order of the transfer function Nk is initially set to be equal to the mini-

mum effective order from the vector fitting solutions for the kth sample. During the

pole-residue tracking process, we iteratively select the geometrical samples which

have the lowest order of transfer function among all the geometrical samples. The
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effective order of transfer function of those samples is increased by one, while the

pole/residues are formulated to be continuous with respect to changes in geomet-

rical parameters. After the iterative process, the orders of transfer function for all

geometrical samples are equal to the maximum effective order N . In each iteration

of the iterative process, let Γ contain the indices of the geometrical samples which

have the lowest order of transfer function among all the geometrical samples, defined

as,

Γ =

{
k

∣∣∣∣k = argmin
l∈Tr

{Nl}

}
(4.5)

Among all the samples in Γ, we select the sample which has the smallest sum of

distances in geometrical parameter space to all the other samples outside Γ with

higher orders of transfer function. This selected sample will be the first sample

whose order of transfer function needs to be increased by one. Let K represent the

index of this selected sample, which is calculated as,

K = argmin
k∈Γ




∑

l∈Tr,l /∈Γ

nx∑

i=1

∥∥∥∥
xl
i − xk

i

δi

∥∥∥∥



 (4.6)

where δi is the smallest variance of xi among all the samples. In (4.6), xk
i and xl

i rep-

resent the kth and lth samples of the ith geometrical parameter, respectively. For the

Kth sample, we choose one pole to be split into two overlapping poles as geometrical

parameters change, according to the information of the nearest neighboring sample.

The nearest neighboring sample (denoted as the Lth sample) is the one which has

the shortest distance in geometrical parameter space to the Kth sample among all

the samples whose orders of transfer function are equal to NK+1 [30]. Let m repre-
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sent the index of the mth pole in the Kth sample, where m ∈ {1, 2, ..., NK}. Assume

the mth pole is to be split, we calculate the sum of differences Dm. Dm is defined

as the total distances of pole movement along the imaginary axis as geometrical

parameters change from the Kth sample to the Lth sample [30].

Here we first illustrate the selection of the pole to be split using the existing pole-

residue tracking technique in Chapter 3 [30]. The information from this selection

becomes the base, over which our proposed new pole-splitting technique is developed

to address more challenging cases when training data become fewer. To determine

which pole should be selected to be split, reference [30] compares different Dm,

m = 1, 2, ..., NK . The pole with the minimum Dm value is selected as the splitting

pole [30]. Thus, the index of the selected pole is calculated as

M = arg min
m∈{1,2,...,NK}

{Dm} (4.7)

In other words, the M th pole of the Kth geometrical sample is selected to be split.

By using (4.7), the poles move smoothly (continuously) instead of abruptly as geo-

metrical parameters change.

Now, in the present chapter, we consider a more challenging case, i.e., fewer

training data and large geometrical step size between the data (considering large

geometrical range of variables). This case may lead to a situation where multiple

sums of differences Dm are simultaneously very close to DM . In this situation, it is

difficult to distinguish the correct pole to be split from the other poles which should

not be split. Thus, the pole-splitting may lead to non-unique choices using existing

pole-residue tracking technique [30]. In this case (i.e., fewer data and large step size
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between the data), it is difficult to decide which pole is the correct pole to be split.

To address this situation, we propose a new and advanced pole-residue tracking

technique using derivative information of the poles to obtain reliable pole-splitting

especially when we have few data. Let Φ be an index set containing the indices of

poles whose sum of differences Dm is close to DM , defined as,

Φ =

{
m

∣∣∣∣
(Dm −DM)

DM

≤ ε

}
(4.8)

where ε is a user defined threshold which decides whether Dm is close to DM .

Usually, ε is selected to be 0.1− 0.2. In order to distinguish between different poles

(i.e., poles in the set Φ), which all appear almost equally qualified as the splitting

pole using existing criteria in Chapter 3 [30], we consider the derivative information

of the imaginary part of the poles. The derivative information can play a significant

role in helping us identify the correct pole to be split from the other poles which

should not be split. One of the poles in the Kth sample is eventually split into two

poles in the Lth sample, as the geometrical parameters are changed from that in the

Kth sample to that in the Lth sample. We use the derivative information to assess

whether two neighboring poles in the Lth sample are moving together or apart from

each other. Let Zm represent the difference of the derivatives for all the geometrical

parameters between the mth and (m+ 1)th poles in the Lth sample, calculated as,

Zm =

(
∂β̃L

m+1

∂xT
−

∂β̃L
m

∂xT

)
(
xL − xK

)
(4.9)

Larger positive values of Zm means that the mth and (m+ 1)th poles in the Lth

sample are more likely to be split apart from the mth pole in the Kth sample.
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Therefore, we propose to select the M̂ th pole in the Kth sample which has the

maximum Zm using the derivative information. The index of the selected pole is

calculated as,

M̂ = argmax
m∈Φ

{Zm} (4.10)

Now, the M̂ th pole will then be split into two new poles in the Kth sample. The

real and imaginary values of these two new poles are defined to be equal to α̃K

M̂
and

β̃K

M̂
, respectively. The M̂ th residue corresponding to the selected M̂ th pole should

also be split into two separate residues. Each of these new residues are defined to

be equal to half the value of the original residue. After splitting the M̂ th pole, the

number of elements in α̃K , β̃K , η̃K and ξ̃K increases from NK to NK +1. The real

and imaginary parts of the poles of the Kth sample with the M̂ th pole split, i.e.,

with the M̂ th pole appearing twice, are expressed as,

α̃K =
[
α̃K
1 α̃K

2 · · · α̃K

M̂
α̃K

M̂
· · · α̃K

NK

]T
(4.11)

β̃K =
[
β̃K
1 β̃K

2 · · · β̃K

M̂
β̃K

M̂
· · · β̃K

NK

]T
(4.12)

The real and imaginary parts of the corresponding residues are expressed as,

η̃K =

[
η̃K1 η̃K2 · · ·

η̃K
M̂

2

η̃K
M̂

2
· · · η̃K

NK

]T
(4.13)

ξ̃K =

[
ξ̃K1 ξ̃K2 · · ·

ξ̃K
M̂

2

ξ̃K
M̂

2
· · · ξ̃K

NK

]T
(4.14)

The same splitting will also be applied to the derivative matrix Ak, i.e., the size of

the matrix will expend from 4Nk×nx to 4(Nk+1)×nx. The derivatives of the M̂
th
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pole will be split into two new equal value derivatives as geometrical parameters

change. The derivatives of the M̂ th residue should also be split into two separate

derivatives whose values are half of the original derivative value. After this process,

the effective order of transfer function for the Kth sample is increased by one, i.e.,

NK = NK + 1 (4.15)

This pole splitting is performed iteratively until the effective orders of transfer

function of all the samples become equal to the maximum effective order N , i.e.,

Nk = N, ∀k = 1, 2, ..., ns (4.16)

By using derivative information in pole-residue tracking technique, the pole split-

ting becomes more reliable, especially when the step sizes between data are large.

The final data of poles and residues reformatted using the proposed method are con-

tinuous with respect to the changes in geometrical parameters. The data obtained

after pole-residue tracking process can be further used in parametric modeling using

combined neural networks and pole-residue-based transfer functions.

4.3 Application Example

4.3.1 Illustration of Pole-Residue Tracking Technique Using

a Coupled-Line Filter Example

The proposed advanced pole-residue tracking technique using EM sensitivity analy-

sis of a coupled-line filter example with one-dimension (one geometrical parameter)

is illustrated in this section. Fig. 4.1 shows the structure for the EM simulation of
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Figure 4.1: The structure for the EM simulation of the coupled-line filter, where
the geometrical variable used in this example is the offset distance from the ends
of the two lines near the ports to the corresponding fringes. In this example, the
number of poles changes as the value of the offset distance changes.

the coupled-line filter. The geometrical parameter used in this example is the offset

distance from the ends of the two lines near the ports to the corresponding fringes.

The number of effective poles changes from five to six as the geometrical parameter

(offset distance) changes using vector fitting technique.

In this example, two of the poles (one having the largest value of imaginary part,

another having the smallest value of imaginary part) in the Kth sample are clearly

matching with two of the poles in the Lth sample. Therefore these poles do not

need to be considered as candidates for pole splitting. The remaining three poles in

the Kth sample and four poles in the Lth sample are considered for pole splitting as
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Figure 4.2: In order to track how the three poles change to four poles, we derive
a pole splitting technique where one of the poles is split into two new poles as
geometrical variables change. When the geometrical variable changes in small step
sizes, the correct pole is chosen to be split using the existing pole-residue tracking
technique [30].

illustrated in Fig. 4.2. As shown in Fig. 4.2, when the offset distance is equal to 4

mm (i.e., the Kth sample), the number of poles is three. When the offset distance

is changed to 6 mm (i.e., the Lth sample), the number of poles is changed to four.

In order to track how the three poles change to four poles, we derive a pole

splitting technique where one of the poles is split into two new poles as geometrical

variables change from the Kth sample to the Lth sample. In other words, one of

the three poles in the Kth sample needs to be split in order to make the number of

poles in the Kth sample to be the same as that in the Lth sample. Fig. 4.2 is used

to illustrate how pole splitting is performed in the existing pole-residue tracking
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technique [30]. The sum of differences Dm for the mth pole (m = 1, 2, 3) in the Kth

sample is calculated in the example, i.e., D1 = 0.28, D2 = 0.19 and D3 = 0.12. The

minimum sum of differences is D3, therefore M = 3. This result illustrates that

the imaginary values of the third and the fourth poles in the Lth sample are close

to the value of the third pole in the Kth sample. Therefore, the third pole in the

Kth sample is selected to be split, i.e., M = 3. As shown in Fig. 4.2, when the

geometrical step sizes are small, the pole which needs to be split can be identified

correctly using the existing pole-residue tracking technique in Chapter 3 [30].

4.3.2 Advanced Pole-Residue Tracking Technique Using Sen-

sitivity Analysis of The Coupled-Line Filter Example

Now, in the present sub-section, we consider a more challenging case, i.e., fewer

training data and large geometrical step size between the data (considering large

geometrical range of variables). This situation is shown in Fig. 4.3. The geometrical

parameter (offset distance) of the example is changed by a larger step size from 4

mm (i.e., the Kth sample) to 8 mm (i.e., the Lth sample). The sum of differences

Dm for the mth pole (m = 1, 2, 3) in the Kth sample is calculated to be D1 = 0.24,

D2 = 0.21 and D3 = 0.22. The minimum sum of differences is DM = D2 = 0.21. In

this situation, the value of each Dm is very similar to DM . When pole splitting is

performed using existing pole-residue tracking technique [30], each of the three poles

qualifies to be chosen for splitting as the geometrical parameters change, because

D1, D2 and D3 are very similar. As shown in Fig. 4.3, the dash lines illustrate the

possibilities of pole splitting using existing pole-residue tracking technique. In this
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Figure 4.3: When the geometrical variable changes in large step sizes, there are
multiple possibilities of pole splitting using existing pole-residue tracking technique
[30] because of similar sums of differences.

case (i.e., fewer data and large step size between the data), it is difficult to decide

which pole is the correct pole to be split.

Using (4.10), the pole which needs to be split is identified correctly, shown in

Fig. 4.4. As illustrated in Fig. 4.4, we calculate the difference of the derivatives

Zm for the mth pole (m = 1, 2, 3) in the example, i.e., Z1 = −0.0564, Z2 = 0.0376,

Z3 = 0.0712. The difference of derivatives Z3 between the third and the fourth poles

in the Lth sample has the maximum value among all the differences of derivatives

between neighboring poles in the Lth sample. This means the third and fourth poles

in the Lth sample are most likely to be split apart from the third pole in the Kth

sample. Using the proposed advanced pole-residue tracking technique, the third
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Figure 4.4: When the geometrical variable changes in large step sizes, the correct
pole is chosen to be split using the proposed pole-residue tracking technique with
sensitivity information.

pole with value 6.42 in the Kth sample is the one which needs to be split, i.e.,

M̂ = 3. Thus, using the proposed pole-residue tracking technique with derivative

information, the correct pole is selected to be split as the geometrical parameters

change.

4.4 Conclusion

In this chapter, a new pole-residue tracking technique using EM sensitivity analysis

has been proposed. This technique is proposed to use the derivative information to

obtain more reliable pole splitting than the existing pole-residue tracking technique.

This pole-residue tracking technique allows the model to bridge the differences of
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the orders of transfer function over different regions of the geometrical parameters,

and ultimately form smooth and continuous functions between the pole/residues

and the geometrical variables. The proposed technique can solve the challenges of

tracking pole splitting when training data are limited.
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Chapter 5

Parametric Modeling Using

Neuo-Transfer Functions with EM

Sensitivity Analysis

This chapter proposes a pole-residue-based adjoint neuro-transfer function (neuro-

TF) technique with EM sensitivity analysis for parametric modeling of EM behavior

of microwave components with respect to changes in geometrical parameters. The

purpose is to increase model accuracy by utilizing EM sensitivity information and

to speedup model development by reducing the number of training data required

for developing the model. The proposed parametric model consists of original and

adjoint pole-residue based neuro-TF models. New formulations are derived for cal-

culating the second order derivatives for training the adjoint pole-residue based

neuro-TF model. The proposed method utilize the advanced pole-residue tracking

technique using EM sensitivity analysis to track the splitting of poles as geometrical

parameters change. By exploiting the sensitivity information, the proposed tech-

nique can speed up the model development process over the existing pole-residue
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parametric modeling method which does not use sensitivity analysis.

5.1 Introduction

As a further development of parametric modeling, sensitivity analysis has been

used to speed up the model development process by utilizing EM sensitivity infor-

mation to reduce the number of training data required for developing the model. In

the reference [56], a method using adjoint neural network is presented to perform

the sensitivity analysis in ANN modeling. A parametric modeling method using

sensitivity-analysis-based adjoint neural network technique for solving the passive

microwave components is described in the reference [14]. The techniques in the ref-

erence [14] and [56] can train the parametric model with both the input-output data

and the derivative data of EM problems simultaneously to obtain a robust model.

To calculate these EM derivative data, EM field based adjoint sensitivity analysis

techniques, e.g., the reference [15], can be used. With sensitivity information (EM

derivative data), we can retain the model accuracy using less data for training the

model.

This chapter presents a further advance over the work of [30]. A new sensitivity-

analysis-based neuro-transfer function (neuro-TF) modeling technique using trans-

fer functions in pole/residue format is proposed for parametric modeling of mi-

crowave components. The proposed parametric model is trained using the input-

output behavior and the sensitivity analysis information generated from EM simu-

lation simultaneously. The neuro-transfer function in pole/residue format is used in

this chapter. We propose new formulations to calculate the second-order derivatives
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required for developing the pole-residue-based adjoint neuro-TF model. The pro-

posed method utilize the advanced pole-residue tracking technique using sensitivity

information to solve the challenge of pole splitting especially when the amount of

training data are reduced and/or the geometrical step sizes between the data sam-

ples are enlarged. By exploiting sensitivity information for training, the proposed

modeling method can obtain accurate parametric models with fewer training data

(or obtain better accuracy with the same amount of training data), compared to

the previous neuro-TF modeling method without using sensitivity [30].

5.2 Proposed Sensitivity-Analysis-Based Neuro-

TF Modeling Technique

The proposed sensitivity-analysis-based neuro-TF model is shown in Fig. 5.1. It

consists of two parts: the original neuro-TF model and the adjoint neuro-TF model.

Let x represent the input vector of the original neuro-TF model such as geometrical

parameters of microwave passive components. Let y represent the outputs of the

original neuro-TF model such as S-parameters. The adjoint neuro-TF model shares

the same inputs x of the original neuro-TF model. The outputs of the adjoint

neuro-TF model are the derivatives of the original neuro-TF model outputs y with

respect to the inputs x, denoted as dy/dx. The outputs of the overall proposed

model consists of both the outputs y of the original neuro-TF model and the outputs

dy/dx of the adjoint neuro-TF model.

The transfer functions in pole/residue format are used in the proposed sensitivity-

analysis-based neuro-TF model. Poles and residues of the transfer function will
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Figure 5.1: The structure of the proposed sensitivity-analysis-based neuro-TF model
with transfer functions in pole/residue format. The proposed model contains the
original neuro-TF model and the adjoint neuro-TF model, where x represents the
geometrical variables; y represents the outputs of the transfer function; dy/dx
represents the derivatives of y with respect to x.

change as the geometrical parameters change. Because the relationship between

the pole/residues and the geometrical parameters is non-linear and unknown, neu-

ral networks are used to represent the relationship. The neural network used in

the original neuro-TF model is called the original neural network. Consequently,

adjoint neural networks [14] are used in the adjoint neuro-TF model to map the

geometrical parameters onto the derivatives of pole/residues.

The outputs y contains the real/imaginary parts of transfer function response

H, which is formulated in pole/residue format [30],

H(s,x,w) =
N∑

i=1

ri(x,w)

s− pi(x,w)
+

N∑

i=1

r∗i (x,w)

s− p∗i (x,w)
(5.1)

where N represents the effective order of transfer function. pi and ri represent the

effective poles and residues, respectively. The superscript “∗” means complex con-
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jugate. s represents the frequency in Laplace domain. w represents the weighting

parameters in the neural networks. Let p and r represent vectors containing all the

poles and residues, respectively. Separate neural networks are used to represent the

real and imaginary parts of the pole/residues in order to maintain real value neural

network structures, defined as

p(x,w) = α(x,w) + jβ(x,w)

r(x,w) = η(x,w) + jξ(x,w)

(5.2)

where α and β represent the vectors containing the real and imaginary parts of

the poles p, respectively, while η and ξ represent the vectors containing the real

and imaginary parts of the residues r, respectively. w represents the weighting

parameters in the neural networks. α, β, η, and ξ represent the functions of neural

networks with respect to x and w.

5.2.1 Pole-Residue Extraction and Derivative Data Calcu-

lation

In the proposed method, pole-residue-based transfer function formulation is used for

the sensitivity-analysis-based neuro-TF model. Firstly, we perform parameter ex-

traction to obtain the data for preliminary training of the neural networks α(x,w),

β(x,w), η(x,w), and ξ(x,w). The parameter extraction process consists of pole-

residue extraction and pole-residue derivative calculation. Pole-residue extraction

is to obtain the data of poles and residues with respect to geometrical parameters

x for training the original neural networks. Pole-residue derivative calculation is to

obtain the data of derivatives of poles and residues with respect to x for training
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the adjoint neural networks.

Different samples of geometrical parameters, which are also called as training

samples, are generated with respect to the inputs x containing all the geometrical

parameters except frequency which is a separate variable swept by the EM simulator

during data generation. Let d represent the data of the outputs generated from

EM simulations (e.g., S -parameters). Let d′ represent the derivative data of the

outputs with respect to geometrical parameters from EM sensitivity analysis. EM

derivative data d′ is generated using EM sensitivity analysis simultaneously with

the generation of EM output data d in the EM simulator. Let Tr represent the index

set of the training samples of different values of geometrical parameters, i.e., Tr =

{1, 2, ..., ns}, where ns is the total number of the training samples of geometrical

parameters.

Pole-residue extraction is performed using a vector fitting process [121]. We

use vector fitting to obtain a group of effective poles and residues from the EM

output data d versus frequency, using the minimum order of transfer function for

each geometrical sample. With minimum order of transfer function, we can avoid

non-unique and arbitrary numerical solutions of pole/residues from the vector fit-

ting process. However, by doing so, the orders of transfer function may vary among

different geometrical samples. Let Nk represent the effective order of transfer func-

tion for the kth geometrical sample, where k represents the index of the geometrical

samples, i.e., k ∈ Tr. Nk is initially equal to the minimum effective order of transfer

function for the kth sample determined from the vector fitting process.

To make the output data for both original neural network and adjoint neural
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network real values, the real and imaginary parts of the effective poles and residues

are used in our formulation to form the transfer function. Let α̃ and β̃ represent the

real and imaginary parts of the poles of the transfer function whose order may vary

among different geometrical samples. Let η̃ and ξ̃ represent the real and imaginary

parts of the corresponding residues, respectively. Let c̃ represent a vector containing

these real and imaginary parts of poles and residues, defined as

c̃ =
[
α̃T β̃T η̃T ξ̃T

]T
(5.3)

Let c̃k represent c̃ at a particular sample, i.e., the kth sample, containing α̃k, β̃k,

η̃k and ξ̃k, which represent real and imaginary parts of poles and residues at the

kth sample.

After pole-residue extraction, we perform the pole-residue derivative calculation.

Let Ω represent the index set of frequencies, i.e., Ω = {1, 2, ..., nf}, where nf is the

total number of frequencies. The frequency response H is expressed as a function

of pole/residues and frequency sq, where q represents the index of frequencies, i.e.,

q ∈ Ω. Let Hk
q represent the transfer function response at the qth frequency for the

kth sample. The response of the adjoint neuro-TF output at the qth frequency for

the kth sample is calculated as,

∂Hk
q

∂x
=

∂c̃Tk
∂x

∂Hk
q

∂c̃
(5.4)

From (5.4), we need to first obtain the derivative data of EM outputs with re-

spect to x and derivative data of EM outputs with respect to poles and residues.

Subsequently, the derivative data of poles and residues with respect to geometrical
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parameters x need to be calculated.

First, we obtain the matrix of derivative data of EM outputs with respect to x

for all the training samples. Let gk
q represent the derivative data of the EM response

Hk
q with respect to geometrical parameters x at the qth frequency of the kth training

sample, defined as,

gk
q =

∂Hk
q

∂x
(5.5)

Let Gk represent the derivative data of the EM outputs with respect to x for the

kth training sample, containing both the real and imaginary parts of gk
q at all the

frequency points, defined as

Gk =[Re(gk
1) Re(gk

2) · · ·Re(g
k
nf
)

Im(gk
1) Im(gk

2) · · · Im(gk
nf
)]T

(5.6)

Gk is a 2nf × nx matrix formed from EM derivative data d′, where nx represents

the total number of the geometrical parameters in vector x.

Then, we need to calculate the derivative data of EM outputs with respect to

poles and residues. Let fk
q represent a vector which contains the derivatives of the

transfer function response with respect to the real and imaginary parts of all the

poles and residues at the qth frequency for the kth sample, defined as

fk
q =

[
(
∂Hk

q

∂α̃
)T (

∂Hk
q

∂β̃
)T (

∂Hk
q

∂η̃
)T (

∂Hk
q

∂ξ̃
)T

]T
(5.7)

where the elements in fk
q are calculated as

∂Hk
q

∂α̃i

=
rki

(sq − pki )
2
+

rk∗i
(sq − pk∗i )2

(5.8)
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∂Hk
q

∂β̃i

=
jrki

(sq − pki )
2
−

jrk∗i
(sq − pk∗i )2

(5.9)

∂Hk
q

∂η̃i
=

1

sq − pki
+

1

sq − pk∗i
(5.10)

∂Hk
q

∂ξ̃i
=

j

sq − pki
−

j

sq − pk∗i
(5.11)

where i represents the index of pole/residues, i.e., i ∈ {1, 2, ..., Nk}, and k represents

the index of the samples, i.e., k ∈ {1, 2, ..., ns}. Let Fk represent the derivative data

of the EM outputs with respect to the real and imaginary parts of poles and residues

for the kth training sample, containing the real and imaginary parts of fk
q at all the

frequency points. Fk is a 2nf × 4Nk matrix, defined as

Fk =[Re(fk
1 ) Re(fk

2 ) · · ·Re(f
k
nf
)

Im(fk
1 ) Im(fk

2 ) · · · Im(fk
nf
)]T

(5.12)

Let Ak represent the data matrix for the derivatives of poles and residues with

respect to geometrical parameters x for the kth sample. Ak is a 4Nk × nx matrix,

which is expressed as,

Ak =

[
(
∂α̃k

∂xT
)T (

∂β̃k

∂xT
)T (

∂η̃k

∂xT
)T (

∂ξ̃k

∂xT
)T

]T
(5.13)

After matrices Gk and Fk are obtained, we can calculate Ak. From (5.4), the

equation for solving Ak for the kth sample is formulated as,

FkAk = Gk (5.14)

Because Fk is not a square matrix, in order to calculate Ak, we reformulate (5.14)
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into the following equation as

Ak = (F T
k Fk)

−1F T
k Gk (5.15)

During the calculation of c̃k andAk, we use minimum orders of the transfer function

for each geometrical sample to avoid non-unique and arbitrary numerical solutions

of pole/residues from the vector fitting process. However, that may result in varied

orders of the transfer function for different geometrical samples. The varied orders

can lead to abrupt changes in values of poles and residues, and/or abrupt changes

in the function structure of poles and residues as geometrical parameters change.

These abrupt changes will lead to the discontinuity of pole/residues with respect to

changes in geometrical parameters.

The advanced pole-residue tracking technique using EM sensitivity analysis is

utilized in this chapter to overcome the discontinuity problem of pole/residues. Let

ĉk and Âk represent the reformatted data of pole/residues and their derivatives

with respect to x, respectively, using the proposed pole-residue tracking technique.

ĉk and Âk are expressed as,

ĉk =
[
α̂k
1 · · · α̂

k
N
β̂k
1 · · · β̂

k
N
η̂k1 · · · η̂

k
N
ξ̂k1 · · · ξ̂

k
N

]T
(5.16)

Âk =

[
∂α̂k

1

∂x
· · ·

∂α̂k
N

∂x

∂β̂k
1

∂x
· · ·

∂β̂k
N

∂x

∂η̂k1
∂x

· · ·
∂η̂k

N

∂x

∂ξ̂k1
∂x

· · ·
∂ξ̂k

N

∂x

]T (5.17)

Notice that the size of the vector ĉk is a constant being 4N for all samples, k =

1, 2, ..., ns. The matrix Âk has a constant size of 4N × nx.
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5.2.2 Preliminary Training of the Sensitivity-Analysis-Based

Neuro-TF Model

The sensitivity-analysis-based neuro-TF model is trained with both EM simulation

data and EM sensitivity data simultaneously. With the same amount of training

data samples, we can make the model more accurate by training with the sensitivity

information than that by training without sensitivity information. Alternatively, we

can also maintain the model accuracy with less training data samples by using the

sensitivity information. A two stage training process is proposed in the sensitivity-

analysis-based modeling technique. In the first stage, we perform a preliminary

training. In the second stage, a model refinement is proposed to obtain an accurate

model.

In the first stage, the preliminary training of the original neural network and

adjoint neural network are performed simultaneously. The original neural net-

work represents the mapping between the pole/residues and geometrical parameters

x. The adjoint neural network represents the mapping between the derivatives of

pole/residues and geometrical parameters x. The training data for the original neu-

ral networks and adjoint neural networks are (xk, ĉk) and (xk, Âk), respectively,

k ∈ Tr. ĉk and Âk are obtained using the proposed pole-residue tracking technique,

i.e., (5.16) and (5.17), respectively.

Let c(x,w) represent a vector containing all the neural network outputs, i.e.,
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α, β, η, and ξ. The error function for this training process is formulated as

EPre(w) =
1

2ns

ns∑

k=1

‖c(xk,w)− ĉk‖
2

+
1

2ns

ns∑

k=1

∥∥∥∥
∂c(xk,w)

∂xT
− Âk

∥∥∥∥
2

F

(5.18)

where ns is the number of training samples of geometrical parameters. ‖ · ‖ and

‖ · ‖F represent L2 norm and Frobenius norm, respectively.

Here we provide a comparison of the three symbols c̃k, ĉk and c. All these

three symbols are vectors containing real and imaginary parts of poles and residues.

However, their meanings are different. The size of c̃k for the kth sample is 4Nk,

which may vary from sample to sample. The size of ĉk and ck are both constant

being 4N . c̃k represents the data of pole/residues whose size may change during the

pole splitting process. ĉk represents the data of pole/residues for neural network

training, which is equal to c̃k after the last iteration of the pole splitting process. c

represents the vector of the neural network functions, which is trained using data

ĉk.

5.2.3 Refinement Training of the Sensitivity-Analysis-Based

Neuro-TF Model

A refinement training is proposed to further refine the overall model after the first-

stage training. This is called the second-stage training. The training data for the

second stage are (xk, dk) and (xk, d
′
k), k ∈ Tr, i.e., samples of geometrical param-

eters as model inputs and EM responses (i.e., S-parameters) and derivatives of EM

responses with respect to geometrical parameters as model outputs. Fig. 5.2 shows
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Figure 5.2: The mechanism for the refinement training process of the overall
sensitivity-analysis-based neuro-TF model. The objective is to minimize the train-
ing errors of both the original and adjoint neuro-TF model simultaneously, i.e., the
model outputs and model derivatives are trained to match the EM simulation data
and the EM derivative data, respectively. The variables of this training process are
the weighting parameters in neural networks α, β, η and ξ. After training, the
original neuro-TF model is the final model ready to be used for high-level design.

the refinement training mechanism of the overall sensitivity-analysis-based neuro-

TF model. The original and adjoint neuro-TF model are trained simultaneously

during the proposed model refinement process. During this process, not only the

output of the neuro-TF model is trained to be equal to the output data, but also

the derivatives of the output w.r.t geometrical parameters are trained to be equal
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to the derivative data. The error function of this training process is defined as

ETr(w) = Eorig(w) + Eadj(w)

=
1

2ns

ns∑

k=1

ny∑

j=1

aj‖yj(xk,w)− dk,j‖
2

+
1

2ns

ns∑

k=1

ny∑

j=1

nx∑

i=1

bj,i

∥∥∥∥
∂yj(xk,w)

∂xi

− d′k,j,i

∥∥∥∥
2

(5.19)

where Eorig represents the training error of the original neuro-TF models. Eadj

represents the training error of the adjoint neuro-TF models. ns represents the

number of training samples of geometrical parameters. ny represents the number

of outputs in vector y. nx represents the number of the geometrical parameters

in vector x. dk,j represents the training data of EM evaluations of the jth output

for the kth sample. d′k,j,i represents the training data of EM derivatives of the

jth output with respect to the ith input for the kth sample. aj and bj,i represent

the weighting parameters for the error functions of original and adjoint neuro-TF

model, respectively. aj and bj,i are adjustable during the model refinement process

to maintain the robustness of the training of the overall model.

When the training error is less than a user defined error criteria, the training

process terminates. An independent set of data which has not been used in training

process is used for testing the accuracy of the trained model. The error between

the original neuro-TF model responses and the testing data is defined as the testing

error ETe. We define the threshold error (i.e., user defined error criteria) for the

original neuro-TF model to be Et. The model refinement training process terminates

when the testing error ETe becomes less than the threshold Et. After the model
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refinement, the original neuro-TF model can be further used in design optimization.

Fig. 5.3 shows a flowchart which illustrates the entire model development process

of the proposed sensitivity-analysis-based neuro-TF model.

5.2.4 Derivative Calculation for Training the Proposed Sensitivity-

Analysis-Based Neuro-TF Model

During the neuro-TF model training process in Chapter 3 [30], only the first-order

derivative is needed. However, more derivative information will be required for

training the proposed model. The error function of the proposed training in (5.19)

contains the error of outputs Eorig and the error of the first order derivatives Eadj.

Because the error function in (5.19) has the first order derivatives, the gradient of the

error function means the second order derivatives, i.e., the second order derivatives

of model outputs y with respect to model inputs x and neural network internal

weights w are needed to perform the gradient-based training. In this chapter, we

derive this second order derivatives.

The first order derivatives of y with respect to w are calculated similarly to [30]

as,

∂H(s,x,w)

∂w
=

∂cT (x,w)

∂w

∂H(s,x,w)

∂c(x,w)
(5.20)

where the derivatives of transfer function responseH with respect to the pole/residues

(i.e., ∂H(s,x,w)
∂c(x,w)

) are calculated similarly using (5.8)-(5.11). The derivatives of the

pole/residues with respect to the neural network weights w are defined by neural

network derivative formulation in the reference [14].
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Figure 5.3: The flowchart of the overall development process for the sensitivity-
analysis-based neuro-TF model.
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The gradient-based training is also performed simultaneously in the adjoint

neuro-TF model. The training requires the derivatives of the adjoint neuro-TF

model output dy/dx w.r.t the weighting parametersw, i.e., the second-order deriva-

tives of the model outputs y (real/imaginary parts of the transfer function response

H) w.r.t x and w, formulated as,

∂2H(s,x,w)

∂w∂xT
=

∂cT

∂w

∂2H

∂c∂cT
∂c

∂xT
+

4N∑

i=1

∂H

∂ci

∂2ci
∂w∂xT

(5.21)

where ci represents the ith element in the c vector.

To obtain this second-order derivative, we need to first calculate the matrix of

second-order derivatives of transfer function response H with respect to the vector

c which contains real and imaginary parts of poles and residues (i.e., α, β, η and

ξ). The elements in this matrix are calculated as

∂2H

∂αi∂αt

=





2ri

(s− pi)
3 +

2r∗i
(s− p∗i )

3 = φ
(1)
i , i = t

0, i 6= t

(5.22)

∂2H

∂αi∂βt

=





j2ri

(s− pi)
3 −

j2r∗i
(s− p∗i )

3 = φ
(2)
i , i = t

0, i 6= t

(5.23)
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∂2H

∂αi∂ηt
=





1

(s− pi)
2 +

1

(s− p∗i )
2 = φ

(3)
i , i = t

0, i 6= t

(5.24)

∂2H

∂αi∂ξt
=





j

(s− pi)
2 −

j

(s− p∗i )
2 = φ

(4)
i , i = t

0, i 6= t

(5.25)

∂2H

∂βi∂βt

= −
∂2H

∂αi∂αt

(5.26)

∂2H

∂βi∂ηt
=

∂2H

∂αi∂ξt
(5.27)

∂2H

∂βi∂ξt
= −

∂2H

∂αi∂ηt
(5.28)

∂2H

∂ηi∂ηt
=

∂2H

∂ηi∂ξt
=

∂2H

∂ξi∂ξt
= 0 (5.29)

where φ
(1)
i , φ

(2)
i , φ

(3)
i , φ

(4)
i are used to simplify the representation of the elements in

(5.22)-(5.25).

The second-order derivative of the transfer function response H w.r.t model
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inputs x and neural network weights w is calculated using a simplified (5.30).

∂2H

∂w∂xT
=

N∑

i=1




[
∂αi

∂w

∂βi

∂w

∂ηi
∂w

∂ξi
∂w

]




φ
(1)
i φ

(2)
i φ

(3)
i φ

(4)
i

φ
(2)
i −φ

(1)
i φ

(4)
i −φ

(3)
i

φ
(3)
i φ

(4)
i 0 0

φ
(4)
i −φ

(3)
i 0 0







∂αi

∂xT

∂βi

∂xT

∂ηi
∂xT

∂ξi
∂xT







+
N∑

i=1




[
∂H

∂αi

∂H

∂βi

∂H

∂ηi

∂H

∂ξi

]




∂2αi

∂w∂xT

∂2βi

∂w∂xT

∂2ηi
∂w∂xT

∂2ξi
∂w∂xT







(5.30)

This second order derivative contains the calculation of the first and second order

derivatives of the transfer function response with respect to pole/residues, and the

first and second order derivatives of pole/residues with respect to the geometrical

parameters x and neural network internal weights w. The first order derivatives

of the transfer function response with respect to pole/residues are calculated using

(5.8)-(5.11). The second order derivative matrix of transfer function response with

respect to pole/residues are simplified and calculated using (5.22)-(5.29). The first

and second order derivatives of pole/residues with respect to the geometrical pa-

rameters x and neural network internal weights w are calculated similarly to [14].

The overall second order derivatives of H w.r.t x and w are calculated for use in

the training of the first order derivatives of the neuro-TF model (i.e., training of

the adjoint neuro-TF model).

The calculation of the derivatives of y and dy/dx with respect to w is used for
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the gradient-based training process of the proposed sensivity-analysis-based neuro-

TF model. Using these derivative calculations, we can obtain the gradient informa-

tion of the model faster and more accurately than using brute-force perturbation

method, thus speeding up the training process.

5.3 Application Examples

5.3.1 Parametric Modeling of a Microwave Junction

The development of proposed sensitivity-analysis-based neuro-TF model for para-

metric modeling of the EM response of a microwave junction [14] is illustrated in

this example, as shown in Fig. 5.4. g represents the gap between the edges of the

two conductive walls in the junction cavity. ws represents the width of the slot

on the upper conductive wall. ls represents the length of the slot on the upper

conductive wall. hc represents the height of the cylinder in the junction cavity. rc

represents the radius of the cylinder in the junction cavity. tw represents thickness

of the conductive walls. h represents the height of the junction cavity.

Fig. 5.5 shows the structure of the proposed sensitivity-analysis-based neuro-

TF model for the junction example. This model has eight input variables including

seven geometrical parameters and frequency, i.e., [g hc rc tw ws ls h ω]T . The model

has 64 outputs, i.e.,

[RS11 IS11 RS21 IS21 RS31 IS31 RS41 IS41
dRS11

dg

dRS11

dhc

dRS11

drc

dRS11

dtw

dRS11

dws

dRS11

dls
· · ·

dIS41

dh
]T ,

The model outputs include the real/imaginary part of S11, S21, S31 and S41, and their
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Figure 5.4: The geometrical parameters of the microwave junction example and the
3D configuration for EM simulation. The development of a parametric model with
these seven design variables will be performed.

derivatives w.r.t seven input geometrical variables. The full-wave EM simulation

and EM sensitivity analysis for generating training and testing data is performed

using the CST Studio Suite 2014 software. The geometrical parameters g, hc and rc

are considered as sensitivity variables in EM sensitivity analysis. The derivatives of

real and imaginary parts of S11, S21, S31, and S41 with respect to three sensitivity

variables g, hc and rc are obtained from the EM sensitivity analysis. The other geo-

metrical variables (i.e., tw, ws, ls, and h) are considered as non-sensitivity variables

because those variables are not available for EM sensitivity analysis. We set the

training weights for the corresponding outputs of the adjoint neuro-TF model, i.e.,

weights bj,i for

[
dRS11

dtw

dRS11

dws

dRS11

dls

dRS11

dh
dIS11

dtw

dIS11

dws

dIS11

dls
· · ·

dIS41

dh
]T ,

to be zero during the training process. For the other outputs of the adjoint neuro-
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Figure 5.5: The structure of the proposed sensitivity-analysis-based neuro-TF model
for the junction example. Seven geometrical parameters [g hc rc tw ws ls h] are
used as the input variables of the junction model. The outputs of the original
neuro-TF model y are the S-parameters, while the outputs of the adjoint neuro-TF
model dy/dx are the derivatives of S-parameters with respect to the geometrical
parameters.

TF model which represent the derivatives of the outputs of the original neuro-TF

model with respect to the sensitivity variables, the weights bj,i are set to be non-zero

values during the training process.

Two different cases defined in Table 5.1 are used to illustrate the proposed

method. Case 1 is with a narrower parameter range and Case 2 is with a wider

parameter range. Design of experiments (DOE) [122] method is used as the sampling

method for both training and testing data. As shown in Table 5.1, 7 levels of DOE

are used for defining samples of the training data, i.e., a total of 49 samples of
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Table 5.1: Definition of Training and Testing Data for the Junction Example

Geometrical  
Parameters 

Training Data  
(49 samples) 

Testing Data  
(144 samples) 

Min Max Step Min Max Step 

C
as

e 
1 

Sensitivity 
Variables 

g (mm) 17 23 1 17.25 22.75 0.5 
hc (mm) 1.8 3.0 0.2 1.85 3.05 0.1 
rc (mm) 2.4 3.6 0.2 2.35 3.55 0.1 

tw (mm) 0.88 1.12 0.04 0.89 1.11 0.02
ws (mm) 3 3.48 0.08 3.02 3.46 0.04
ls (mm) 20 20.48 0.08 20.02 20.46 0.04
h (mm) 10 10.48 0.08 10.02 10.46 0.04

C
as

e 
2 

Sensitivity 
Variables 

g (mm) 14 26 2 14.5 25.5 1 
hc (mm) 1.2 3.6 0.4 1.3 3.5 0.2 
rc (mm) 1.8 4.2 0.4 1.9 4.1 0.2 

tw (mm) 0.88 1.12 0.04 0.89 1.11 0.02
ws (mm) 2.4 3.6 0.2 2.45 3.55 0.1 
ls (mm) 19.4 20.6 0.2 19.45 20.55 0.1 
h (mm) 10 11.2 0.2 10.05 11.15 0.1 

training data; while 12 levels of DOE are used for the testing data, i.e., a total of

144 samples of testing data. All the simulations are done on the computers with Intel

Xeon X5680 processor. The frequency range for this junction example is 7 GHz-9

GHz. The NeuroModelerPlus software is used to train the proposed sensitivity-

analysis-based neuro-TF model. Although the overall model for training involved

the original neuro-TF model and adjoint neuro-TF model, the final parametric

model is simple, i.e., the original neuro-TF model.

In both cases, the orders Nk of transfer functions vary from 6 to 8 among differ-

ent samples of geometrical parameters. The comparisons of training/testing errors

in two cases using proposed pole-residue tracking technique with sensitivity infor-
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mation and existing pole-residue tracking technique without sensitivity information

[30] are illustrated in Table 5.2. In Case 1, since the geometrical step sizes be-

tween the training samples are relatively small, both methods obtain the correct

pole splitting, resulting in the data of the pole/residues to be the same among both

techniques for preliminary training of the model. Thus the training and testing

errors are both good using both methods. In Case 2, when the geometrical step

sizes between the training samples are large, part of the pole splitting is incorrect

using the existing pole-residue tracking technique without sensitivity information

[30]. The incorrect pole splitting causes abrupt changes in the data of poles and

residues. That results in a relatively large training and testing error in preliminary

training of the neural networks, thus leading to a relatively large error in the re-

finement training of the overall model. By using the proposed pole-residue tracking

technique with the sensitivity information, we can obtain the correct pole splitting

resulting in the smooth changes of poles and residues with respect to the changes

in geometrical parameters even when the geometrical step sizes are large. Thus a

better modeling accuracy is obtained by using the proposed pole-residue tracking

technique.

For comparison purpose, we also perform the modeling using existing SAANN

technique [14]. This technique uses the data of EM simulation and derivatives to

train a pure neural network (i.e., without transfer function). Table 5.3 illustrates

two cases of comparisons of training and testing errors among the SAANN Model

[14] using fewer data (49 training samples), existing neuro-TF model [30] using

fewer data (49 training samples), existing neuro-TF model using more data (169
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Table 5.2: Comparisons of Different Pole-Residue Tracking Techniques for the Junc-
tion Example

Pole-Residue  
Tracking Technique 

Number of 
Hidden 
Neurons 

ANN 
Training 

Error 

ANN  
Testing  
Error 

Overall 
Model 

Training 
Error 

Overall 
Model  
Testing  
Error 

C
as

e 
1 

Existing Technique  
without Sensitivity 

8 1.923% 2.124% 0.577% 0.612% 

Proposed Technique  
with Sensitivity 

8 1.923% 2.124% 0.577% 0.612% 

C
as

e 
2 

Existing Technique  
without Sensitivity 

10 2.956% 3.245% 1.116% 1.259% 

Existing Technique  
without Sensitivity 

12 2.174% 4.586% 0.658% 1.785% 

Proposed Technique  
with Sensitivity 

10 2.186% 2.265% 0.670% 0.832% 

training samples), and the proposed model using fewer data (49 training samples).

In Case 1, all methods obtain relatively small training and testing errors, because

the geometrical parameters vary within a small range. In Case 2, when the range

of geometrical parameters gets wider, the SAANN model [14] and existing neuro-

TF model trained with fewer training data cannot obtain good testing accuracy

even though they both maintain similarly good training accuracy. For the SAANN

model, many hidden neurons are needed to represent the frequency response for

each sample. The proposed model uses much less hidden neurons because the fre-

quency responses are represented by the transfer function. Thus the nonlinearity of

the SAANN model is much higher than the proposed model. This high nonlinearity

leads to the testing errors of SAANN model to be higher than the proposed model
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when the range of geometrical parameters gets wider. For the existing neuro-TF

model, with large number of training data, the model can be trained to be very

accurate. When the number of data for training becomes less in the same geometri-

cal range, the model will be less accurate. The proposed model is trained with not

only the EM simulation data but also the derivative information, thus the model

accuracy of the proposed model is much better than that of the existing neuro-TF

model when both model are trained with few data samples. Fig. 5.6 shows the

comparisons of the derivatives of the real parts of S11 with respect to the sensitivity

variables g, hc and rc in existing neuro-TF model using fewer and more data, pro-

posed model using fewer data and CST sensitivity analysis for one training sample

x = [18 3.2 3.4 0.84 2.8 19.8 11.2]T (mm). As shown in Fig. 5.6, the proposed

model has more accurate derivative information after training process, which helps

to obtain more accurate testing results.

The comparisons of the outputs of the proposed model, existing neuro-TF model

developed using different size of data and EM data for three different testing ge-

ometrical parameters #1, #2 and #3 are shown in Fig. 5.7. The values of input

geometrical variables for three different testing samples of junctions are shown as

follows.

Test geometrical sample

#1 : x = [25.5 2.7 3.1 0.97 2.95 19.95 10.75]T (mm)

Test geometrical sample

#2 : x = [22.5 3.1 2.5 0.91 2.75 19.95 10.95]T (mm)

Test geometrical sample
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Table 5.3: Comparisons of Different Modeling Methods for the Junction Example

Model Methods 
Number of 

Hidden  
Neurons 

Average 
Training  

Error 

Average 
Testing  
Error 

C
as

e 
1 

SAANN Model Using 49  
Samples of Training Data 

15 0.592% 0.632% 

Existing Neuro-TF Model Using 
49 Samples of Training Data 

8 0.538% 0.673% 

Proposed Model Using 49  
Samples of Training Data 

8 0.577% 0.612% 

C
as

e 
2 

SAANN Model Using 49  
Samples of Training Data 

20 0.792% 2.264% 

Existing Neuro-TF Model Using 
49 Samples of Training Data 

8 0.771% 8.035% 

Existing Neuro-TF Model Using 
169 Samples of Training Data 

15 0.859% 0.962% 

Proposed Model Using 49  
Samples of Training Data 

10 0.670% 0.832% 

#3 : x = [15.5 2.1 3.5 1.01 2.85 19.85 10.35]T (mm)

The three testing samples are not used during training process. The development

cost of the proposed neuro-TF model for this junction example is around 0.82 h,

which consists of data generation cost (49 training samples) and training cost. For

the development of existing neuro-TF model (169 training samples), the cost is

around 2.36 h. As shown in Table 5.3 and Fig. 5.7, to achieve good model accuracy,

fewer training data is needed for the proposed model than that needed for the

existing neuro-TF model.
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Figure 5.6: Comparison of the derivatives of the existing neuro-TF model using
fewer and more data, the proposed model using fewer data and CST EM sensitivity
data for this junction example: (a) derivatives of real parts of S11 with respect to
sensitivity variable g, (b) derivatives of real parts of S11 with respect to sensitivity
variable hc, and (c) derivatives of real parts of S11 with respect to sensitivity vari-
able rc. The derivatives of the proposed sensitivity-analysis-based neuro-TF model
matches with EM sensitivity data from CST simulator much more closely than the
existing method as shown in the figure.
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Figure 5.7: Comparisons of S11 of the existing neuro-TF model using fewer and
more data, the proposed model using fewer data and CST EM data for the junction
example: (a) test geometrical sample #1, (b) test geometrical sample #2, and (c)
test geometrical sample #3. With the same size of data, the proposed model can
obtain a better accuracy than the existing neuro-TF model as shown in the figure.
To achieve good model accuracy, fewer training data is needed for the proposed
model than that needed for the existing neuro-TF model.
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Figure 5.8: The geometrical parameters of the diplexer example and the 3D config-
uration for EM simulation. The development of a parametric model with these six
design variables will be performed.

5.3.2 Parametric Modeling of a Diplexer

This example illustrates the development of pole-residue-based neuro-TF model for

parametric modeling of the EM behavior of a diplexer [14], shown in Fig. 5.8. D1,

D2, D3, D4, D5, and D6 are the offset distances from the end of each microstrip line

to its corresponding fringe.

Fig. 5.9 shows the structure of the proposed sensitivity-analysis-based neuro-TF

model for the diplexer example. This model has seven input variables including six

geometrical parameters and frequency, i.e., [D1 D2 D3 D4 D5 D6 ω]T . The model

has 42 outputs, i.e.,

[RS11 IS11 RS21 IS21 RS31 IS31
dRS11

dD1

dRS11

dD2

dRS11

dD3

dRS11

dD4

dRS11

dD5

dRS11

dD6

· · ·
dIS31

dD6

]T ,
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Figure 5.9: The structure of the proposed sensitivity-analysis-based neuro-TF model
for the diplexer example. Six geometrical parameters [D1 D2 D3 D4 D5 D6] are
used as the input variables of the diplexer model. The outputs of the original
neuro-TF model y are the S-parameters, while the outputs of the adjoint neuro-TF
model dy/dx are the derivatives of S-parameters with respect to the geometrical
parameters.

The model outputs include the real/imaginary part of S11, S21, and S31, and their

derivatives w.r.t six input geometrical variables. Training and testing data are

generated using the CST Studio Suite 2014 software. Every geometrical variable

in this example is considered as sensitivity variable. The sensitivity analysis is

performed by using EM simulator to generate the derivative data of real/imaginary

part of S11, S21, and S31 with respect to six sensitivity variables D1, D2, D3, D4,

D5, and D6.

Two different cases defined in Table 5.4 are used to illustrate the proposed
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Table 5.4: Definition of Training and Testing Data for the Diplexer Example

Geometrical  
Parameters 

Training Data  
(25 samples) 

Testing Data  
(64 samples) 

Min Max Step Min Max Step 

C
as

e 
1 Sensitivity 

Variables 

D1 (mm) 2 10 2 2.5 9.5 1 
D2 (mm) -6 2 2 -5.5 1.5 1 
D3 (mm) -6 2 2 -5.5 1.5 1 
D4 (mm) 2 10 2 2.5 9.5 1 
D5 (mm) -6 2 2 -5.5 1.5 1 
D6 (mm) -6 2 2 -5.5 1.5 1 

C
as

e 
2 Sensitivity 

Variables 

D1 (mm) -4 12 4 -3 11 2 
D2 (mm) -12 4 4 -11 3 2 
D3 (mm) -12 4 4 -11 3 2 
D4 (mm) -4 12 4 -3 11 2 
D5 (mm) -12 4 4 -11 3 2 
D6 (mm) -12 4 4 -11 3 2 

method. Case 1 is with a narrower parameter range and Case 2 is with a wider

parameter range. Table 5.4 shows the definition of training and testing data. DOE

sampling method is used for both training and testing data. As shown in Table 5.4,

5 levels of DOE are used for defining samples of the training data, i.e., a total of 25

samples of training data; while 8 levels of DOE are used for the testing data, i.e., a

total of 64 samples of testing data. The frequency range for this diplexer example

is 1.5 GHz-3.5 GHz. The NeuroModelerPlus software is used for developing the

proposed sensitivity-analysis-based neuro-TF model. After training, the final model

used for design optimization only consists the original neuro-TF model.

In both cases, the orders Nk of transfer functions vary from 16 to 20 among

different samples of geometrical parameters. Table 5.5 illustrates the comparison
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of training and testing errors in two cases using proposed pole-residue tracking

technique with sensitivity information and existing pole-residue tracking technique

without sensitivity information [30]. In Case 1, since the geometrical step sizes

between the training samples are relatively small, both methods obtain the correct

pole splitting, leading to good training and testing results. In Case 2, when the geo-

metrical step sizes between the training samples are large, part of the pole splitting

is incorrect using the existing pole-residue tracking technique without sensitivity

information [30]. This results in a relatively large error in both the preliminary

training of the neural networks and the refinement training of the overall model.

By using the proposed pole-residue tracking technique with the sensitivity infor-

mation, we can obtain a better modeling accuracy even when the geometrical step

sizes are large.

For comparison purpose, we also perform the modeling using existing SAANN

technique [14]. Table 5.6 illustrates two cases of comparisons of training and testing

errors among the SAANN Model using fewer data (25 training samples), existing

neuro-TF model [30] using fewer data (25 training samples), existing neuro-TF

model using more data (64 training samples), and the proposed model using fewer

data (25 training samples). In Case 1, all methods obtain relatively small training

and testing errors, because the geometrical parameters vary within a small range.

In Case 2, when the range of geometrical parameters gets wider, the SAANN model

and existing neuro-TF model trained with fewer training data cannot obtain good

testing accuracy even though they both maintain similarly good training accuracy.

Fig. 5.10 shows the comparisons of the derivatives of the real part of S11 with
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Table 5.5: Comparisons of Different Pole-Residue Tracking Techniques for the
Diplexer Example

Pole-Residue  
Tracking Technique 

Number of 
Hidden 
Neurons 

ANN 
Training 

Error 

ANN  
Testing  
Error 

Overall 
Model 

Training 
Error 

Overall 
Model  
Testing  
Error 

C
as

e 
1 

Original Technique  
without Sensitivity 

12 4.126% 4.425% 0.892% 0.915% 

Proposed Technique  
with Sensitivity 

12 4.126% 4.425% 0.892% 0.915% 

C
as

e 
2 

Original Technique  
without Sensitivity 

12 6.246% 6.235% 1.786% 1.913% 

Original Technique  
without Sensitivity 

15 4.358% 8.325% 1.143% 5.126% 

Proposed Technique  
with Sensitivity 

12 4.425% 4.532% 1.065% 1.254% 

respect to the sensitivity variables D1, D2 and D3 in existing neuro-TF model using

fewer and more data, proposed model using fewer data and CST sensitivity analysis

for one training sample x = [2 −6 −6 2 −6 −6]T (mm). As shown in Fig. 5.10,

the proposed model has more accurate derivative information after training process,

which helps to obtain more accurate testing results.

The comparisons of the outputs of the proposed model, existing neuro-TF model

developed using different size of training data and EM data for three different testing

geometrical parameters #1, #2 and #3 are shown in Fig. 5.11. The values of input

geometrical variables for three different testing samples of diplexers are shown as

follows.

Test geometrical sample
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Table 5.6: Comparisons of Different Modeling Methods for the Diplexer Example

Model Type 
Number of 

Hidden  
Neurons 

Average 
Training  

Error 

Average 
Testing  
Error 

C
as

e 
1 

SAANN Model Using 25  
Samples of Training Data 

30 0.906% 0.924% 

Original Neuro-TF Model Using 
25 Samples of Training Data 

10 0.867% 0.932% 

Proposed Model Using 25  
Samples of Training Data 

12 0.892% 0.915% 

C
as

e 
2 

SAANN Model Using 25  
Samples of Training Data 

36 1.165% 11.564% 

Original Neuro-TF Model Using 
25 Samples of Training Data 

12 1.095% 9.264% 

Original Neuro-TF Model Using 
81 Samples of Training Data 

18 1.135% 1.368% 

Proposed Model Using 25  
Samples of Training Data 

12 1.065% 1.254% 

#1 : x = [−3 −9 −9 1 −5 −3]T (mm)

Test geometrical sample

#2 : x = [−1 −1 1 7 −5 −11]T (mm)

Test geometrical sample

#3 : x = [11 −1 −3 1 −11 −5]T (mm)

The magnitude of S21 and S31 of the proposed model and their comparisons with

EM data for the testing geometrical parameters #1 are shown in Fig. 5.12. From

Fig. 5.11 and Fig. 5.12, because the proposed model is trained very accurately

(error around 1%) using real and imaginary parts of S-parameters, the dB values of

S-parameters for the proposed model and the data can match well when the values

138



(a)

(b)

(c)

Figure 5.10: Comparison of the derivatives of the existing neuro-TF model using
fewer and more data, the proposed model using fewer data and CST EM sensitivity
data for this diplexer example: (a) derivatives of real parts of S11 with respect to
sensitivity variable D1, (b) derivatives of real parts of S11 with respect to sensitivity
variableD2, and (c) derivatives of real parts of S11 with respect to sensitivity variable
D3. The derivatives of the proposed sensitivity-analysis-based neuro-TF model
matches with EM sensitivity data from CST simulator much more closely than the
existing method as shown in the figure.
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(a)

(b)

(c)

Figure 5.11: Comparisons of S11 of the existing neuro-TF model using fewer data
and more data, the proposed model using fewer data and CST EM data: (a) test
geometrical sample #1, (b) test geometrical sample #2, and (c) test geometrical
sample #3 for the diplexer example. With the same size of data, the proposed
model can obtain a better accuracy than the existing neuro-TF model as shown in
the figure. To achieve good model accuracy, fewer training data is needed for the
proposed model than that needed for the existing neuro-TF model.
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Figure 5.12: Comparisons of S21 and S31 (magnitude in decibels) of the trained
proposed neuro-TF model and EM data of test geometrical sample #1 for the
diplexer example.

of S-parameters are above -20 dB. However when the test data are below -20dB,

the dB values of S-parameters for the proposed model begin to differ from the data

as shown in Fig. 5.11 and Fig. 5.12.

The three testing samples are not used during training process. The development

cost of the proposed neuro-TF model for this diplexer example is around 3.56 h,

which consists of data generation cost (25 training samples) and training cost. For

the development of existing neuro-TF model (81 geometrical samples of training

data), the cost is around 7.69 h. As shown in Table 5.6 and Fig. 5.11, to achieve

good model accuracy, fewer training data is needed for the proposed model than

that needed for the existing neuro-TF model.
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Figure 5.13: The geometrical parameters of the microwave cavity filter example and
the 3D configuration for EM simulation. The waveguide enclosure of this structure
is eliminated in the figure in order to indicate the geometrical parameters more
clearly. The development of a parametric model with these seven design variables
will be developed.

5.3.3 Parametric Modeling of a Microwave Cavity Filter

In this example, we illustrate the parametric modeling using the proposed pole-

residue-based neuro-TF model for the EM response of a microwave cavity filter [14],

shown in Fig. 5.13, where Hc1, Hc2, and Hc3 are the heights of the large cylinders

positioned at the cavity centers; Hw1, Hw2, Hw3, and Hw4 are the heights of the

small cylinders between the walls.

Fig. 5.14 shows the structure of proposed model for the microwave cavity filter

example. This model has eight input variables including seven geometrical param-

eters and frequency, i.e., [Hc1 Hc2 Hc3 Hw1 Hw2 Hw3 Hw4 ω]T . The model has 16
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outputs, i.e.,

[RS11 IS11
dRS11

dHc1

dRS11

dHc2

dRS11

dHc3

dRS11

dHw1

dRS11

dHw2

dRS11

dHw3

· · ·
dIS11

dHw4

]T ,

The model outputs include the real/imaginary part of S11, and their derivatives w.r.t

seven input geometrical variables. Training and testing data are generated using

the CST Studio Suite 2014 software. Every geometrical variable in this example

is considered as sensitivity variable. The sensitivity analysis is performed by using

EM simulator to generate the derivative data of real/imaginary part of S11 with

respect to seven sensitivity variables Hc1, Hc2, Hc3, Hw1, Hw2, Hw3, and Hw4.

Two different cases defined in Table 5.7 are used to illustrate the proposed

method. Case 1 is with a narrower parameter range and Case 2 is with a wider

parameter range. Table 5.7 shows the ranges of training and testing data. The

average sensitivities of S-parameters with respect to Hc1, Hc2, and Hc3 obtained by

EM sensitivity analysis are around ten times larger than those for Hw1, Hw2, Hw3,

and Hw4. Thus, the ranges for Hc1, Hc2, and Hc3 are determined to be ten times

smaller than those for Hw1, Hw2, Hw3, and Hw4. Design of experiments (DOE)

method is used as the sampling method for both training and testing data. DOE

sampling method is an orthogonal sampling method which is used for generating

multiple sample points. Orthogonal sampling around the central point enables the

surrogate model to use far fewer sampling points compared to full-grid distribution.

As shown in Table 5.7, 7 levels of DOE are used for defining samples of the training

data, i.e., a total of 49 samples of training data; while 12 levels of DOE are used for
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Figure 5.14: The structure of the proposed sensitivity-analysis-based neuro-TF
model for the microwave cavity filter example. Seven geometrical parameters [Hc1

Hc2 Hc3 Hw1 Hw2 Hw3 Hw4] are used as the input variables of the microwave cavity
filter model. The outputs of the original neuro-TF model y are the S-parameters,
while the outputs of the adjoint neuro-TF model dy/dx are the derivatives of S-
parameters with respect to the geometrical parameters.

the testing data, i.e., a total of 144 samples of testing data. Each training and testing

sample has 101 frequency data. The frequency range for this microwave cavity filter

example is 630 MHz-730 MHz. After the proposed sensitivity-analysis-based neuro-

TF model is developed using NeuroModelerPlus software, the final model used for

design optimization only consists the original neuro-TF model.

In both cases, the orders Nk of transfer functions vary from 12 to 16 among

different samples of geometrical parameters. Table 5.8 illustrates the comparison

of training and testing errors in two cases using proposed pole-residue tracking
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Table 5.7: Definition of Training and Testing Data for the Microwave Cavity Filter
Example

Geometrical  
Parameters 

Training Data  
(49 samples) 

Testing Data  
(144 samples) 

Min Max Step Min Max Step 

C
as

e 
1 Sensitivity 

Variables 

Hc1 (mm) 25.64 26.36 0.12 25.67 26.33 0.06 
Hc2 (mm) 16.64 17.36 0.12 16.67 17.33 0.06 
Hc3 (mm) 23.64 24.36 0.12 23.67 24.33 0.06 
Hw1 (mm) 23.4 30.6 1.2 23.7 30.3 0.6 
Hw2 (mm) 29.4 36.6 1.2 29.7 36.3 0.6 
Hw3 (mm) 23.4 30.6 1.2 23.7 30.3 0.6 
Hw4 (mm) 56.4 63.6 1.2 56.7 63.3 0.6 

C
as

e 
2 Sensitivity 

Variables 

Hc1 (mm) 25.4 26.6 0.2 25.45 26.55 0.1 
Hc2 (mm) 16.4 17.6 0.2 16.45 17.55 0.1 
Hc3 (mm) 23.4 24.6 0.2 23.45 24.55 0.1 
Hw1 (mm) 21 33 2 21.5 32.5 1 
Hw2 (mm) 27 39 2 27.5 38.5 1 
Hw3 (mm) 21 33 2 21.5 32.5 1 
Hw4 (mm) 54 66 2 54.5 65.5 1 

technique with sensitivity information and existing pole-residue tracking technique

without sensitivity information [30]. In Case 1, since the geometrical step sizes

between the training samples are relatively small, both methods obtain the correct

pole splitting, resulting in good training and testing errors for both methods. In

Case 2, when the geometrical step sizes between the training samples are large, part

of the pole splitting is incorrect using the existing pole-residue tracking technique

without sensitivity information [30]. This results in a relatively large error in both

the preliminary training of the neural networks and the refinement training of the

overall model. By using the proposed pole-residue tracking technique with the
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Table 5.8: Comparisons of Different Pole-Residue Tracking Techniques for the Filter
Example

Pole-Residue  
Tracking Technique 

Number of 
Hidden 
Neurons 

ANN 
Training 

Error 

ANN  
Testing  
Error 

Overall 
Model 

Training 
Error 

Overall 
Model  
Testing  
Error 

C
as

e 
1 

Existing Technique  
without Sensitivity 

15 3.916% 4.324% 0.912% 0.973% 

Proposed Technique  
with Sensitivity 

15 3.916% 4.324% 0.912% 0.973% 

C
as

e 
2 

Existing Technique  
without Sensitivity 

15 5.825% 6.568% 2.186% 2.563% 

Existing Technique  
without Sensitivity 

18 4.234% 9.562% 1.456% 3.365% 

Proposed Technique  
with Sensitivity 

15 4.117% 4.986% 1.425% 1.683% 

sensitivity information, we can obtain a better modeling accuracy even when the

geometrical step sizes are large.

For comparison purpose, we also perform the modeling using existing SAANN

technique [14]. Table 5.9 illustrates two cases of comparisons of training and testing

errors among the SAANN Model using fewer data (49 training samples), existing

neuro-TF model [30] using fewer data (49 training samples), existing neuro-TF

model using more data (169 training samples), and the proposed model using fewer

data (49 training samples). In Case 1, all methods obtain relatively small training

and testing errors, because the geometrical parameters vary within a small range.

In Case 2, when the range of geometrical parameters gets wider, the SAANN model

and existing neuro-TF model trained with fewer training data cannot obtain good
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Table 5.9: Comparisons of Different Modeling Methods for the Microwave Cavity
Filter Example

Model Methods 
Number of 

Hidden  
Neurons 

Average 
Training  

Error 

Average 
Testing  
Error 

C
as

e 
1 

SAANN Model Using 49  
Samples of Training Data 

50 0.952% 1.025% 

Existing Neuro-TF Model Using 
49 Samples of Training Data 

12 0.862% 1.124% 

Proposed Model Using 49  
Samples of Training Data 

15 0.912% 0.973% 

C
as

e 
2 

SAANN Model Using 49  
Samples of Training Data 

60 1.475% 15.567% 

Existing Neuro-TF Model Using 
49 Samples of Training Data 

15 1.532% 12.246% 

Existing Neuro-TF Model Using 
169 Samples of Training Data 

20 1.566% 1.912% 

Proposed Model Using 49  
Samples of Training Data 

15 1.425% 1.683% 

testing accuracy even though they both maintain similarly good training accuracy.

Fig. 5.15 shows the comparisons of derivatives of real part of S11 with respect to

sensitivity variables Hc1, Hc2 and Hw1 by existing neuro-TF model using fewer data

and more data, proposed model using fewer data and CST sensitivity analysis for

one training sample x = [25.8 16.8 24.2 33 33 21 56]T (mm). As shown in Fig. 5.15,

the proposed model has more accurate derivative information after training process,

which helps to obtain more accurate testing results.

The comparisons of the outputs of the proposed model, existing neuro-TF model

using different size of training data and EM data for three different testing geomet-
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Figure 5.15: Comparison of the derivatives of the existing neuro-TF model using
fewer and more data, the proposed model using fewer data and CST EM sensitivity
data for this microwave cavity filter example: (a) derivatives of real parts of S11 with
respect to sensitivity variable Hc1, (b) derivatives of real parts of S11 with respect
to sensitivity variable Hc2, and (c) derivatives of real parts of S11 with respect to
sensitivity variable Hw1. The derivatives of the proposed sensitivity-analysis-based
neuro-TF model matches with EM sensitivity data from CST simulator much more
closely than the existing method as shown in the figure.

148



rical parameters #1, #2 and #3 are shown in Fig. 5.16. The values of input

geometrical variables for three different testing samples of microwave cavity filters

are shown as follows.

Test geometrical sample

#1 : x = [25.45 17.15 24.15 28.5 34.5 28.5 61.5]T (mm)

Test geometrical sample

#2 : x = [25.65 16.45 23.45 23.5 31.5 27.5 62.5]T (mm)

Test geometrical sample

#3 : x = [26.45 17.25 24.25 27.5 31.5 23.5 54.5]T (mm)

The magnitude of S21 of the proposed model and its comparison with EM data for

the testing geometrical parameters #2 are shown in Fig. 5.17. Because the proposed

model is trained very accurately (error around 1%) using real and imaginary parts

of S-parameters, the dB values of S-parameters for the proposed model and the data

can match well when the values of S-parameters are above -20 dB.

The three testing samples are not used during training process. As shown in

Table 5.9 and Fig. 5.16, to achieve good model accuracy, fewer training data is

needed for the proposed model than that needed for the existing neuro-TF model.

The development cost of the proposed neuro-TF model for this microwave cavity

filter example is around 8.82 h, which consists of data generation cost (49 training

samples) and training cost. For the development of existing neuro-TF model (169

geometrical samples of training data), the cost is around 23.4 h. Therefore, by re-

ducing the size of training data using derivative information, our proposed technique

can speedup the model training process over the existing technique.
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Figure 5.16: Comparisons of S11 of the existing neuro-TF model using fewer and
more data, the proposed model using fewer data and CST EM data: (a) test geomet-
rical sample #1, (b) test geometrical sample #2, and (c) test geometrical sample #3
for this microwave cavity filter example. With the same size of data, the proposed
model can obtain a better accuracy than the existing neuro-TF model as shown in
the figure. To achieve good model accuracy, fewer training data is needed for the
proposed model than that needed for the existing neuro-TF model.
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Figure 5.17: Comparisons of S21 (magnitude in decibels) of the trained proposed
model and EM data of test geometrical sample #2 for the microwave cavity filter
example.

5.4 Conclusion

In this chapter, a new sensitivity-analysis-based training technique for parametric

neuro-transfer function modeling of microwave components has been proposed. The

proposed model allows fast and accurate evaluation of EM behavior with respect to

changes in geometrical parameters. In the proposed technique, both input-output

response of the modeling problem and the sensitivity analysis information generated

from EM simulators have been used in the model development. New formulations

have been derived for calculating the second order derivatives for training the adjoint

neuro-TF models. We have also proposed new formulations to extract the data
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of pole/residues and their derivatives for the preliminary training of original and

adjoint neural networks, respectively. The proposed technique can obtain accurate

parametric models with less training data, compared to the previous neuro-TF

modeling method. Consequently, fewer training data result in shorter time for

model development using the proposed method. Further, with the same amount

of training data, the proposed method has a better modeling accuracy compared

to the previous method without sensitivity analysis. Once trained, the proposed

models provide accurate and fast prediction of EM responses for high-level design

with geometrical parameters as design variables.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

In this thesis, a parametric modeling of EM behavior of microwave components using

combined neural networks and pole-residue-based transfer functions has been devel-

oped. An advanced pole-residue tracking technique exploiting sensitivity analysis

has been introduced. A further advancement of parametric modeling of microwave

components using adjoint neural networks and pole-residue transfer functions with

EM sensitivity analysis has also been proposed.

This thesis first proposes a new approach to parametric modeling of EM behavior

of microwave components using combined neural networks and pole-residue-based

transfer function. In the proposed method, a novel pole-residue tracking technique

has been developed for pole-residue-based transfer function to deal with the problem

of changing orders when geometrical parameters undergo large variations. With

high dimensions of geometrical parameter space and large geometrical variations,

the model obtained by the proposed method is more accurate and robust than
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that obtained by the existing modeling method using rational transfer function

formulation. The proposed method can also obtain good modeling accuracy even

when the orders of the models are high. Once trained, the pole-residue-based neuro-

TF model developed by the proposed method provides fast and accurate prediction

of the EM responses w.r.t the geometrical variables. The developed pole-residue-

based neuro-TF models can be also used for high-level optimization with geometrical

parameters as design variables.

An advanced pole-residue tracking technique has been proposed to use the sen-

sitivity analysis information to obtain more reliable pole splitting than the existing

pole-residue tracking technique. The proposed technique has taken advantages of

sensitivity information to split one pole into two separate new poles to achieve the

increase of the order of the transfer function and ultimately form transfer functions

of a constant order over the entire region of geometrical parameters. The proposed

technique has addressed the challenges of pole-residue tracking when training data

are limited.

A further advancement has been proposed by utilizing sensitivity analysis into

parametric modeling of microwave components with adjoint neural networks and

pole-residue transfer functions. In the proposed technique, both input-output re-

sponse of the modeling problem and the sensitivity analysis information generated

from EM simulators have been used in the model development. New formulations

have been derived for calculating the second order derivatives for training the ad-

joint neuro-TF models. We have also proposed new formulations to extract the data

of pole/residues and their derivatives for the preliminary training of original and
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adjoint neural networks, respectively. Consequently, fewer training data result in

shorter time for model development using the proposed method. Further, with the

same amount of training data, the proposed method has a better modeling accuracy

compared to the previous method without sensitivity analysis.

6.2 Future Research

Some of the future directions based on the expansion of the proposed parametric

modeling techniques have been identified in this thesis as follows

• One of the future directions is to apply the proposed parametric modeling

technique to the modeling of multi-physics problems. For high performance

microwave design, the consideration of operations in a real world multi-physics

environment is often required. Multi-physics simulations offer comprehensive

solutions capable of performing bi-directional coupled analysis between dif-

ferent physics domain, such as EM, thermal and structural mechanics. The

multi-physics simulation is very computationally expensive because it involves

multiple domains and usually deals with the deformed non-ideal structures.

This problem becomes even more challenging when repetitive simulations of

a given structure are required due to adjustments of the values of design

parameters. By utilizing our proposed technique, we can establish accurate

parametric models to represent the output responses from multi-physics sim-

ulations. The developed parametric model can be thus used in to the high

level circuit and system analysis and design optimizations.
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• Another future direction is to expand the proposed parametric modeling for

producing feature parameters to guide surrogate-based EM optimizations for

the microwave filter design. In each iteration of the surrogate-based EM op-

timization, a parametric model using pole-residue-based neuro-transfer func-

tions is established to represent the EM behaviors. We can extract the poles

out of the parametric model to be considered as a set of feature frequencies to

guide the surrogate optimization in each iteration. We can modify the conven-

tional design objective functions into feature-based objective functions so that

the filter designer can focus on moving the feature frequencies into pass-band

and forcing the surrogate outputs satisfying the design specifications simulta-

neously. Guided with the feature frequencies, EM optimizations have a better

chance of avoiding the local minima and reach optimal EM solutions faster.

• As a further research, the proposed parametric modeling technique can be

also applied to yield estimations and optimizations. Using the proposed tech-

nique, we can develop the surrogate model representing the EM behavior

of the microwave components in a relatively large range. After an accurate

parametric model is developed, we can perform Monte-Carlo analysis to do

the yield estimation using the developed model within the geometrical region.

The developed model can also provide sensitivity information which can be

further formulated into the optimization directions for gradient-based yield

optimizations.

• Another further work is to expand the proposed parametric modeling tech-
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nique addressing parametric modeling problems with large geometrical range.

We can produce a large number of parametric models using the proposed tech-

nique as sub-models to finally form a large range overall model. A specific set

of connection functions can be formulated to smoothly link all the sub-models.

The connection functions need to be developed to obtain the continuity of not

only the outputs but also the first order derivatives with respect to the inputs

of the overall model. Since the overall model has a very large geometrical

range, the design optimization with respect to geometrical parameters as de-

sign variables can be performed in a large neighborhood using the developed

overall model.
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