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Abstract

In atrial fibrillation ablation procedures on-line mea-

surement of catheter position is often displayed to the clin-

ician against a static anatomy from pre-procedure scans.

However the heart is moving due to both contraction and

respiratory motion. Thus both small-scale and large-scale

inaccuracies are introduced into the visualization. As

part of a larger project to improve delivery of ablation,

we are developing parametric models to animate static

three-dimensional pre-procedure anatomical models to in-

clude the dynamics. To make our heart model “beat”

we combine image processing methods with Fourier and

polynomial representations, and combine global and local

smoothing. The result is an efficient parameterization of

the moving surface over both space and time. The steps for

making the heart move due to respiration are only partially

complete. Here we concentrate on registering a sequence

of ungated MR slice sequences. The approach involves

parameterizing motion of curves representing anatomical

landmarks and enforcing consistency in the cross-slice di-

rection.

1. Introduction

In catheter-based fibrillation ablation procedures on-line

measurement of catheter position, e.g. through magneto-

tracking devices, is often displayed to the clinician against

a static anatomy resulting from pre-procedure scans. How-

ever real-time localization of the catheter is in laboratory

rather than anatomical coordinates. Typically a static reg-

istration of a representation of the anatomy during the pro-

cedure to the pre-procedure images is done at the outset,

and then the on-going imaging of catheter position is vi-

sualized against that background. However, the heart is

obviously moving during the procedure, primarily due to

both contraction/dilation and thoracic respiration [1]. As

a result both small-scale (beating) and large-scale (respira-

tory) inaccuracies are introduced into the on-line represen-

tation, which can decrease the clinician’s ability to confi-

dently navigate the anatomy during the procedure.

As a contribution to a larger project on image-based ap-

proaches to atrial fibrillation at the University of Utah, we

have been developing parametric models for use in ani-

mating a static three-dimensional pre-procedure anatom-

ical model to enable representation of the on-going dy-

namics, i.e. to build a dynamic, 4D heart model. The

eventual goal is to be able to update the pre-procedure

model with whatever data is available, including 2D MR

scans, intracavitary echocardiography (ICE), fluoroscopy,

etc. We have divided this project into two steps: building

a 4D parametric model of the beating heart, and building

a 4D parametric model of the heart moving under respira-

tion. We report here on the approach to the first step and

some first steps towards the second. The basis for both

approaches were series of 2D MR scans in controlled set-

tings. However there are some inherent difficulties in ob-

taining adequate data for both modeling scenarios, and we

discuss these concerns below.

The problem of automatic cardiac segmentation has

been extensively investigated. Numerous methods in the

literature rely on previous learning of the shape and ap-

pearance of cardiac structures from training examples

[2–4]. These algorithms can encode higher level knowl-

edge about the appearance and shape of the heart and are

hence can be quite robust. The main concerns related to

these models are data collection and manual segmentation

and registration of the training samples, as this training

process is usually very time consuming. Non-parametric

evolving curves like level sets [5] have also been used for
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segmentation of cardiac volumes. However, level set based

methods are computationally very expensive and the be-

havior of the evolving interface is difficult to control with-

out any shape prior [6, 7]. We note that the well-known

ability of level sets to naturally handle topological changes

is not particularly useful for the application at hand.

2. Methods

In the first part of our work, we propose an efficient

pipeline for the automatic segmentation and tracking of the

epicardium and left ventricle from (respiration-gated) MRI

cine sequences of the heart. Our active contour [8] based

method does not require a model learned from a database.

Compared to other methods to segment cardiac contours,

our method offers the following potential advantages:

1. The heart is quickly localized based on the distinctive

time variance of the heart region. In contrast to other

methods that detect the heart in single images [9, 10], our

method detects the whole heart volume giving spatial con-

sistency to the initialization.

2. Temporal and spatial consistency is jointly enforced in

the segmentation by fitting an m-tensor smoothing spline

to the radial functions of the time-surfaces.

3. Our heart localization method can be easily integrated

in Appearance and Shape Model based approaches to ini-

tialize the position and orientation of the model. Moreover,

methods based on Active Contours and Deformable Mod-

els can benefit from the time-space consistency.

Our overall heart localization and segmentation framework

is outlined in the flow chart in Fig. 1.

Figure 1. The flow chart to model heart beat motion

In the first stage, we roughly localize the heart volume

by finding the bounding ellipsoid that encloses the heart in

all the cardiac phases. In the second stage, with this initial

curve we find the border of the heart by means of energy

minimization. The resulting segmented cardiac volume is

propagated to the next frame and the algorithm is iterated

until the segmentations for all the cardiac phases are ob-

tained. In a final stage, time and space consistency is en-

forced in the planar segmentations by fitting an m-tensor

smoothing spline to all time surfaces in a single optimiza-

tion step.

In the second part of our work, we report on initial

work modeling the motion of the heart under respiration.

We note that it is not straightforward to acquire adequate

MR data for this task, as synchronization between adjacent

slices is not available (at least in our study where we did

not have access to an auxiliary position signal), joint ECG

and respiratory gating is difficult and requires very long

recording times, ECG gating causes overly sparse sam-

pling of the respiratory cycle, and adequate coverage and

sampling to allow imposition of joint models from both

saggital and axial planes is a challenge [11]. We were able

to achieve some success through the use of ungated data

along with a navigator signal which we used to extract res-

piratory phase.

The main steps of the method are:

1. Extract respiratory phase for each image from the nav-

igator signal

2. Find the boundary of the heart in every image

3. Interpolate to a regular sampling of respiratory phase

4. Create an averaged heart at each chosen phase sample

5. Extract respiratory motion as translation and rotation

using the centroids and the averaged hearts

2.1. 4D modeling of the beating heart

2.1.1. Pre-processing and initialization

To filter noise in the MRI slices and remove nearby

vessels we perform a morphological opening followed by

masking with binary image created from the opened im-

age by thresholding. Next we initialize our model of the

heart by looking for pixels with large temporal variance.

Specifically we compute the time variance volume Vσ:

Vσ =
1

T

T∑
t=1

(Vt − Vµ)2 where Vµ =
1

T

T∑
t=1

Vt. (1)

We then binarize Vσ and find the largest connected region.

The threshold is selected so that as many pixels as the heart

volume are preserved. In order to initialize our active con-

tour we find the minimum enclosing ellipsoid by Principal

Component Analysis. This provides an initial estimate of

the volume for the first frame.

2.1.2. Segmentation

For segmentation we evolve an active contour parametrized

with Fourier coefficients. For each slice in the MRI volume

we use the cross-sections of the initialization ellipsoid as

the initial estimates for our active contour. The segmented

volume for the current time frame is used as the initializa-

tion for the next frame. The boundary of the epicardium

is found by moving every point in the curve in the radial
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direction to minimize the energy functional

argminx∈Windoww1

d2u

dx2
− w2〈∇I(x),−→r (θi)〉 − w3u (2)

−w4|r(θi−1) − r(x, θi)|

where x = [x,y]T denotes the image locations in the

search window, u is the image intensity curve in the radial

direction, ∇I(x) is the image gradient found using Sobel

filters in the horizontal and vertical directions, r(x, θi−1)
is the radius of the candidate with respect to the centroid

and r(θi−1) is the radius of the previous candidate mini-

mizer in the curve. To avoid mesh resampling we first re-

sampled the curve every 5 degrees and then, for each point,

chose the location that minimizes Eq. (2).

2.1.3. Enforcing time and space consistency

For each frame we have now obtained a set of planar

contours with cylindrical topology. However the result-

ing surfaces were not smooth and in particular showed

considerable jitter in time. In order to enforce greater

spatio-temporal consistency, we further refined the seg-

mentation by fitting it with an m-tensor smoothing spline

across both 3-space and time in a single optimization step.

We found that this sort of local optimization method was

more suited for the problem at hand than global meth-

ods such as 3D Fourier descriptors. Specifically, we con-

structed a tensor Θ of order 3 from the radii of the time-

space curves preserving the topology. Columns of the ten-

sor were formed by the radial functions of the planar con-

tours in a given time and slice location. Therefore, each

element (R(θ, z, t)) of the tensor Θ was approximated by

R(θ, z, t) = f(θ)g(z)h(t) (3)

where f(θ), g(z), h(t) are uni-variate splines that enforce

consistency in each of the 3 dimensions involved: within

the same contour, across the slices, and in time, respec-

tively. We chose piecewise cubic polynomial functions

with constraint equations f(x) to approximate our points.

The function f(x) minimizes:

p

N∑
j=1

wj |y(j) − f(j)|2 + (1 − p)

∫
|f ′′(x)|2 dx (4)

The choice of p controls a tradeoff between accuracy and

smoothing. Besides this constraint we impose that f(x) is

twice differentiable, f(x) ∈ C2. This gives rise to three

additional equations for each data site. Combining these

equations with equations in (4) we generated a linear sys-

tem Ax = b and solved in a least squares fashion to find

the vector of polynomial coefficients. For a more detailed

explanation on the pipeline to model the heart beat we refer

to [12]

2.2. Modeling the heart under respiration

We model the motion of the heart due to respiration as

rigid body motion, i.e. we retrieve only rotation and trans-

lation. As noted above we used ungated MR sequences

along with a navigator signal. Since the aquisition was un-

synchronized for the different cross-sections of the heart

(i.e. in a given frame, adjacent slices are essentially ran-

domly sampled in terms of respiratory phases) the first step

is to synchronize the data using the navigator signal [13].

The navigator signal measures the position of an anatomi-

cal landmark (the liver or diaphragm) during free breathing

aquisition (Fig 2.2). Automatically extracting the naviga-

tor reflection and normalizing all respiratory cycles to a

common maximum excursion in both directions, we can

assign a normalized phase point to each slice. Sampling

the respiratory cycle at ten equally-spaced phase points,

we associate each the slice with one of those phase sam-

ples. Thus we obtain multiple cross-sections of the heart

at each respiratory phase. Note that the number of times

we observe a given slice of the heart in the same phase de-

pends on the uncontrolled relationship between respiration

and acquisition timing of that slice, and therefore the num-

ber of observations of phases is in general diferent for ev-

ery cross-section. Next we find the heart border for every

Figure 2. Navigator signal on the right, Reconstructed

respiratory cycles on the left

available image, similarly to our work modeling the beat-

ing heart. However, we are limited to 2-D, not volume,

segmentation because we are working with free breathing

acquisition, and some volumes might be incomplete for

a given phase. Grouping these 2D contours according to

their assigned respiratory phase, we obtain samples of ten

volumes, one at each phase sample. Of course each slice

may be at different phase point of the contraction cycle.

Assuming that we have enough samples to smooth out that

higher-frequency motion, we average all the contour sam-

ples of a given phase. The result is ten heart surfaces, one

for each sampled phase point. From these surfaces, ex-

traction of rotation and translation is straightforward. We

measure translation by calculating and then substracting

the centroids of consecutive volumes, and rotation by sim-

ply finding the best match between the model volume and

multiple possible rotations.
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Figure 3. From left to right: Initial ellipsoid localization in

yellow overlapped with the final segmentation, Epi volume

with the LV inside; Segmentation with the long axis cross-

section, LV during end-systole and end-dyastole

Figure 4. Epi and LV surfaces and contours-Result of

the segmentation for different slices 9 and 15 in the vertical

direction. The cardiac phases correspond to mid-systole,

end-systole, mid-dyastole, end-dyastole

3. Results

For the contraction modeling we have conducted exper-

iments on two 4D canine cardiac MRI datasets, each with

12 cardiac phases with 20 Short Axis (SA) cross-sections

per phase. We show the resulting segmented epicardial and

left ventricular surfaces in Figs. 4 and 3. In Fig. 3(c) we

show how the (Epi) surface, in red, and the (LV) surface in

blue, fit the cardiac volume.

For the respiratory modeling, Fig. 5, we show on the

left contours of all slices assigned to a given phase sam-

ple, along with the averaged contour calculated from those

samples. On the right we show the centroid trajectory cal-

culated from the averaged hearts at all phase samples. We

note that the respiratory motion trajectory is reasonable

when compared to the original images, but appears to un-

derestimate the extent of the motion. We hypothesize that

this is due to the limited amount of data, large degree of

averaging, and unmodeled contractile motion.
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