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Parametric Models for Estimating
Wind Turbine Fatigue Loads for
Design
International standards for wind turbine certification depend on finding long-term fati
load distributions that are conservative with respect to the state of knowledge for a g
system. Statistical models of loads for fatigue application are described and demons
using flap and edge blade-bending data from a commercial turbine in complex ter
Distributions of rainflow-counted range data for each ten-minute segment are chara
ized by parameters related to their first three statistical moments (mean, coefficie
variation, and skewness). Quadratic Weibull distribution functions based on these
moments are shown to match the measured load distributions if the non-damaging
amplitude ranges are first eliminated. The moments are mapped to the wind cond
with a two-dimensional regression over ten-minute average wind speed and turbu
intensity. With this mapping, the short-term distribution of ranges is known for any c
bination of average wind speed and turbulence intensity. The long-term distributio
ranges is determined by integrating over the annual distribution of input conditions. F
we study long-term loads derived by integration over wind speed distribution alone, u
standard-specified turbulence levels. Next, we perform this integration over both
speed and turbulence distribution for the example site. Results are compared be
standard-driven and site-driven load estimates. Finally, using statistics based on
regression of the statistical moments over the input conditions, the uncertainty (due
limited data set) in the long-term load distribution is represented by 95% confide
bounds on predicted loads.@DOI: 10.1115/1.1409555#
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Introduction
Design constraints for wind turbine structures fall into eith

extreme load or fatigue categories. In the case of extreme
design drivers, the load estimation problem is limited to findin
single maximum load level against which to assess the struc
strength. For design against fatigue, however, loads must be
fined over all input conditions and then summed over the dis
bution of input conditions weighted by the relative frequency
occurrence. While this might seem to be a more daunting tas
is in many ways quite similar to the extreme load problem, as
be seen by comparing with Fitzwater and Winterstein@1#. In both
cases, the loads must be determined as functions of wind spee~or
other climatic conditions!.

Parametric models define the response, statistically, with
spect to input conditions. Such models fit analytical distribut
functions to the measured or simulated data. The paramete
these distribution functions can be useful in defining the respo
loads as a function of the input conditions. The end result, then
a full statistical definition of the loads over all input conditions

In the most prevalent alternative to parametric modeling,
empirical distribution of loads~i.e., a histogram describing fre
quency of occurrence of the modeled response quantity! is used to
define the turbine response at the conditions of the measure
or simulation. When using simulations, a 10-minute time serie
generated at specified environmental conditions using an aero
tic analysis code. The time series is rainflow-counted and
number of ranges in specified intervals is summarized in hi
grams. The histograms serve as empirical distributions that
taken to be representative of the response of the turbine at t
particular conditions. The full lifetime distribution is then ob
tained by summing the distributions after weighting by the f

Contributed by the Solar Energy Division of the American Society of Mechan
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quency of occurrence of the wind speed associated with e
simulated data segment included in a histogram interval. In
case of measured data, a similar approach has been describ
McCoy et al. @2#, but with an innovative weighting scheme t
account for the irregular input conditions of field measuremen

The empirical approach uses only the measured or simul
data without any fitting of distributions or extrapolation to high
values that would be seen if more data were obtained. One o
disadvantages of using a purely empirical approach is, theref
that the loading distribution may not be representative. Moreo
the empirical model does not provide any information about
uncertainty in the relationship between estimated loads base
such a model and the true long-term load spectra; the statis
uncertainty in the loads due to limited data is almost impossible
characterize.

With regard to uncertainties in loads and how they might
dealt with in design, one might expect that these uncertain
could be covered by the use of standard specifications of cha
teristic loads~derived from a specified high turbulence level! and
safety factors. However, current standard load definitions
safety factors that do not depend on the relative uncertainty in
load estimates. Either the margins are larger than they need t
when load estimates are reasonably well established~i.e., exhibit
low uncertainty!, or they fail to cover the uncertainty when loa
estimates are based on limited data~i.e., large uncertainty cases!.

Parametric load distribution models offer significant advanta
over empirical models; they provide a means to 1! extrapolate to
higher, less frequent load levels; 2! map the response to the inpu
conditions; and 3! calculate load uncertainty. For example, Rono
et al. @3# have published a complete analysis of the uncertainty
a wind turbine blade fatigue life calculation. They used a param
ric definition of the fatigue loads, matching the first three m
ments of the wind turbine cyclic loading distribution to a qu
dratic ~transformed by a squaring operation! Weibull distribution.

Veers and Winterstein@4# described a parametric approach qu
similar to that employed by Ronold et al.@3# that can be used with
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either simulations or measurements, and have shown how it
be used in an uncertainty evaluation. Although Ref.@4# describes
how to use the statistical model to estimate the complete l
spectrum, it does not indicate how these models compare with
design standards@5#. It is critical that the load distributions gen
erated by any statistical methodology be adaptable for use in
isting design standards. Moreover, it is arguably even more
portant that the load model provide insight into how the des
standards might be improved in future revisions. The standa
should require an accurate reflection of the load distribution w
sufficient conservatism to cover the uncertainties caused by
limited duration of the sample, whether based on simulation
field measurements. Only then can design margins be trimme
the point of least cost while still maintaining sufficient margins
keep reliability levels high.

The approach to load modeling is not uniform across the w
community by any measure. This lack of commonality in a
proach was reflected in the working group that produced IE
Mechanical Load Measurement Technical Specification@6#. No
consensus could be obtained on how to use measured loa
either create or substantiate a fatigue load spectrum at the co
tions specified in the Safety Standard@5#. All that is offered are
several examples of differing approaches in an annex of the sp
fications@6#.

Here, we present a methodology for using measured or si
lated loads to produce a long-term fatigue-load spectrum at sp
fied environmental conditions and at desired confidence levels
illustrate, example measurements of the two blade-root mom
~flap and edge! from a commercial turbine in complex terrain a
used. The measurements consist of samples of 10-minute d
tion, a measurement duration accepted as the wind industry s
dard. The 10-minute distributions of rainflow ranges are mode
by a quadratic Weibull distribution function based on three sta
tical moments of the ranges~mean, coefficient of variation, an
skewness!. The moments are mapped to the wind conditions b
two-dimensional regression over 10-minute average wind sp
and turbulence intensity. Thus, theshort-term distribution of
ranges may be predicted for any combination of average w
speed and turbulence intensity. Thelong-term distribution of
ranges is, then, easily obtained by integrating over the an
distribution of input conditions. Results are compared betw
standard-driven and site-driven load estimates. Finally, using
tistics based on the regression of the statistical moments ove
input conditions, the uncertainty~due to the limited data set! in the
long-term load distribution is represented by 95% confide
bounds on predicted loads.

IEC Load Cases
The loads specified by IEC 61400-1 Wind Turbine Genera

Safety Requirements for design must be defined for a spec
combination of mean wind speed and turbulence intensity kno
as the Normal Turbulence Model@5#. The standard provides a
empirical expression for the standard deviation of the ten-min
wind speed,s1 , in terms of the hub-height wind speed,Vhub , and
two parameters,I 15 anda.

s15I 15~15m/s1aVhub!/~a11! (1)

Equation~1! is based on wind speed standard deviation data g
ered from around the world and aggregated into a common
set. The parameterVhub is the independent variable and Eq.~1!
determines appropriate turbulence levels associated with it
specified site classes. The equation was created to be ‘‘bro
representative of sites with reasonable international marketing
terest,’’ @7# and does not represent any single site.s1 is intended
to represent acharacteristic valueof wind-speed standard devia
tion. Certification guidelines are provided for high~A! and mod-
erate~B! turbulence sites.I 15 defines the characteristic value o
the turbulence intensity at an average wind speed of 15 m/s, aa
Journal of Solar Energy Engineering
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is a slope parameter whens1 is plotted versus hub-height wind
speed. The values of these parameters for each category are s
in Table 1.

The Category B moderate turbulence specification is inten
to roughly envelope~i.e., be higher than! the mean plus one sigm
level of turbulence for all the collected data above 15 m/s. Si
larly, Category A envelopes all collected values of turbulence
tensity ~with the exception of one southern California site! for
mean wind speeds above 15 m/s and is above the overall m
plus two sigma level@7#. Clearly, the IEC Normal Turbulence
Model is intended to be conservative for all but the most turbul
sites.

It is a relatively straightforward matter to create a loading d
tribution that meets the standard criteria when using an aeroel
simulation code. Input winds can be generated for any comb
tion of wind speed and turbulence intensity. Representative lo
ings can, in theory, be generated by simulating repeatedly u
sufficient data are produced to drive the uncertainty to an a
trarily small level. Practically, however, it would be beneficial
generate a loading distribution with small, or at least known,
certainty from a smaller data set. This is where the parame
approach provides significant value. By means of regression
load statistics~e.g., moments! over the entire range of wind
speeds and turbulence levels, the uncertainty in the values o
parameters defining the short-term distributions at any spec
turbulence condition can be estimated.

In the case of measured loads, it may be simply impossible
gather data at the specified turbulence conditions because o
limitations of the test site. In that case, the parametric appro
provides a method to interpolate to a specified turbulence le
using all of the data collected~thus adding to the confidence of th
interpolation!, or to extrapolate beyond the limits of the measu
ments. In either case, the parametric approach simplifies the
eration of fatigue loads to Standard specifications.

Example Data Set
An example data set taken from the copious measuremen

the MOUNTURB program@8# is used to illustrate the parametri
modeling process. The data are comprised of 101 10-min
samples of rainflow-counted flap-wise and edge-wise bend
moment ranges at the blade root. The test turbine is a WINC
110XT, a 110kW stall-regulated machine operated by CRES~the
Center for Renewable Energy Systems, Pikermi, Greece! at their
Lavrio test site. The terrain is characterized as complex.

The original time series of the loads and winds were not av
able for further analysis; thus, only the rainflow-counted rang
were employed. The number of cycle counts was tallied in 50 b
ranging from zero to the maximum range in each sample. A sin
10-minute sample is categorized by the mean wind speed and
raw turbulence intensity at hub height. The average wind spe
are limited to the range between 15 and 19 m/s and thus re
response in high wind operation. Turbulence intensities cove
wide range of operating conditions as can be seen in Fig. 1.
measured loads are summarized by frequency of occurrenc
Fig. 2(a) for flap moment ranges and in Fig. 2(c) for edge mo-
ment. Plots showing exceedance counts for specified flap and
loads are shown in Figs. 2(b) and 2(d) respectively. It is clear
that the edgewise data with two peaks in the frequency of oc
rence plots appear to follow a mixed distribution of some type d
to a strong gravitational load with turbulence-driven response

Table 1 Parameters for IEC turbulence categories

Category
A

~High!
B

~Moderate!

I 15 0.18 0.16
a 2 3
NOVEMBER 2001, Vol. 123 Õ 347
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perimposed. The flapwise data also, although in a less obv
manner, follow a distribution with contributions from small am
plitude noise and larger amplitude turbulence response. These
tribution effects will be dealt with in the following section.

Short-Term Analysis
The FITS@9# software for fitting probability distribution model

to empirical data was used to analyze each 10-minute sam
FITS calculates the central moments of the data and estimate

Fig. 1 Wind speed and turbulence intensity values for the 101
10-minute data samples
348 Õ Vol. 123, NOVEMBER 2001
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best fit distribution model to match a user-specified set of m
ments~e.g., the user can request a distribution model fit based
two moments or one based on three moments!. FITS is, therefore,
a tool for examining the fit of a probability model to the sho
term response, conditional on wind speed and turbulence lev

For purposes of the present discussion, the first three mom
m i , (i 51,2,3) of the rainflow-range amplitudes,r , are defined
here as:

m15E@r #5 r̄ , (2)

m25
s r

r̄
; s r

25E@~r 2 r̄ !2#, (3)

m35
E@~r 2 r̄ !3#

s r
3 , (4)

whereE@•# is the expectation~or averaging! operator. The first
moment is the mean or average range, a measure of centra
dency. The second moment is the Coefficient of Variation~COV!,
which is the standard deviation divided by the mean, a measur
the dispersion or spread in the distribution. The third momen
the coefficient of skewness, which provides information on the
behavior of the distribution. Load range data are often well fit
a Weibull distribution. Here, a slight distortion of the Weibu
distribution ~referred to as thequadratic Weibull! is used to ex-
actly match the first three statistical moments@10,11#.

To illustrate the fit of the quadratic Weibull distribution to
ten-minutes sample, one of the 101 samples shown in Fig.
studied. This data sample is taken from the middle of the m
sured wind conditions;V517 m/s andI 50.18. The data are plot
Fig. 2 „a… Histogram of flap-wise bending moment ranges for 101 10-minute data sets; „b… cumulative counts of flap-wise bending
moment ranges for 101 10-minute data sets; „c… Histogram of edge-wise bending moment ranges for 101 10-minute data sets; and
„d… Cumulative counts of edge-wise bending moments ranges for 101 10-minute data sets
Transactions of the ASME
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ted on a Weibull scale for the flap loads in Fig. 3 and for the ed
loads in Fig. 4. The vertical scale is transformed from the Cum
lative Distribution Function~CDF! as ~-ln~1-CDF!! so that a
Weibull distribution will be a straight line on a log-log plot.~Re-
call that the CDF is the complement of the traditional exceeda
diagram; exceedance51-CDF.! A similarly transformed CDF for
the quadratic Weibull distribution will appear as a second-or
~i.e., quadratic! curve on such a log-log plot.

Figures 3(a) and 4(a) show attempts to fit the entire flap an
edge data with quadratic Weibull models. As seen in Fig. 3a)
and especially Fig. 4(a), the data have a kinked appearan

Fig. 3 Quadratic Weibull model fits to data on flap-bending
moment ranges „VÄ17.0 mÕs, IÄ0.18…: „a… Weibull scale plot;
„b… Weibull scale plot „truncation at 11.5 kN-m …; „c… Exceedance
plot format „truncation at 11.5 kN-m …
Journal of Solar Energy Engineering
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which the smooth probability distribution, in spite of the quadra
distortion, can not match. Closer examination of the data rev
that the kink is due to a very large number of cycles at relativ
low amplitudes.

The proliferation of small amplitude cycles seen in Fig. 2 pr
duces a distribution difficult to duplicate with a simple analytic
form, but these small cycles produce relatively little damage.
truncating the loads at a threshold, the kink in the data can
eliminated without significantly reducing the damage. In the ed
case, there are obviously a great number of cycles of sma
amplitude than the dominant gravity load at about 32 kN-m. T

Fig. 4 Quadratic Weibull model fits to data on edge-bending
moment ranges „VÄ17.0 mÕs, IÄ0.18…: „a… Weibull scale plot;
„b… Weibull scale plot „truncation at 32.0 kN-m …; and „c… Exceed-
ance plot format „truncation at 32.0 kN-m …
NOVEMBER 2001, Vol. 123 Õ 349
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flap loads have a less distinctive kink at around 10-13 kN-m~11.5
kN-m was used as the filtering threshold!. Figures 3(b) and 4(b)
are similar to Figs. 3(a) and 4(a), but include only a subset o
the data and can be thought of as applying ashift to all loads that
effectively discards the smallest cycles. Clearly, the fits of
quadratic Weibull are improved dramatically. Thus, the short-te
data are well modeled by a quadratic Weibull distribution th
preserves the first three central moments of the truncated rain
ranges.

Figures 3(c) and 4(c) show the same data as do Figs. 3(b) and
4(b), but with the axes in the more common exceedance
format. These plots are included to reorient the reader back to
original summaries of the data shown in Fig. 2. They also serv
illustrate how the analytical distribution functions may be used
extrapolate to less frequent, higher amplitude loads.

The low-amplitude cycles~that make distribution fits difficult
as described in the preceding! can only be discarded if they pro
duce an insignificant amount of damage. Damage is assumed
proportional toRb for stress rangeR and for fatigue exponentb;
accordingly, we study the relative amount of damage due to tr
cated load ranges versus that due to the entire load data set
damage unaccounted for due to the truncation of rainflow ra
data at 11.5 kN-m for the flap loads is represented in Fig. 5(a),
and due to a truncation at 32 kN-m for the edge loads in F
5(b). All 101 ten-minute data segments are represented in F
5(a) and 5(b).

Lost damage is plotted for three fatigue exponents,b, repre-
senting typical values of wind turbine materials ranging fromb
53 for welded steel up tob59, more characteristic of fiberglas
composites. In no case does the truncation remove more that

Fig. 5 Effect on damage estimation of shift in blade bending
moment range data: „a… Flap-wise bending; and „b… Edge-wise
bending
350 Õ Vol. 123, NOVEMBER 2001
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of the damage, and that only whenb53. In almost all cases for
the higherb values, the lost damage is less than 3%. Asb be-
comes larger, the truncation becomes irrelevant and the prob
begins to resemble an extremes problem. In both flap and e
bending cases, over 80% of the rainflow-counted ranges are
moved by truncating the data sets. Our findings that discardin
much of the data does not lead to grossly unconservative estim
of damage is not unexpected since it has long been known
eliminating most of the small amplitude cycles has a negligi
effect on damage@12#.

Regression Analysis
Because a good match can be obtained to the short-term d

bution of rainflow ranges given the first three moments and a fi
data truncation, it is sufficient to know the moments over all t
operating conditions in order to fully define the turbine fatig
loading. Regression of the moments over 10-minute average w
speed and turbulence intensity can achieve the desired resul
assist in understanding the loading dependence on and sensi
to both turbulence and wind speed. Results from a regres
analysis can also provide information on the uncertainty of
loads.

The moments presented in the following figures,m2 and m3 ,
describe the COV and skewness, respectively, of theshiftedrange
r 85r 2r t . More precisely, by eliminating all ranges below th
truncation levelr t , we obtain the shifted valuesr 85r 2r t of the
remaining ranges and consider models based on statistics or 8.
This is done to conform with the quadratic Weibull model, whi
generally assigns probability to all outcomesr 8.0. In the case of
the second moment this results in a slightly different expressi

m25
s r 8
r̄ 8

5
s r

r̄ 2r t
. (5)

The mean value,m1 , presented is still taken to be the absolu
mean, r̄ , i.e., the mean~with respect to zero! of the ranges re-
tained after eliminating the small-amplitude cycles. Note also t
m3 is unaffected by the shift.

As in Ref.@4#, the first three moments~m i , i 51-3! are fitted to
a power law function of wind speed,V, and turbulence intensity
I .

m i5ai S V

Vre f
D biS I

I re f
D ci

(6)

The reference wind speed,Vre f , and reference turbulence inten
sity, I re f , are determined from the geometric mean values of
data @4#. For the Lavrio data set,Vre f517.1 m/s and I re f
50.145. The calculated regression coefficients are shown in T
2.

The regression results for the flap bending moments are sh
in Fig. 6 and for the edge bending moments in Fig. 7. Mean, CO
and skewness are plotted in the parts (a), (b), and (c), respec-
tively, of the figures. In all cases, the regression line uses
reference value for turbulence intensity. The circles correspon

Table 2 Coefficients from regression analysis

Coefficient Flap Edge

Mean a1 21.49 40.02
b1 0.808 0.359
c1 0.202 0.039

COV a2 0.722 0.635
b2 0.031 20.573
c2 0.080 0.063

Skewness a3 0.963 0.980
b3 21.260 20.468
c3 0.033 0.132

Reference values:Vre f517.1 m/s;I re f50.145
Transactions of the ASME
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the measured data from the 101 samples. The solid sym
~squares! show the regression prediction using the measured w
speed and turbulence intensity for each ten-minute data se
large spread in solid symbols about the regression line indicat
sizeable dependence on turbulence level~e.g., Fig. 6(a)’s mean
flap range! while a small variation in the solid symbols indicate
that the turbulence has little effect on that particular moment~e.g.,
Fig. 6(c)’s flap skewness!. This sensitivity can also be inferre
from the magnitude of theci coefficients in Table 2. The smalle
the value ofci , the less the importance ofI in the estimate of the
i th moment.

Table 3 summarizes the regression uncertainties in terms o
widely usedR2 and t statistics. A highR2 value, approaching

Fig. 6 Regression results for flap-wise bending moment
range: „a… Mean; „b… Coefficient of variation „COV…; and „c… Co-
efficient of skewness
Journal of Solar Energy Engineering
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the

unity, indicates that a large percentage of the data variatio
explained by the regression. In contrast, a lowR2 value suggests
the presence of other influences, not included in the regres
model, that induce the scatter in the data. Note that the goal
is not to predict the moment statistics in a single 10-minute h
tory, but rather the long-run average of such 10-minute sam
over the entire turbine lifetime.

The t statistic, which is the estimated coefficient divided by t
standard deviation of the estimate, indicates whether a partic
coefficient is statistically significant. At value less than about two
would indicate that the coefficient is not significantly differe
from zero at about the 95% confidence level. Since the lead
coefficients,ai , are estimates of the moments at the referen
conditions, they are always significantly different from zero, ant

Fig. 7 Regression results of edge-wise bending moment
range: „a… Mean; „b… Coefficient of variation „COV…; and „c… Co-
efficient of skewness
NOVEMBER 2001, Vol. 123 Õ 351



e

l
,

i

o
e

s
u
b

r

o

n

t

s
n

t

s
n

di-

l

d,
ate
y
cts
s

he
nce

tur-
d by

o

is not reported for them. However, thet values ofbi andci indi-
cate whether any functional variation with respect to wind sp
or turbulence intensity, respectively, is supported by the data.

Examination of Tables 2 and 3 suggests that the mean
range is strongly related to both wind speed and turbulence
though the relation to turbulence has small exponents~0.202 and
0.039!. The only higher moment relationships that have hight
statistics are the edge COV relation to wind speed and the
skewness relation to wind speed. The overall low exponents at
statistics for the higher moments indicate that the distribut
shapes are relatively constant over all input conditions. The va
tion seen in Figs. 6 and 7 beyond that indicated by the s
symbols is sample-to-sample variation not indicative of a syst
atic relationship with the independent variables,V and I . Part of
this remaining variation will be irreducible, a natural outcome
random processes, but some could possibly be reduced with
gression over better turbulence descriptors than the simple tu
lence intensity.

The Lavrio data set used in this example is limited to a range
wind speeds from 15 to 19 m/s. The long-term analysis in the n
section will, for example purposes only, assume the regres
trends found in high winds apply to all wind speeds. In an act
application, the data from a particular turbine will need to
examined over the entire range of damaging wind speeds. It m
be amenable to regression fits that run all the way from cut-in
cut-out. More likely, the wind speed range will have to be pa
tioned into divisions over which the response moments are w
behaved enough to be fit with simple regression. For example,
likely that the response will have different characteristics ab
and below rated wind speed. In that case, the analysis prese
here would have to be repeated for each wind-speed division
fore proceeding with the long-term analysis in the next section
may also be the case that the response in low winds has an i
nificant contribution to the fatigue damage and the analysis
safely deal with only high wind response. The individual applic
tion will determine the constraints.

Long-Term Analysis
The long-term distribution of fatigue loads is obtained by in

grating the short-term distributions~for loads conditional on wind
conditions! over the specified distribution of wind condition
Current IEC standards specify a Rayleigh distribution of wi
speed with the annual average depending on class. Class I
have a 10 m/s average and Class II sites have a 8.5 m/s ave
Wind-speed classes defined asSpecialare also allowed with con-
ditions that may be defined by the designer. The turbulence in
sity is a deterministic function of wind speed,I (V), given by Eq.
~1!. A lifetime load distribution must sum all the short-term di
tributions at each wind speed and associated turbulence inte
weighting them by the annual wind speed distribution. This can
written as

Table 3 Regression parameter summary

Parameter Flap Edge

R2-Mean,m1 0.51 0.76
a1 ~s! 0.108 0.050
b1 ~s, t statistic! ~0.081,9.9! ~0.020,17.5!
c1 ~s, t statistic! ~0.032,6.4! ~0.008,4.9!
R2-COV, m2 0.05 0.43
a2 ~s! 0.003 0.003
b2 ~s, t statistic! ~0.076,0.3! ~0.080,7.1!
c2 ~s, t statistic! ~0.030,2.7! ~0.031,2.0!
R2-Skewness,m3 0.17 0.05
a3 ~s! 0.018 0.016
b3 ~s, t statistic! ~0.301,4.2! ~0.266,1.8!
c3 ~s, t statistic! ~0.117,2.8! ~0.104,1.3!

Avg. Cycle Rate 1.75 Hz 1.38 Hz
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F~r !5E F~r uV,I ~V!! f ~V!dV, (7)

whereF(r ) is the long-term distribution of stress ranges,r , and
F(r uV,I (V)) is the short-term distribution of stress ranges con
tional on the ten-minute average wind speed,V, and the specified
turbulence intensity,I (V). f (V) is the wind speed probability
density function~PDF!. The integration is carried out over al
damaging wind speeds. The distribution functions ofr can be
either the CDF or the exceedence~1-CDF!. However, the integra-
tion must be over the probability density function for wind spee
f (V). For this and many other wind load data sets, cycle r
differences for differentV and I values are small and are usuall
ignored. However, one can explicitly account for cycle rate effe
for specifiedV andI levels in the long-term load distribution as i
shown by Haver@13# for loads on offshore structures.

Examples of the short-term distribution used in Eq.~7! are
shown in Fig. 8 for a ten-minute average wind speed,V, equal to
17 m/s and for three different turbulence intensity levels—t
reference turbulence intensity for the data set and the turbule
levels for IEC Classes A and B.

Any environmental conditions can be used with Eq.~7! once
the response moments have been defined with respect to the
bulence levels and wind speeds. This has been accomplishe
the regression of the moments overV and I and by determining
the short-term distributions,F(r uV,I ), from the moments. As ex-
amples we will calculate the long-term distributions for tw
standard-driven and two site-driven environments.

Fig. 8 Distribution of bending moment ranges conditional on
wind speed and turbulence intensity: „a… Flap-wise bending;
and „b… Edge-wise bending
Transactions of the ASME
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Figures 9(a) and 9(b) show the long-term distributions of fla
and edge loads respectively for the IEC Class I wind speed di
bution~Rayleigh 10 m/s! and for both turbulence Categories A an
B. Both of these standard environments define the turbulence l
as a function of wind speed by Eq.~1!.

The specification of a fixed turbulence intensity functiona
related to the wind speed is somewhat artificial; measurem
indicate that the turbulence intensity varies over a range of va
for each ten-minute sample~see Fig. 1!. A more realistic represen
tation than Eq. 7 for the long-term distribution might be to inclu
turbulence intensity as a random variable by integrating over b
wind speed and turbulence intensity as follows:

F~r !5E E F~r uV,I ! f ~V,I !dIdV (8)

Figures 9(a) and 9(b) show the long-term flap and edge distr
butions derived by integrating over both wind speed and tur
lence. The wind speed is a 10 m/s-average Rayleigh distribu
as prescribed for IEC Class I sites. The turbulence is assume
be normally distributed with mean,Ī , defined byĪ >2.5/V, and
standard deviation equal to 0.025, based on a best fit to the da
turbulence vs. wind speed shown in Fig. 10.

Also plotted in Fig. 9 is the result of assuming the turbulence
the Lavrio site is defined by the average value at each wind sp
~the solid line in Fig. 10!. This simpler assumption allows the us
of Eq. ~7!. The comparison indicates that the integration over
turbulence levels, which is the most realistic reflection of the m
surements, produces a much lower load spectrum in the ra
plotted. The simplified alternative, i.e., fixing the turbulence at

Fig. 9 Long-term distribution of edge-wise bending moment
ranges „Rayleigh distributed wind speed with mean Ä10 mÕs…:
„a… Flap-wise bending; and „b… Edge-wise bending
Journal of Solar Energy Engineering
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mean level, leads to higher probability of loads in the range p
ted, although the curves converge at very high load levels for
flap bending moment ranges.

Generally, replacing a random variable by its mean value m
produce either conservative or unconservative results, depen
on the functional dependence of the output~here, the cumulative
distribution function! on the random variable of interest. Thu
although one might expect integration over a range of turbule
levels to produce a higher load spectrum than that from using
mean values, it does not appear to do so in this case. Whi
would produce a higher estimate of the extreme load, this is
the case with fatigue load spectra which integrate loads rather
search for the overall largest. TreatingI as a random variable
increases the dispersion in the loads increasing the frequenc
both higher and lower response levels. This results in an ove
larger maximum, but can result in a decrease in the spectrum
lower levels as is apparently the case here. The flap results
cate a crossover point at about 80 kN-m; the random varia
model predicts greater probabilities of exceeding flap bending
ment ranges above 80 kN-m than does thefixed-turbulencemodel.
The edge loads do not reach a crossover point until much hig
load levels. One should perhaps not give too much credence to
generality of the results presented here as they may be disto
by the limited range of data and the choice of a normal distri
tion for the turbulence intensity; a log-normal model could arg
ably be considered a better choice, resulting in a different dis
bution of the very low and very high turbulence levels.

Discussion
The Lavrio site’s mean-plus-one-sigma turbulence intensity

15 m/s wind speed is quite similar to the IEC standard specifi
tion of 16%~Class B! to 18%~Class A!. This similarity in turbu-
lence levels is evident throughout the high wind range as show
Fig. 10. The differences between the distributions in Figures 9a)
and 9(b) therefore provide an indication of the conservatism bu
into the IEC load cases relative to a fairly turbulent site.

Within the context of standards development, it may be reas
able to argue for lower turbulence specifications if differences
seen above can be shown to be significant and consistent. H
ever, because the standards are based on past experience a
dustry consensus rather than objective risk-based analysis, it
be dangerous to remove conservatism from one area without
checking elsewhere to insure that this conservatism isn’t cove
for an unknown lack of conservatism elsewhere in the des
process.

In general, the current standards give a load calculationrecipe
that is meant to meet some specific reliability criteria. If the
current reliability levels are deemed adequate on average~over

Fig. 10 Lavrio site turbulence intensity as a function of wind
speed, regression fits, and IEC Category A and B definitions
NOVEMBER 2001, Vol. 123 Õ 353
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various cases!, one cannot reduce conservatism in turbulen
specification without adjusting the recipe to compensate e
where; e.g., through use of a higher load factor. Note that
alternative procedure—unbiased turbulence with higher l
factor—may result in more uniform reliability across a range
cases. In contrast, current standards may lead to potential o
design of machines that are particularly sensitive to turbulen
and under-design in turbulence-insensitive cases.

Estimating Uncertainty in Long-Term Loads
To review, the parametric load modeling proposed h

proceeds by: 1! modeling loads by their statistical momentsm i
( i 51,2,3), and 2! modeling each momentm i as a parametric
function of V and I ~Eq. ~6!!. The moment-based model in ste
~1! is in principle independent of the turbine characterist
~although the optimal choice among such models may be so
what case-dependent!. Hence, in this parametric approac
the turbine characteristics are reflected solely through the mom
relations in Eq.~6!; specifically, the 9 coefficientsai , bi , ci
( i 51,2,3). For clarity, we organize these here into a vec
u5$a1 ,b1 ,c1 ,a2 ,b2 ,c2 ,a3 ,b3 ,c3%. Simpler 2-moment models
would require only 6 coefficients.

The preceding section has shown one benefit of this param
model. Because it permits load statistics to be estimated for a
trary V and I , the results can be weighted to form the long-te
loads distribution as in Eqs.~7!-~8! ~and Figs. 9(a,b)!. Symboli-
cally, we rewrite Eq.~7! here, noting explicitly its dependence o
the vectoru.

F~r uu!5E F~r uV,I ~V!,u! f ~V!dV (9)

~Equation~8! can be rewritten analogously.! The foregoing results
~Figs. 9(a,b)! have used our best estimates for the entries ou;
i.e., the mean values of each entry inu. These are the values o
ai , bi , andci cited in Table 2.

A further advantage of the parametric model lies in its use
ness in estimating the effects of statistical uncertainty. To clar
it is useful to distinguish between the various terms in Eq.~9!. The
quantitiesV and I are random variables; that is, their future out-
comes will show an intrinsic randomness that cannot be redu
by additional study of past wind conditions. In contrast, the
coefficients inu are in principle fixed~under the model’s assump
tions!. We may, however, be uncertain as to their values due
limited response data. Thisuncertainty~as opposed torandom-
ness! can be reduced through additional sampling. The con
quence of having only limited data can be reflected through 9
confidence levels, for example, on the exceedance probab
1-F(r ). These are conceptually straightforward to establish
simulation. Assuming the entries ofu are each normally distrib-
uted, for example, one may: 1! simulate multiple outcomes ofu;
2! estimateF(r ) for eachu as in Eq.~9!; and 3! sort the resulting
F(r ) values~at each fixedr value! to establish confidence band
e.g., in which 95% of the values lie.

Figures 11(a) and 11(b) show the 95% confidence level o
the exceedance probability, 1-F(r ), which result from the simu-
lation procedure described above. Each of the 9 coefficients in
~9! were generated as statistically independent, normally dist
uted random variables, with means and standard deviations g
by Tables 2 and 3, respectively.~Correlation among these var
ables can also be included; however, this was not done here.! All
of these results adopt the site-specific mean turbulence model
the results labeled ‘‘Average I at each wind speed’’ in Fig
9(a,b). These results from Figs. 9(a,b). are repeated in Figs
11(a,b), and referred to there asdeterministicresults. Also shown
are 95% confidence results; i.e., probability levels below wh
95% of the simulations fall.

The increase in probability, over the deterministic results
order to achieve 95% confidence, is found to be relatively mod
This reflects the benefit of having as many as 101 10-min
354 Õ Vol. 123, NOVEMBER 2001
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samples. If the same mean trends had resulted from fe
samples, the resulting 95% confidence results would be co
spondingly higher than the mean results. Note also that, at l
for flap-wise loads, the conservatism induced by the IEC tur
lence models exceeds that required to cover our statistical lo
uncertainty, based on the data at hand. Of course, as noted ea
this IEC conservatism may be desirable to cover other source
uncertainty. Finally, we caution again that these long-term lo
results are intended for example purposes only; accurate num
cal values would require data across a broader range of w
speeds.

Summary
Fatigue load spectra are essential elements of wind turbine

sign, analysis, and certification. However, the spectra alone o
tell a portion of the story. It would seem preferable to design w
a margin consistent with the statistical uncertainty inherent in
loads data. Fewer data implies greater uncertainty and should
quire a larger margin while more data implies less uncertainty
ought to require a modest margin. Safety factors are still requ
to account for other non-statistical sources of uncertainty.

The parametric models presented in this paper offer a syst
atic method of analyzing loads data to provide a definition of
loads as a function of the inflow conditions. The example data
and loads analysis presented here illustrate how this process
be conducted. The loads data sets studied here were first trun
to eliminate undamaging fatigue ranges that distort the analy
Such truncations can usefully improve fits of the model to
loads data while not underestimating fatigue-related dama

Fig. 11 95% confidence levels on the exceedance probability
of fatigue loads for the Lavrio site with turbulence set to the
average value for each wind speed: „a… Flap-wise bending; and
„b… Edge-wise bending
Transactions of the ASME
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Then, statistical moments of the truncated data sets were ma
to the inflow conditions; in this case, regression analyses o
both wind speed and turbulence intensity were conducted.
derived regression coefficients relate short-term loads to sh
term~10-minute averaged! site conditions. Long-term load spectr
were estimated by integrating short-term loads~conditional on
wind speed and turbulence intensity! over long-term distributions
of wind speed and turbulence intensity. In this manner, then, lo
may be estimated for specified site conditions—either for a ph
cal site intended for development or for conditions codified in
certification standard. Both these types of load spectra were
mated in the results presented.

Although there are currently no requirements to assess fat
loads at specified confidence levels, the parametric models
sented here make such calculations possible. The standard d
tions of the regression coefficients were estimated as part of
routine regression analysis with the loads data sets. Samp
from the distributions to yield realizations of coefficient value
along with regeneration of the associated parametric distribu
functions and long-term spectra, was used to calculate the
confidence levels. Thus, it would be possible to derive charac
istic fatigue load spectra if, in the future, standards were to spe
a confidence level for such loads. While a large portion of
spectrum~especially lower load levels! may be well represented
even with a fairly small data set, our analysis illustrates the n
essary inflation of the load probabilities at the hardest-to-estim
maximum load levels.
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