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Abstract  In this paper, we developed a parametric displacement models base on the time that the Internally Displaced 

Persons (IDPs) took to return from IDPs Camps to their ancestral homes in Northern Uganda. The objective is to analyze the 

displaced proportion of the IDPs using suitable time-to-event parametric models. The accelerated failure time (AFT) models 

(Weibull, Exponential and log-logistic) were considered. A retrospective data of seven years study of 590 subjects is 

considered. Maximum likelihood method together with the Davidon-Fletcher- Powell optimization algorithm in MATLAB is 

used in the estimation of the parameters of the models. The estimated displaced proportions of these AFT models are used in 

predicting the displaced proportion of the IDPs at a time t. Weibull and exponential models provided better estimates of the 

displaced proportion of the IDPs due to their good convergence power to four decimal points and predicted the 2027 and 2044 

respectively as the year when the displaced proportion can be approximated to be zero.  

Keywords  Survival Techniques, Parametric Models (Weibull, Exponential and Log-logistic), Displaced Proportion, 

Retrospective Data, Lord Resistance Army (LRA) 

 

1. Introduction 

The underlying foundation of most inferential statistical 

analysis is the concept of probability distribution. An 

understanding of probability distribution is critical in using 

quantitative methods such as hypothesis testing, regression 

analysis, and time-series analysis. The mathematical 

expression that describes the individual probabilities that a 

random variable will take on each of a set of specified values 

is known as its probability density function. In life data 

analysis, the practitioner attempts to make predictions about 

the life of all products in the population by fitting a statistical 

distribution to life data from a representative sample of units. 

The parameterized distribution for the data set can then be 

used to estimate important life characteristics of the product 

such as reliability or probability of failure at a specific time, 

the mean life and the failure rate. 

In this paper, we present the parametric distributions of the 

accelerated failure time models (Weibull, exponential and 

Log-logistic) for the analysis of the time the internally 

displaced persons took to return from IDPs camps to their 

ancestral homes. The paper takes the form of case study in 

which 590 families displaced by the lord resistance army in 

Northern Uganda were studied. The data was previously 

modelled parametrically by [18]to test for the distribution fit  
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in which Weibull regression model showed a superior fit.  

There is already a very wide literature on parametric 

distribution (Weibull, Exponential and Log-logistic) in 

analyzing the time-to-event data, for instance [11], [13], 

[16], and [21]. The Weibull and Exponential regression 

model have been used in medical research in [19] to model 

survival data of CABG patients. On the other hand 

researchers such as: [1], [6], [9], [10], [11] [12], [13] and [14] 

provide literature on parametric regression analysis of 

time-to-event data. The primary advantage of Weibull 

analysis has been stressed out by [1] as the ability to provide 

reasonably accurate failure analysis and failure forecasts 

with extremely small samples and providing a simple and 

useful graphical plot of the failure data. Furthermore, [1] 

maintain that AFT interpretation is usually presented in 

coefficients where Positive coefficient means increasing that 

covariate extends the time until failure which is the opposite 

of the proportional hazard covariate coefficient 

interpretation where positive coefficient increases the hazard, 

therefore decreasing the time until failure. Exponential 

model is a special case of the Weibull distribution model. In 

spite of the wide literature provided on parametric models, 

we feel that there is some important attribute worth 

discussing. First, although there are large literatures on 

application of parametric regression models in estimating 

the time to event, most of the events of interest are always 

negative occurrences such as death from a certain disease, 

failure of a machine parts and above all too much leaning 

toward hard sciences. Furthermore many data sets have 

been consider in the study of such kind but there is no 
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attempt involving the time-to-return of the internally 

displaced persons to their ancestral homes after war which 

is a very important social attribute. In this paper, we use the 

parametric regression models (Weibull, exponential and 

Log-logistic) to predict the time that all the internally 

displaced persons would have returned to their ancestral 

homes after being displaced by the Lord Resistance army 

war in Northern Uganda using a sample of 590 displaced 

families from seven different villages in Otuke district. The 

idea is to estimate the parameters of the distribution of 

interest and used it in the formulation of the displaced 

function which has the same properties as that of a survival 

function in medical research or reliability function in 

engineering research. The displaced function estimates the 

displaced proportions of the IDPs at a given time. 

2. Analysis Techniques 

According to [3], parametric, non-parametric and 

semi-parametric techniques are the three well known 

techniques used for analyzing the time-to-event data, each 

with its own limitation but parametric approach is thought to 

yield better results provided the assumption made in the 

analysis are correct. With Parametric models, the outcome is 

assumed to follow a certain known distribution. There are a 

number of texts that discuss comprehensively parametric 

time-to-event-models such as; [5], [7], [9], [13], [15], [17] 

and [19]. For instance [15], suggests that exponential, 

Weibull, lognormal and gamma distribution are the most 

commonly used parametric models in analyzing 

time-to-event data. 

According to [4], Survival analysis is a phrase used to 

describe the analysis of data in the form of time from a 

well-defined time origin until the occurrence of the particular 

event of interest or the end point of the study. On the other 

hand, [2] defined survival analysis as a class of statistical 

techniques used for studying the occurrence and timing of 

events. They were originally designed for the event of death 

occurrence and hence name survival analysis. The 

techniques is extremely useful for studying many different 

kinds of events in both the social and natural sciences 

research, such as the onset of disease in Biostatistics, 

equipment failures in engineering, earthquakes, automobile 

accidents, stock market crashes, revolutions, job 

terminations, births, marriages, divorces, promotions in job 

places, retirements, contracting Lung cancer due to smoking, 

arrests and many other time to event data. In Biostatistics this 

techniques is often referred to as Clinical trials; in 

engineering the term is referred to Reliability or failure time 

analysis; in econometric it is either duration analysis or 

transition analysis; and in Sociology it is often referred to as 

event history analysis; We therefore apply the technique to 

analyze the time the internally displaced persons took to 

return to their ancestral homes using the sample of seven 

villages and draw inference for the bigger population. The 

study has a leaning toward sevent history analysis. The time 

origin is when the Ugandan Government declared the 

villages safe in 2006 after signing of the truce and formation 

of satellite camps. 

According to [20], time-to-event analysis is frequently 

used with retrospective data in which subjects are asked to 

recall the dates when the events of interest happened to them. 

This was the case employed in this study where subjects 

were asked to recall the year when they returned to their 

ancestral homes and the censored subjects’ information were 

extracted from the record kept by the Local Council 

Chairpersons of the seven villages. Our study therefore 

considered a retrospective data of 590 subjects that were 

previously studied by Okello, Odongo and AbdouKa in [18]. 

The study period was between the years 2007 to 2013. The 

uncensored subjects were those whose return times were 

known and the censored subjects were those whose return 

time is unknown may be because they had not yet returned to 

their ancestral homes by the end of 2013 or had died within 

the study time. This generated a right censored data set. 

Several researches have been conducted using the 

technique of time-to-event analysis for many case studies. 

Although much of the work in this paper pays much attention 

to internally displaced persons return time and prediction of 

the return event, the explored methods of parametric model 

are much more general. They can be applied to any study of 

time-to-event analysis. 

3. Methodology 

3.1. Introduction  

In this paper, the parameters of Weibull, Exponential and 

Log-logistic distribution are estimated based on censored 

data of the IDPs return time to their ancestral homes. The 

uncensored observation under this study were the subjects 

who have resumed their ancestral homes within the 

predetermine study period and the censored subjects are 

those whose time of return are not known. The status of the 

subjects was defined as: 

𝛿𝑖 =  
1      𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ𝑝𝑒𝑟𝑠𝑜𝑛  𝑟𝑒𝑡𝑢𝑛𝑒𝑑 𝑡𝑖𝑚𝑒 𝑖𝑠 𝑘𝑛𝑜𝑤𝑛       

0     𝑖𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ𝑝𝑒𝑟𝑠𝑜𝑛  𝑟𝑒𝑡𝑢𝑛𝑒𝑑 𝑡𝑖𝑚𝑒 𝑖𝑠 𝑢𝑛𝑘𝑛𝑜𝑤𝑛
  

The status contribution to the likelihood function for the 

subject who have returned to their ancestral home would be 

𝑓 𝑡𝑖 ; 𝜃  and for those who have not returned to their 

ancestral home yet would be 𝐷 𝑡𝑖 ; 𝜃  

Lawless in [13] proposed the form of likelihood function 

for the survival model in the presence of censored data. The 

maximum likelihood method works by developing a 

likelihood function based on the available data and finding 

the estimates of parameters of a probability distribution that 

maximizes the likelihood function. The likelihood function 

for all observed and censored Subjects is of the form:  

𝐿 𝑡𝑖 , 𝜃 =   𝑓 𝑡𝑖 , 𝜃  

𝑖∈𝑢

×  𝐷 𝑡𝑖 ;  𝜃 

𝑖∈𝑐
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𝐿 𝑡𝑖 , 𝜃 =   𝑓 𝑡𝑖 , 𝜃  
𝑓𝑡𝑖

𝑛

𝑖=1

  𝐷 𝑡𝑖 ;  𝜃  
𝑐𝑡𝑖

𝑛

𝑖=1

 

where 𝑓𝑡𝑖  are the number of observed subjects until the 

event of interest has happened in the interval 𝑖 and 𝑐𝑡𝑖  are 

the number of censored individuals in the interval 𝑖 each of 

length t, 𝑓 𝑡𝑖 , 𝜃  is probability density function (pdf) in a 

parametric model with displaced function, 𝐷 𝑡𝑖 , 𝜃  and the 

hazard function, ℎ 𝑡𝑖 , 𝜃  with the vector parameter 𝜃  of 

the model. To obtain maximum likelihood estimates of 

parameters of a distribution of interest, we take the negative 

natural logarithm of the Likelihood function. i.e. the 

log-likelihood function 𝑙 𝑡𝑖 , 𝜃 = −𝑙𝑛𝐿 𝑡𝑖 , 𝜃  result into: 

𝑙 𝑡𝑖 , 𝜃 = − 𝑓𝑡𝑖 𝑙𝑛

𝑛

𝑖=1

 𝑓 𝑡𝑖 , 𝜃  −  𝑐𝑡𝑖 𝑙𝑛

𝑛

𝑖=1

 𝐷 𝑡𝑖 , 𝜃   

Since 𝑓 𝑡𝑖 , 𝜃 = ℎ 𝑡𝑖 , 𝜃 × 𝐷 𝑡𝑖 , 𝜃 , then  

𝑙 𝑡𝑖 , 𝜃 = − 𝑓𝑡𝑖 𝑙𝑛

𝑛

𝑖=1

 ℎ 𝑡𝑖 , 𝜃  −   𝑓𝑡𝑖 + 𝑐𝑡𝑖 𝑙𝑛

𝑛

𝑖=1

 𝐷 𝑡𝑖 , 𝜃   

Where, the first summation is for failure and the second 

summation is for all censored individuals. 

Letting  𝑁𝑡𝑖
=  𝑓𝑡𝑖 + 𝑐𝑡𝑖 , the total number of failed and 

censored subjects at time 𝑡𝑖 , of the 𝑖𝑡ℎ  interval then  

𝑙 𝑡𝑖 , 𝜃 = − 𝑓𝑡𝑖 𝑙𝑛

𝑛

𝑖=1

 ℎ 𝑡𝑖 , 𝜃  −  𝑁𝑡𝑖
𝑙𝑛

𝑛

𝑖=1

 𝐷 𝑡𝑖 , 𝜃   

In this study time is partitioned into intervals, which are of 

unit length t starting from zero. Moreover, failures and 

censoring of the subjects occurs in each interval I of equal 

length of time t, i=1,2, …, n 

For the maximum likelihood estimation of the parameters 

of a distribution based on censored data, there is need to find 

out the hazard function and the survival function (Displaced 

function) to be substituted in the log likelihood function and 

hence apply suitable iteration techniques to come out with 

the parameter estimates. 

3.2. Survival (Displaced) Function 

This is the probability that the event of interest has not 

occurred on a subject by time t. for our case, it is the 

probability that an individual displaced has not return to 

his/her ancestral home by time t. mathematically, for the 

parametric regression model, the displaced function is 

defined by  

𝐷 𝑡; 𝜃 =  𝑓 𝑥; 𝜃 𝑑𝑥

∞

𝑡

 

Where; 𝜃  is the vector of the parameters of the 

distribution and 𝑓 𝑥; 𝜃  is the probability density function 

of the distribution under consideration which for the case of 

this study will be Weibull, exponential and log-logistic 

distribution function. 

3.3. Hazard Function 

This is also called the force of mortality in Biostatistics 

and epidemiology especially in clinical trials. It is the 

instantaneous failure rate. For the case of this study it is the 

instantaneous return rate. Mathematically it is defined by  

ℎ 𝑡𝑖 ; 𝜃 =
𝑓 𝑡𝑖 ; 𝜃 

1 − 𝐹 𝑡𝑖 ; 𝜃 
=

𝑓 𝑡𝑖 ; 𝜃 

𝐷 𝑡𝑖 ; 𝜃 
 

𝑃( Eexperiencing the event of interest in the interval 

(𝑡, 𝑡 + 𝛿𝑡)| survived past time, 𝑡) 

3.4. Maximum Likelihood Method 

(MLE) is used in the estimation of the parameters of the 

distribution of interest. The contribution of the subject status 

into the likelihood function is defined by 

𝐿 𝑡𝑖 , 𝛿𝑖 =  
𝑓 𝑡𝑖 ; 𝜃  𝑖𝑓 𝛿𝑖 = 1(𝑢𝑛𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑)

𝐷 𝑡𝑖 ;  𝜃  𝑖𝑓 𝛿𝑖 = 0 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 
  

The contribution of individual I into the likelihood 

function is defined by 

𝐿 𝑡𝑖 , 𝛿𝑖 =   [𝑓(𝑡𝑖 ;  𝜃)]𝛿𝑖 × [𝑆(𝑡𝑖 ;  𝜃)]1−𝛿𝑖  

For the full sample in the entire period of study 

𝐿 𝑡1, … , 𝑡𝑛 ; 𝛿1, … , 𝛿𝑛 =  𝐿 𝑡𝑖 , 𝛿𝑖 

𝑛

𝑖=1

 

𝐿 𝑡𝑖 , 𝛿𝑖 =   𝑓 𝑡𝑖 ; 𝜃  
𝛿𝑖 ×  𝐷 𝑡𝑖 ; 𝜃  

1−𝛿𝑖

𝑛

𝑖=1

 

𝐿 𝑡𝑖 ; 𝛿𝑖 =  [𝑓(𝑡𝑖 , 𝜃)]

𝑖∈𝑢

×  𝐷 𝑡𝑖 ;  𝜃 

𝑖∈𝑐

 

Where  ,𝑖∈𝑢  denote the product over the uncensored 

observation and  ,𝑖∈𝑐  the product over the censored 

observation. 

To estimate the parameters of interest, we take negative 

logarithm of the likelihood function above and by denoting 

𝑙 𝑡𝑖 ; 𝜃 = − ln  (𝐿(𝑡; 𝜃)), then 

𝑙 𝑡𝑖 ; 𝜃 = − ln    𝑓 𝑡𝑖 ; 𝜃  
𝛿𝑖 ×  𝑆 𝑡𝑖 ; 𝜃  

1−𝛿𝑖

𝑛

𝑖=1

  

But 𝑓 𝑡𝑖 ; 𝜃 = ℎ 𝑡𝑖 ; 𝜃 𝑆 𝑡𝑖 ; 𝜃 . Substituting for 𝑓 𝑡𝑖 ; 𝜃  

in the likelihood function, we get 

𝑙 𝑡𝑖 ; 𝜃 = − ln    ℎ 𝑡𝑖 ; 𝜃 𝑆 𝑡𝑖 ; 𝜃  
𝛿𝑖 ×  𝑆 𝑡𝑖 ; 𝜃  

1−𝛿𝑖

𝑛

𝑖=1

  

𝑙 𝑡𝑖 ; 𝜃 = − 𝛿𝑖𝑙𝑛

𝑛

𝑖=1

 ℎ 𝑡𝑖 ; 𝜃 −  𝛿𝑖𝑙𝑛

𝑛

𝑖=1

 𝑆 𝑡𝑖 ; 𝜃 

−  (1 − 𝛿𝑖)𝑙𝑛

𝑛

𝑖=1

𝐷 𝑡𝑖 ; 𝜃  

If the total number of the internally displaced persons 

returning to their ancestral homes at time interval 𝑡𝑖  is 𝑓𝑡𝑖  

and the total censored individuals at time interval 𝑡𝑖  is    
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𝑐𝑡𝑖 , then  

𝑙 𝑡𝑖 ; 𝜃 = − 𝑓𝑡𝑖 𝑙𝑛

𝑘

𝑖=1

 ℎ 𝑡𝑖 ; 𝜃 −  𝑓𝑡𝑖 𝑙𝑛

𝑘

𝑖=1

𝐷 𝑡𝑖 ; 𝜃 

−  𝑐𝑡𝑖 𝑙𝑛

𝑘

𝑖=1

𝐷 𝑡𝑖 ; 𝜃  

𝑙 𝑡𝑖 ; 𝜃 = − 𝑓𝑡𝑖 𝑙𝑛

𝑘

𝑖=1

 ℎ 𝑡𝑖 ; 𝜃 −  (𝑓𝑡𝑖 + 𝑐𝑡𝑖)  𝑙𝑛

𝑘

𝑖=1

𝐷 𝑡𝑖 ; 𝜃  

𝑙 𝑡𝑖 , 𝜃 = − 𝑓𝑡𝑖 𝑙𝑛

𝑛

𝑖=1

 ℎ 𝑡𝑖 , 𝜃  −  𝑁𝑡𝑖 𝑙𝑛

𝑛

𝑖=1

 𝐷 𝑡𝑖 , 𝜃  (1) 

3.5. Application 

3.5.1. Weibull Distribution Model 

The probability distribution function (pdf) of a Weibull 

distribution defined by: 

𝑓 𝑡; 𝜃 =  
𝛽

𝛼
  

𝑡

𝛼
 
𝛽−1

𝑒− 
𝑡
𝛼 

𝛽

 

𝑡 ≥ 0    𝛼 > 0 , 𝑎𝑛𝑑 𝛽 > 0 

Where 𝜃 is the vector of 𝛼the scale parameter, and 𝛽 the 

shape parameter also known as Weibull slope. 
The displaced function (the probability that an IDP has not 

returned to their ancestral homes by time t) for a Weibull 

distribution model is given by 

𝐷(𝑡𝑖 ; 𝜃) = 𝑒− 
𝑡𝑖
𝛼 

𝛽

 

The hazard function of a Weibull distribution model is 

given by: 

ℎ 𝑡𝑖 ; 𝜃 =  
𝛽

𝛼
  

𝑡𝑖
𝛼
 
𝛽−1

 

Replacing values of the displaced and hazard functions of 

Weibull distribution model in equation (1), we get 

𝑙 𝑡; 𝜃 = − 𝐹 𝑙𝑛  
𝛽

𝛼
  

− 𝛽 − 1  𝑓𝑡𝑖 𝑙𝑛  
𝑡𝑖

𝛼
 +𝑘

𝑖=1  𝑁𝑡𝑖
 
𝑡𝑖

𝛼
 
𝛽

𝑘
𝑖=1     (2) 

where, 𝐹 =  𝑓𝑡𝑖
𝑘
𝑖=1  is the total number of returned subjects 

in a given time, k is the maximum time interval and 

𝑁𝑡𝑖
= (𝑓𝑡𝑖 + 𝑐𝑡𝑖) is the total number of failure and censored 

subjects in a given time interval. 

Differentiating (2) with respect to 𝛼 𝑎𝑛𝑑 𝛽  and 

simplifying we get  

𝜕𝑙 (𝑡𝑖 ;𝜃)

𝜕𝛼
= 𝐹  

𝛽

𝛼
 −  

𝛽

𝛼
  𝑁𝑡𝑖  

𝑡𝑖

𝛼
 
𝛽

𝑛
𝑖=1        (3) 

𝜕𝑙 (𝑡𝑖 ;𝜃)

𝜕𝛽
= − 

𝐹

𝛽
 −  𝑓𝑡𝑖 𝑙𝑛  

𝑡𝑖

𝛼
 +𝑛

𝑖=1  𝑁𝑡𝑖
 
𝑡𝑖

𝛼
 
𝛽

𝑛
𝑖=1 𝑙𝑛  

𝑡𝑖

𝛼
  (4) 

By using (2), (3) and (4) in the DFP optimization method, 

we obtain the parameter estimates for which value of the 

likelihood function of the Weibull distribution is maximum. 

MATLAB program for the parameters estimation of the 

Weibull models is developed. 

3.5.2. Exponential Model 

The probability distribution function of an exponentially 

distributed random variable, t with mean 𝜇 is defined by 

𝑓 𝑡𝑖 ;  𝜇 =  
1

𝜇
 𝑒

− 
𝑡𝑖
𝜇  

 𝑡 > 0 & 𝜇 > 0 

With the displaced and the hazard functions defined by 

𝐷(𝑡𝑖 ; 𝜇) = 𝑒
− 

𝑡𝑖
𝜇  

 

And 

ℎ 𝑡𝑖 ; 𝜇 =  
1

𝜇
  

Replacing values of the displaced and hazard functions of 

Exponential distribution model in equation (1), we get 

𝑙 𝑡𝑖 ; 𝜇 = − 𝑓𝑡𝑖 𝑙𝑛

𝑘

𝑖=1

 
1

𝜇
 −  (𝑓𝑡𝑖 + 𝑐𝑡𝑖)  𝑙𝑛

𝑘

𝑖=1

 𝑒
− 

𝑡𝑖
𝜇 

  

Simplifying the equation we get 

𝑙 𝑡𝑖 ; 𝜇 = − 𝐹 𝑙𝑛  
1

𝜇
 +  

1

𝜇
  𝑁𝑡𝑖 ×

𝑘

𝑖=1

𝑡𝑖  

Differentiating with respect to 𝜇, we get 

𝜕𝑙  𝑡𝑖 ;𝜇  

𝜕𝜇
=

𝐹

𝜇
−  

1

𝜇2
  𝑁𝑡𝑖 ×𝑘

𝑖=1 𝑡𝑖         (5) 

Making 𝜇  the subject by equating (5) to zero we get 

𝜇 =
 𝑁𝑡𝑖

×𝑘
𝑖=1 𝑡𝑖

 𝑓𝑡𝑖
𝑘
𝑖=1

                (6) 

Equation (6) is solved analytically to find the value of the 

parameter estimate for which value of the likelihood function 

of the exponential distribution is maximum. 

3.5.3. Log-logistic Distribution 

A random variable t has a log-logistic distribution if the 

logarithm of t has a logistic distribution.  

The probability distribution function (pdf) of a log-logistic 

distribution model is defined by: 

𝑓 𝑡;  𝛾, 𝜎 =
 
𝛾
𝜎
  

𝑡
𝜎
 
𝛾−1

 1 +  
𝑡
𝜎
 
𝛾

 
2 ;    𝑡 > 0, 𝛾 > 0 𝑎𝑛𝑑 𝜎 > 0 

Here,  𝛾  is the shape parameter and 𝜎  is the scale 

parameter. 

The Displaced and the hazard functions of the log-logistic 

distribution function is defined by 

𝐷(𝑡𝑖 ; 𝛾, 𝜎) =
1

1 +  
𝑡𝑖
𝜎
 
𝛾  

And 
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ℎ 𝑡𝑖 ; 𝛾, 𝜎 =
 
𝛾
𝜎
  

𝑡
𝜎
 
𝛾−1

1 +  
𝑡𝑖
𝜎
 
𝛾  

Replacing values of the displaced and hazard functions of 

log-logistic distribution model in equation (1), we get 

𝑙 𝑡𝑖 ; 𝛾,𝜎 = − 𝑓𝑡𝑖 𝑙𝑛

𝑘

𝑖=1

 [
 
𝛾
𝜎  

𝑡𝑖
𝜎 

𝛾−1

1 +  
𝑡𝑖
𝜎 

𝛾 ] −  𝑁𝑡𝑖 𝑙𝑛

𝑘

𝑖=1

 
1

1 +  
𝑡𝑖
𝜎 

𝛾  

Simplifying the expression 

𝑙 𝑡𝑖 ; 𝛾, 𝜎 = − 𝐹 𝑙𝑛  
𝛾

𝜎
 −  𝛾 − 1  𝑓𝑡𝑖 𝑙𝑛

𝑘

𝑖=1

 
𝑡

𝜎
  

+  𝑓𝑡𝑖 𝑙𝑛
𝑘
𝑖=1  1 +  

𝑡

𝜎
 
𝛾
 +  𝑁𝑡𝑖 𝑙𝑛

𝑘
𝑖=1  1 +  

𝑡

𝜎
 
𝛾
   (8) 

Differentiating (8) with respect to 𝛾 and 𝜎  we get 

𝜕𝑙 𝑡𝑖 ; 𝛾, 𝜎 

𝜕𝜎
=  𝐹  

𝛾

𝜎
  −  

𝛾

𝜎
  𝑓𝑡𝑖  

 
𝑡𝑖
𝜎
 
𝛾

1 +  
𝑡𝑖
𝜎
 
𝛾 

𝑘

𝑖=1

 

− 
𝛾

𝜎
  𝑁𝑡𝑖  

 
𝑡𝑖
𝜎
 
𝛾

1+ 
𝑡𝑖
𝜎
 
𝛾 

𝑘
𝑖=1              (9) 

𝜕𝑙 𝑡𝑖 ; 𝛾, 𝜎 

𝜕𝛾
= − 

𝐹

𝛾
 −  𝑓𝑡𝑖 𝑙𝑛

𝑘

𝑖=1

 
𝑡𝑖
𝜎
 +  𝑓𝑡𝑖

𝑘

𝑖=1

 
 
𝑡𝑖
𝜎 

𝛾

𝑙𝑛  
𝛾
𝜎 

1 +  
𝑡𝑖
𝜎
 
𝛾   

+  𝑁𝑡𝑖
𝑘
𝑖=1  

 
𝑡𝑖
𝜎
 
𝛾
𝑙𝑛 

𝛾

𝜎
 

1+ 
𝑡𝑖
𝜎
 
𝛾              (10) 

By using (8), (9) and (10) in the DFP optimization method, 

we find the parameters estimates for which value of the 

likelihood function of the log-logistic models is maximum. 

MATLAB program for the parameters estimation of the 

log-logistic distribution model is developed. 

3.6. Variance-Covariance Estimates 

The asymptotic variance-covariance matrix is obtained by 

inverting the information matrix by elements that are 

negatives of the expected values of the second order 

derivatives of the log-likelihood function. In this paper we 

used the negative log-likelihood instead of the log-likelihood 

and as such we only get the expectation of the second 

derivatives and invert to get the asymptotic variance 

covariance matrix. We approximate the expected values by 

their respective maximum likelihood estimates. 

4. Results, Discussion and Conclusions 

4.1. Result of Estimations 

Equation (2), (3) and (4) are used in the MATLAB DFP 

program to obtain the parameters estimates of the Weibull 

distribution models. Equation (6) can be solved analytically 

to obtain the parameter estimates of the exponential 

distribution model. Equation (8), (9) and (10) are used in the 

MATLAB DFP program to obtain the parameters estimates 

of the log-logistic distribution model. The displaced 

proportions 𝑦 𝐸𝑦 𝑊  and 𝑦 𝐿  of IDP of exponential, weibull 

and log-logistics models respectively are obtained for 

parameter estimates. 𝑦 , the Kaplan-Meier displaced 

proportions of the IDPs return time. The optimal estimates of 

parameters obtained by maximizing the log-likelihood 

function of the AFT models are given below in tables 1, 2 

and 3. 

Equation (3) and (4) are differentiated with respect to 𝛼 

and 𝛽 to obtain the information necessary in formulating the 

information matrix which is in turn used in estimating the 

asymptotic variance covariance estimates of the Weibull 

distribution model. Equation (5) is differentiated with 

respect to 𝜇  to get the second order derivative of the 

exponential negative log-likelihood function necessary in 

computing the variance estimate of the parameter estimate. 

Similarly differentiating equation (9) and (10) with respect to 

𝛾 and 𝜎 we obtain a system of second order derivatives of 

the negative log-likelihood function of the log-logistic 

distribution model that is used in the estimation of the 

asymptotic variance-covariance matrix of the log-logistic 

parameter estimates. 

The estimated values of scale parameter and shape 

parameter for IDP are given in the tables 1, 2 and 3 along 

with their t-ratios. In case of Weibull distribution the 

estimated value of the shape parameter is greater than 1 

which indicates increasing failure rate with time (increasing 

return rate). The positive value of co-variance for the 

Weibull distribution model indicates that the movements of 

𝛼  and 𝛽  parameters are in the same directions. The 

negative value of co-variance for log-logistic distribution 

models of the IDPs indicates that the movements 𝛾 and 𝜎 

are in the opposite direction. 

The estimated values of scale parameter and shape 

parameter for IDPs are all more than zero and are given in 

the tables 1, 2 & 3 along with their t-ratios, indicating that the 

estimates of scale and shape parameters are significant at 5% 

level of significance. 

Table 1.  Estimates of Parameters of Weibull Distribution 

Parameters Estimates t-ratios Gradients 

Scale, 𝛼 3.8628 29.5094 5.6843 × 10−14 

Shape, 𝛽 1.3420 27.8037 8.2414 × 10−5 

Log-Likelihood 1.1190 × 103 

Varance-covarian

ce matrix 
 1.7135 × 10−2 9.2087 × 10−4

9.2087 × 10−4 2.3297 × 10−3  

Table 2.  Estimates of Parameters of Exponential Models 

Parameters Estimates t-ratios Gradient 

Mean, 𝜇 3.7591 4.4883 2.8422 × 10−14 

Log-Likelihood 1.1481 × 103 

variance 2.8605 × 10−2 
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Table 3.  Estimates of Parameters of log-logistic Distribution 

Parameters Estimates t-ratios Gradients 

Shape,  𝛾 2.01766 68.7976 −5.6843 × 10−14 

Scale , 𝜎 2.57182 36.8677 2.1304 × 10−5 

Log-Likelihood 8.4151 × 102 

varance-covaria

nce matrix 
 8.6010 × 10−4 −3.7941 × 10−3

−3.7941 × 10−3     4.8662 × 10−3  

Table 4.  Displaced proportion for Kaplan-Meier, Weibull, exponential and 
Log-logistic regression models 

Time 

(𝑡𝑖) 

Kaplan-Meier 

 𝑦   

Exponential 

 𝑦 𝐸  

Weibull 

 𝑦 𝑊  

Log-logistic 

 𝑦 𝐿  

0 1.0000 1.0000 1.0000 1.0000 

1 0.7169 0.7664 0.8495 0.8706 

2 0.4974 0.5874 0.6614 0.6242 

3 0.3385 0.4502 0.4905 0.4229 

4 0.2757 0.3450 0.3507 0.2909 

5 0.2430 0.2644 0.2432 0.2073 

6 0.1867 0.2027 0.1644 0.1533 

7 0.1369 0.1553 0.1085 0.1171 

The values of estimated displaced proportions of 

internally displaced person from the Weibull, exponential, 

and log-logistic regression models are given belowin table 4 

together with the Kaplan-Meier displaced proportion and the 

corresponding graphs (Displaced proportion curves) in Fig. 

1, 2, 3 and 4. The table shows the displaced proportion 

column based on the lower, point and upper interval. Since 

there is no close form of the Displaced function (survival) for 

a Gamma distribution then it displaced proportion and 

graphs required more sophiscated program which was 

lacking. 

4.2. Discussion 

Accelerated Failure Time model interpretation is usually 

presented in coefficients: Positive coefficient means 

increasing that covariate extends the time until failure which 

is the opposite of the proportional hazard covariate 

coefficient interpretation where positive coefficient 

increases the hazard, therefore decreasing the time until 

failure. 

The estimated value of the shape parameter of the Weibull 

regression model shown in table.1 is more than one which 

implies an increasing rate of return of the IDPs. On the other 

hand, the estimated value of the shape parameter of a 

log-logistic distribution shown in table.3 is more than one 

implying increasing and decreasing return rate of the IDPs. 

While the estimated value of the mean parameter of the 

exponential regression model shown in table.2 implies a 

constant return rate of the IDPs of 0.26602. 

Using the estimated parameters in table.1, then the 

displaced function of the Weibull distribution model is 

defined by 

𝐷(𝑡; 3.8628, 1.3420) = 𝑒
− 

𝑡
3.8628

 
1.3420

 

As 𝑡 → 21, 𝐷(𝑡; 3.8628, 1.3420) → 4.2699 × 10−5 

 

 

Figure 1.  Weibull regression models on Kaplan-Meier plots 
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Figure 2.  Exponential model imposed on Kaplan-Meier plots 

 

Figure 3.  Log-logistic curve imposed on the Kaplan-Meier plots 
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Figure 4.  The three models’ graphical comparision 

This proportion constitute 4.2699 × 10−3% of the study 

population which approximately zero. This implies that we 

can predict the year 2027 as the year when every displaced 

person would have returned to their ancestral homes. This is 

possible when using the Weibull model and assuming other 

factors constant. 

Using the estimated parameter in table.2, then the 

displaced function of the exponential distribution model is 

defined by 

𝐷 𝑡; 3.7591 = 𝑒
− 

𝑡
3.7591

 
 

As 𝑡 → 38, 𝐷(𝑡; 3.7591) → 4.072 × 10−5 

This proportion constitute 4.072 × 10−3% of the study 

population which approximately zero. This implies that we 

can predict the year 2044 as the year when every displaced 

person would have returned to their ancestral homes. This is 

possible when using the exponential model and assuming 

other factors remain constant. 

Using the estimated parameter in table.3, then the 

displaced function of the log-logistic distribution model is 

defined by 

𝐷(𝑡; 𝛾, 𝜎) = 𝐷 𝑡; 2.01766, 2.5718 =
1

1 +  
𝑡

2.5718
 

2.01766  

This equation however has a weak convergence power 

and hence cannot be a good parametric prediction model for 

this data set. This affirms the result obtained by [18] when 

the same data was tested for the distribution fit of the data. It 

however provides good statistical inferences such as the 

mean return time, variance and median return time whenever 

required. 

Fig. 1, 2, 3 and 4 show graphs of the displaced proportion 

of the three Accelerated failure time models imposed on the 

Kaplan-Meier curves of both stairs and smooth plot. 

Fig. 1 shows the estimated displaced proportion of the 

Weibull model plotted together with the Kaplan-Meier stairs 

and smoothed curve. The Weibull model overestimated the 

displaced proportion for the first five years and thereafter 

underestimates. At five years, the estimate is slightly 

accurate. 

Fig.2 shows the estimated displaced proportion of the 

exponential model plotted together with the Kaplan-Meier 

stairs and smoothed curve. The exponential model 

overestimated the displaced proportion throughout the study 

but the deviation decreases as with time.  

Fig.3 shows the estimated displaced proportion of the log 

logistic model plotted together with the Kaplan-Meier stairs 

and smoothed curve. The log-logistic model overestimated 

the displaced proportion for the first four years and thereafter 

underestimates. At four years, the estimate is slightly 

accurate. 

Fig. 4 shows the estimated displaced proportion of all the 

three models plotted together with the Kaplan-Meier 

smoothed curve. The first two and half years the estimated 

displaced proportion of the exponential model provides 

better estimates then the Weibull and the log-logistic models. 

Between the 2
1

2
 and the fourth year, the estimated displaced 

proportion of the log-logistic model provides better 

estimates. Thereafter, the Weibull and exponential models 

became better in estimating the proportion of the displaced 
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person. With time, the Weibull and the exponential models 

seem to provide better estimates of the displaced proportion 

and therefore we can use them to predict fairly the time when 

the displaced proportion is approximately zero. 

4.3. Conclusions 

The values of estimated parameters and their t-ratio are 

shown in Table 1, 2 and 3with the results indicating that the 

values of the parameter estimates for all the three models are 

statistically significant at 5% level of significance. The 

exponential and the Weibull regression models provide 

better estimates of the displaced proportion and can be used 

in the prediction of the displaced proportion at a given time. 

For the IDPs, it can be predicted by the Weibull and 

exponential models that by 2027 and 2044 respectively,  

0.00% of the IDPs would be displaced when computed to 

four decimal points. The log-logistic model has a weak 

convergence rate and cannot be used to predict the maximum 

time that the IDPs take in displacement. This result affirms to 

that in [18] when the same data was tested for the distribution 

fit. The estimated shape parameter of a log-logistic model 

shows that the return rate increases then decreases. This 

reflects the huge return at the beginning when the camps 

were dissolved and slow returns for those who were 

displaced to relatives and friends and not to the camps who 

could return at will when there is sure peace. The estimated 

shape parameter of the Weibull model shows increasing 

return rate. This reflects the increased return after confirming 

sure peace i.e. the more there is sign of improved peace, the 

more IDPs return.  

This result depicts the true picture of the IDPs return time 

to their ancestral homes and can be induced for the entire 

IDPs population. However, concerning the parametric model 

prediction of how long the entire IDPs take to return to their 

ancestral homes there are many factors that can be brought 

into play. Much as the predictions may hold for the 590 

subjects, factors like education level of the family head, the 

family status (single mother, single father or complete family) 

may need consideration in future study for better inferences. 

 

REFERENCES 

[1] Abernathy, R. B. (1998). The New Weibull Handbook. 3rd ed. 
SAE Publications, Warren dale. PA. 

[2] Allison, P.D. (1995). Survival Analysis using SAS; A 
practical Guide Cary, NC: SAS Institute. 

[3] Buis, M.L., (2006), An introduction to Survival Analysis, 
Department of Social research Methodology, Vrije 
Universiteit Amsterdam. 

[4] Collett D. (2003), Modelling survival data in medical 
research, second edition, Chapman and Hall/CRC. 

[5] Cox, D.R. and Oakes, D. (1984). Analysis of Survival Data. 
London: Chapman and Hall, New York. 

[6] Crow, L.H. (1982), "Confidence Interval Procedures for the 
Weibull Process With Applications to Reliability Growth," 
Technometrics, 24(1):67-72. 

[7] Crowder, M.J., Kimber, A.C., Smith, R.L. and Sweeting, T.J. 
(1991). Statistical Analysis of Reliability Data. Chapman Hall, 
London, U.K. 

[8] Ibrahim J.G., Chen M.H., and Sinha D. (2005). Bayesian 
Survival Analysis. Springer series in statistics ISBN 
978-1-4757-3447-8. 

[9] Gross A.J. and Clark V.A. (1975). Survival Distribution: 
Reliability Applications in the Biomedical Sciences Wiley. 

[10] Khan K.H, Saleem M and Mahmud. Z. (2011). Survival 
Proportions of CABG Patients: A New Approch. Volume 3, 
Number 3. 

[11] Klein. P.J and Moeschberger. L.M (1997, 2003). Survival 
Analysis Techniques for Censored and Truncated Data. 

[12] Kleinbaum, D.G. and Klein, M. (2005). Survival analysis: a 
self-learning text, Second Edition, Springer-Verlag 
Publishers, New York, Chapters 4–7, 11. 

[13] Lawless, J.F. (2003), Statistical models and methods for 
lifetime data, second edition, Wiley-Inter-Science, A John 
Wiley & Sons, Inc., Publication, Hoboken, New Jersey. 

[14] Leemis, L.M., (1995). Reliability Probabilistic Model and 
Statistical Methods. 

[15] Lee E.T and Wang J.W. (2003), Statistical methods for 
survival data analysis, 3rd edition, John Wiley & sons, Inc., 
Hoboken, New Jersey. 

[16] Mann, N.R. (1984). Statistical estimation of the parameters of 
the Weibull and Frechet distributions. In statistical extremes 
and applications, (J.Tiago de Oliveira, ed.) 81-89 Dordrecht: 
Reidel. 

[17] Nelson, W. (1982). Applied Life Data Analysis. Newyork: 
Wiley. 

[18] Okello, J.O. Abdou KA, D. and Odongo, L.O., (2014), 
Modelling Internally Displaced Persons'(IDPs) time to 
resuming their ancestral homes after IDPs' camps in Northern 
Uganda using parametric methods, international Journal of 
Science and Research, 3(5), 125-131. 

[19] Saleem M., Mahmud Z., and Khan K. H. (2012) Survival 
Analysis of CABG Patients by Parametric Estimations In 
Modifiable Risk Factors - Hypertension and Diabetes. 
American Journal of Mathematics and Statistics, 2(5): 
120-128. 

[20] Selvin, S. (2008). Survival analysis for epidemiologic and 
medical research. A practical guide, Cambridge University 
Press, New York, USA. 

[21] Smith, L.R. and Naylor, J.C., (1987), A comparison of 
Maximum Likelihood and Bayesian Estimators for a 
three-parameter Weibull distribution function. Appl. Statist. 
1987, 36 (3), 358-369. 

 


