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Parametric Models for Estimating
Wind Turbine Fatigue Loads for
Design

International standards for wind turbine certification depend on finding long-term fatigue
load distributions that are conservative with respect to the state of knowledge for a given
system. Statistical models of loads for fatigue application are described and demonstrated
using flap and edge blade-bending data from a commercial turbine in complex terrain.
Distributions of rainflow-counted range data for each ten-minute segment are character-
ized by parameters related to their first three statistical moments (mean, coefficient of
variation, and skewness). Quadratic Weibull distribution functions based on these three
moments are shown to match the measured load distributions if the non-damaging low-
amplitude ranges are first eliminated. The moments are mapped to the wind conditions
with a two-dimensional regression over ten-minute average wind speed and turbulence
intensity. With this mapping, the short-term distribution of ranges is known for any com-
bination of average wind speed and turbulence intensity. The long-term distribution of
ranges is determined by integrating over the annual distribution of input conditions. First,
we study long-term loads derived by integration over wind speed distribution alone, using
standard-specified turbulence levels. Next, we perform this integration over both wind
speed and turbulence distribution for the example site. Results are compared between
standard-driven and site-driven load estimates. Finally, using statistics based on the
regression of the statistical moments over the input conditions, the uncertainty (due to the
limited data set) in the long-term load distribution is represented by 95% confidence
bounds on predicted loads[DOI: 10.1115/1.1409555

Introduction quency of occurrence of the wind speed associated with each

Design constraints for wind turbine structures fall into eithe?'mglitfeg]gsstﬁrgsg dn;f;t;né:ilr%ﬂg?;n ?Oglcs,rt]og;zrg égfr(;/:;c:irt]) etgeb
extreme load or fatigue categories. In the case of extreme lo, ! PR y

design drivers, the load estimation problem is limited to finding acCoy etal.[2], but with an innovative weighting scheme to

single maximum load level against which to assess the structuf? (r)]unt for_the irregular input conditions of field measurements.
e empirical approach uses only the measured or simulated

strength. For design against fatigue, however, loads must be 8e

fined over all input conditions and then summed over the distrl-ata without any fitting of distributions or extrapolation to higher

bution of input conditions weighted by the relative frequency o alues that would be seen if more data were obtained. One of the

isadvantages of using a purely empirical approach is, therefore,

iosci(;l uﬁrqzr:]ce\}vgvzlleuti?:smﬁg: tsoefhn; g(t?zn?enlq;a:g draoubr;gnmg ;a;slém t the loading distribution may not be representative. Moreover,
y ways q P ’ e empirical model does not provide any information about the

Esséesert]htéyk;:a(l)(?;pr?]ﬂggbve\z"tdhefeltrmr?(te%rz;j‘sn?ux\gt?(t)?\rssg?%vm dbgtge dJJncertainty in the relationship between estimated loads based on
’ PE€0such a model and the true long-term load spectra; the statistical

other cllmat_lc conditions ) . ... uncertainty in the loads due to limited data is almost impossible to
Parametric models define the response, statistically, with 1S aracterize

o et e, SI=LEP Wi regar o uncertaines in oads and how they migh be
: P d&alt with in design, one might expect that these uncertainties

these distributio_n function_s can be u_s_eful in defining the responsuld be covered by the use of standard specifications of charac-

loads as a f_unctlon_o_f _the input conditions. The_ end result_, .then’tésristic loads(derived from a specified high turbulence levahd

a full statistical definition of the loads over all input conditions. safety factors. However, current standard load definitions use
In the most prevalent alternative to parametric modeling, asr%\fety factors that do not depend on the relative uncertainty in the

emeplrlceglf%lstrlbuetlon (())ff :ﬁadil.z.,ladhlstograrg de;ﬁ(;r.'b";% Ige' load estimates. Either the margins are larger than they need to be
quency ceurrence e modeled response quandiys when load estimates are reasonably well establighed exhibit

define the turbine response at the conditions of the measureme uncertainty, or they fail to cover the uncertainty when load

or simulation. When using simulations, a 10-minute time series Rtimates are based on limited déita., large uncertainty cases
generated at specified environmental conditions using an aeroela "

tic analvsis code. The time series is rainflow-counted and t Parametric load distribution models offer significant advantages
y : Ia\aler empirical models; they provide a means jeedtrapolate to

number of ranges in specified intervalfs.is summari;ed in hiStRi' her, less frequent load levels), hap the response to the input
?arI?g:wS.tole:g rglsﬁggggst. See:;‘ethf rgg‘%’ggg' o?'fﬁgbtu“rgnnse tg?ih%r nditions; and Bcalculate load uncertainty. For example, Ronold
P W P urbl @ I.[3] have published a complete analysis of the uncertainty in

pE}rticuIar conditi_ons. Thg fu.II Iifetime distribgtior) is then Ob'a wind turbine blade fatigue life calculation. They used a paramet-
tained by summing the distributions after weighting by the frer'ic definition of the fatigue loads, matching the first three mo-

Commibuted by the Solar E Division of the American Society of Mechani ments of the wind turbine cyclic loading distribution to a qua-
ontributes yt e Solar eEnergy Division O the American or:|etyo echanic; H : \ H H H :
Engineers for publication in the ASMEOWRNAL OF SOLAR ENERGY ENGINEER- ﬁratlc (transforr_ned by .a Sq“amg operat)(WelquI distribution. .
ING. Manuscript received by the ASME Solar Energy Division, February 2001; final V_eers and Wintersteif4] described a parametric approach C]l-“te
revision June 2001. Associate Editor: D. Berg. similar to that employed by Ronold et &B] that can be used with
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either simulations or measurements, and have shown how it may Table 1 Parameters for IEC turbulence categories
be used in an uncertainty evaluation. Although Réf.describes
how to use the statistical model to estimate the complete load
spectrum, it does not indicate how these models compare with the
design standardss]. It is critical that the load distributions gen- I1s 0.18 0.16
erated by any statistical methodology be adaptable for use in ex- a 2 3
isting design standards. Moreover, it is arguably even more im=
portant that the load model provide insight into how the design
standards might be improved in future revisions. The standards
should require an accurate reflection of the load distribution wiik a slope parameter wher, is plotted versus hub-height wind
sufficient conservatism to cover the uncertainties caused by tgeed. The values of these parameters for each category are shown
limited duration of the sample, whether based on simulation or Table 1.
field measurements. Only then can design margins be trimmed tdrhe Category B moderate turbulence specification is intended
the point of least cost while still maintaining sufficient margins téo roughly envelopéi.e., be higher tharthe mean plus one sigma
keep reliability levels high. level of turbulence for all the collected data above 15 m/s. Simi-
The approach to load modeling is not uniform across the wirdrly, Category A envelopes all collected values of turbulence in-
community by any measure. This lack of commonality in apensity (with the exception of one southern California sifer
proach was reflected in the working group that produced IEC/aean wind speeds above 15 m/s and is above the overall mean
Mechanical Load Measurement Technical Specificafi®h No plus two sigma leve[7]. Clearly, the IEC Normal Turbulence
consensus could be obtained on how to use measured loadtalel is intended to be conservative for all but the most turbulent
either create or substantiate a fatigue load spectrum at the corsilies.
tions specified in the Safety Standd&l. All that is offered are It is a relatively straightforward matter to create a loading dis-
several examples of differing approaches in an annex of the spadbution that meets the standard criteria when using an aeroelastic
fications[6]. simulation code. Input winds can be generated for any combina-
Here, we present a methodology for using measured or sintien of wind speed and turbulence intensity. Representative load-
lated loads to produce a long-term fatigue-load spectrum at speogs can, in theory, be generated by simulating repeatedly until
fied environmental conditions and at desired confidence levels. Jufficient data are produced to drive the uncertainty to an arbi-
illustrate, example measurements of the two blade-root momeirarily small level. Practically, however, it would be beneficial to
(flap and edgefrom a commercial turbine in complex terrain aregenerate a loading distribution with small, or at least known, un-
used. The measurements consist of samples of 10-minute dwertainty from a smaller data set. This is where the parametric
tion, a measurement duration accepted as the wind industry stapproach provides significant value. By means of regression of
dard. The 10-minute distributions of rainflow ranges are modeléohd statistics(e.g., momenis over the entire range of wind
by a quadratic Weibull distribution function based on three statispeeds and turbulence levels, the uncertainty in the values of the
tical moments of the ranggsnean, coefficient of variation, and parameters defining the short-term distributions at any specified
skewnesp The moments are mapped to the wind conditions bytarbulence condition can be estimated.
two-dimensional regression over 10-minute average wind speedn the case of measured loads, it may be simply impossible to
and turbulence intensity. Thus, thghort-term distribution of gather data at the specified turbulence conditions because of the
ranges may be predicted for any combination of average wilichitations of the test site. In that case, the parametric approach
speed and turbulence intensity. Theng-term distribution of provides a method to interpolate to a specified turbulence level
ranges is, then, easily obtained by integrating over the annusing all of the data collectgghus adding to the confidence of the
distribution of input conditions. Results are compared betweénterpolatiorn), or to extrapolate beyond the limits of the measure-
standard-driven and site-driven load estimates. Finally, using staents. In either case, the parametric approach simplifies the gen-
tistics based on the regression of the statistical moments over #ration of fatigue loads to Standard specifications.
input conditions, the uncertainfgdue to the limited data sein the
long-term load distribution is represented by 95% confiden
bounds on predicted loads.

A B
Category (High) (Moderate

#xample Data Set

An example data set taken from the copious measurements of
the MOUNTURB prograni8] is used to illustrate the parametric
modeling process. The data are comprised of 101 10-minute
IEC Load Cases samples of rainflow-counted flap-wise and edge-wise bending-

The loads specified by IEC 61400-1 Wind Turbine Generatenoment ranges at the blade root. The test turbine is a WINCON
Safety Requirements for design must be defined for a specifigtloXT, a 110kW stall-regulated machine operated by CREE
combination of mean wind speed and turbulence intensity knov@enter for Renewable Energy Systems, Pikermi, Greatéheir
as the Normal Turbulence Modgb]. The standard provides anLavrio test site. The terrain is characterized as complex.
empirical expression for the standard deviation of the ten-minuteThe original time series of the loads and winds were not avail-
wind speedg, in terms of the hub-height wind speed,,,, and able for further analysis; thus, only the rainflow-counted ranges
two parameterd,;5 anda. were employed. The number of cycle counts was tallied in 50 bins

_ ranging from zero to the maximum range in each sample. A single
1= l1(15m/st aVhyp)/(a+1) @ 10-minute sample is categorized by the mean wind speed and the
Equation(1) is based on wind speed standard deviation data gatfaw turbulence intensity at hub height. The average wind speeds
ered from around the world and aggregated into a common dati@ limited to the range between 15 and 19 m/s and thus reflect
set. The parameteV,,,, is the independent variable and E4) response in high wind operation. Turbulence intensities cover a
determines appropriate turbulence levels associated with it feide range of operating conditions as can be seen in Fig. 1. The
specified site classes. The equation was created to be “broadigasured loads are summarized by frequency of occurrence in
representative of sites with reasonable international marketing Ifig. 2(a) for flap moment ranges and in Fig. @(for edge mo-
terest,”[7] and does not represent any single sitg.is intended ment. Plots showing exceedance counts for specified flap and edge
to represent @haracteristic valueof wind-speed standard devia-loads are shown in Figs. BY and 2{d) respectively. It is clear
tion. Certification guidelines are provided for high) and mod- that the edgewise data with two peaks in the frequency of occur-
erate(B) turbulence sitesl 5 defines the characteristic value ofrence plots appear to follow a mixed distribution of some type due
the turbulence intensity at an average wind speed of 15 m/saantb a strong gravitational load with turbulence-driven response su-
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0.24 5 1 best fit distribution model to match a user-specified set of mo-
i ments(e.g., the user can request a distribution model fit based on
two moments or one based on three momemsr'S is, therefore,
20.20 o a tool for examining the fit of a probability model to the short-
Z o ® o o 5 °© term response, conditional on wind speed and turbulence level.
£ S Lo o o o© For purposes of the present discussion, the first three moments
" Po. o © P o o © ol o mi, (i=1,2,3) of the rainflow-range amplitudes, are defined
g0.16 —o [e) [e) ©
g 8 le°o% ol %0 o .4 hereas:
= o 6 Cpo 0o o ©
2 @ o © ° © © oq
2 T) o o o Bloo O mi=E[r]=r, (2)
£0.12 2 L 2 5% % o0 o
e} [o]
° o o® ©Q 9. 2 2
o | e pa=—i o =ELr=1)7], ©)
0.08 3
15 16 17 18 19 _El(r—1)7] 4
! M3 3 ) (4)
Wind speed (nv/s) gy

whereE[¢] is the expectatiorfor averaging operator. The first
moment is the mean or average range, a measure of central ten-
dency. The second moment is the Coefficient of Variatio®V),

which is the standard deviation divided by the mean, a measure of
e dispersion or spread in the distribution. The third moment is

perimposed. The flapwise data also, although in a less ObV'c{th coefficient of skewness, which provides information on the tail

manner, follow a distribution with contributions from small am- havior of the distribution. Load ranae data are often well fit b
plitude noise and larger amplitude turbulence response. These @‘%—N ) 9 y

. - e . : eibull distribution. Here, a slight distortion of the Weibull
tribution effects will be dealt with in the following section. distribution (referred to as thejuadratic Weibull is used to ex-

. actly match the first three statistical momefi§,11].

Short-Term Analysis To illustrate the fit of the quadratic Weibull distribution to a
The FITS[9] software for fitting probability distribution models ten-minutes sample, one of the 101 samples shown in Fig. 2 is

to empirical data was used to analyze each 10-minute samm@tudied. This data sample is taken from the middle of the mea-

FITS calculates the central moments of the data and estimates sheed wind conditionsy=17 m/s and =0.18. The data are plot-

Fig. 1 Wind speed and turbulence intensity values for the 101
10-minute data samples
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Fig. 2 (a) Histogram of flap-wise bending moment ranges for 101 10-minute data sets;
moment ranges for 101 10-minute data sets;

Flap-wise bending moment range,  (kN-m)

()

Edge-wise bending moment range, r (kN-m)

(d) Cumulative counts of edge-wise bending moments ranges for 101 10-minute data sets
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(b) cumulative counts of flap-wise bending
(c) Histogram of edge-wise bending moment ranges for 101 10-minute data sets; and
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Fig. 4 Quadratic Weibull model fits to data on edge-bending
moment ranges (V=17.0m/s, /=0.18): (a) Weibull scale plot;
(b) Weibull scale plot (truncation at 32.0 kN-m ); and (c) Exceed-
ance plot format (truncation at 32.0 kN-m )

Fig. 3 Quadratic Weibull model fits to data on flap-bending
moment ranges (V=17.0m/s, /=0.18): (a) Weibull scale plot;
(b) Weibull scale plot (truncation at 11.5 kN-m ); (c) Exceedance
plot format (truncation at 11.5 kN-m )

ted on a Weibull scale for the flap loads in Fig. 3 and for the edgehich the smooth probability distribution, in spite of the quadratic
loads in Fig. 4. The vertical scale is transformed from the Cumdistortion, can not match. Closer examination of the data reveals
lative Distribution Function(CDF) as (-In(1-CDF) so that a that the kink is due to a very large number of cycles at relatively
Weibull distribution will be a straight line on a log-log pldRe- low amplitudes.
call that the CDF is the complement of the traditional exceedanceThe proliferation of small amplitude cycles seen in Fig. 2 pro-
diagram; exceedaneel-CDF.) A similarly transformed CDF for duces a distribution difficult to duplicate with a simple analytical
the quadratic Weibull distribution will appear as a second-ordésrm, but these small cycles produce relatively little damage. By
(i.e., quadratig curve on such a log-log plot. truncating the loads at a threshold, the kink in the data can be
Figures 3&) and 4@) show attempts to fit the entire flap andeliminated without significantly reducing the damage. In the edge
edge data with quadratic Weibull models. As seen in Figqq)3( case, there are obviously a great number of cycles of smaller
and especially Fig. &), the data have a kinked appearancamplitude than the dominant gravity load at about 32 kN-m. The
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Table 2 Coefficients from regression analysis

Coefficient Flap Edge
5" | o o Mean a; 21.49 40.02
£s 37 ) o @ 47 & b, 0.808 0.359
33 o |® fo 060 5 06" ag, =% ¢ 0.202 0.039
EE © 0070 000 QL |° RS cov a, 0.722 0.635
g E °olo & olPPg ° ] & 0. @ b, 0.031 ~0573
R e St c
g2 ° o o q o Skewness as 0.963 0.980
S g o RN ° bs -1.260 —0.468
- o Cs 0.033 0.132
2% .9 Q0 Oob=3
& o o . ‘ Reference valued?,o;=17.1 m/s;l ¢;=0.145
o Ob=6;
Ab=9:
12 {
150 155 160 165 170 175 180 185 190  of the damage, and that only wherr3. In almost all cases for
(@ Wind speed (m/s) the higherb values, the lost damage is less than 3%.bAbe-
0 ‘ comes larger, the truncation becomes irrelevant and the problem
n Ay R @% @d% %%é@ & % begins to resemble an extremes problem. In both flap and edge
&,dﬁ ﬁum‘ e mmlilqb E"% bending cases, over 80% of the rainflow-counted ranges are re-
g 2 P04 Biog oo . d byt ting the data sets. Our findings that discardi
% s G| Og o moved by truncating the data sets. Our findings that discarding so
g g - o | g . ] ! much of the data does not lead to grossly unconservative estimates
= ; ja o o o of damage is not unexpected since it has long been known that
5}} ‘ o©® 99 .® o o © eliminating most of the small amplitude cycles has a negligible
£% 6 o0y ~0 B 0062 effect on damagél2].
S5 o ® o0 ® 53% Pl o d o
e 0° OOZ;OOOQ 000° o Q © | , ,
s o §o, o © o o : Regression Analysis
o i . — a2l . I
57 9 P% ) 8 R ob=37 Because a good match can be obtained to the short-term distri-
8 ‘ Ob=6 bution of rainflow ranges given the first three moments and a fixed
o | | Ab=9! data truncation, it is sufficient to know the moments over all the
-12 : : i , operating conditions in order to fully define the turbine fatigue
150 155 160 165 170 175 180 185 190 loading. Regression of the moments over 10-minute average wind
(b) Wind speed (m/s) speed and turbulence intensity can achieve the desired result and
assist in understanding the loading dependence on and sensitivity
Fig. 5 Effect on damage estimation of shift in blade bending to both turbulence and wind speed. Results from a regression
BWOFE?HI range data: (a) Flap-wise bending; and (b) Edge-wise  analysis can also provide information on the uncertainty of the
ending loads.

The moments presented in the following figures, and w3,
describe the COV and skewness, respectively, ostiitedrange
flap loads have a less distinctive kink at around 10-13 kKEin5 r’=r—r,. More precisely, by eliminating all ranges below the
kN-m was used as the filtering threshpléligures 3b) and 40)  truncation level,, we obtain the shifted valugs =r —r, of the
are similar to Figs. 34) and 4@), but include only a subset of remaining ranges and consider models based on statistics of
the data and can be thought of as applyinghét to all loads that Thjs is done to conform with the quadratic Weibull model, which
effectively discards the smallest cycles. Clearly, the fits of thganerally assigns probability to all outcomes>0. In the case of

quadratic Weibull are improved dramatically. Thus, the short-terfje second moment this results in a slightly different expression
data are well modeled by a quadratic Weibull distribution that

preserves the first three central moments of the truncated rainflow _ O Oy

ranges. R (5)
Figures 3€) and 4() show the same data as do FigsbBé&nd L

4(b), but with the axes in the more common exceedance plbf'® mean valueu,, presented is still taken to be the absolute

format. These plots are included to reorient the reader back to fR&an.r, 1.€., the mear(with respect to zeroof the ranges re-

original summaries of the data shown in Fig. 2. They also servet@”_ed after eliminating the_small-amplltude cycles. Note also that

illustrate how the analytical distribution functions may be used #3 'S unaffected by the shift. ) ]

extrapolate to less frequent, higher amplitude loads. As in Ref.[4], the first three momentg; , i =1-3) are fitted to
The low-amplitude cyclegthat make distribution fits difficult @ POWer law function of wind speed,, and turbulence intensity,

as described in the precedingan only be discarded if they pro- I

duce an insignificant amount of damage. Damage is assumed to be VPG

proportional toRP for stress rang® and for fatigue exponeri; ,u,=ai(v— (I—) (6)

accordingly, we study the relative amount of damage due to trun- ref ref

cated load ranges versus that due to the entire load data set. The reference wind speeW,.;, and reference turbulence inten-

damage unaccounted for due to the truncation of rainflow ranggy, |,.¢, are determined from the geometric mean values of the

data at 11.5 kN-m for the flap loads is represented in Fig)5( data [4]. For the Lavrio data setV,.;=17.1m/s andl,;

and due to a truncation at 32 kN-m for the edge loads in Figs0.145. The calculated regression coefficients are shown in Table

5(b). All 101 ten-minute data segments are represented in Figs.

5(a) and 50). The regression results for the flap bending moments are shown
Lost damage is plotted for three fatigue exponebtsyepre- in Fig. 6 and for the edge bending moments in Fig. 7. Mean, COV,

senting typical values of wind turbine materials ranging from and skewness are plotted in the pams,((b), and ), respec-

=3 for welded steel up tb=9, more characteristic of fiberglasstively, of the figures. In all cases, the regression line uses the

composites. In no case does the truncation remove more that 1@%ference value for turbulence intensity. The circles correspond to
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Fig. 6 Regression results for flap-wise bending moment ;?f?gz:m(gi 2/||<ee3vnr;\e(sbs) Coefficient of variation  (COV); and (c) Co-
range: (a) Mean; (b) Coefficient of variation (COV); and (c¢) Co-
efficient of skewness

unity, indicates that a large percentage of the data variation is

the measured data from the 101 samples. The solid symbelglained by the regression. In contrast, a Rfvvalue suggests
(squaresshow the regression prediction using the measured wirige presence of other influences, not included in the regression
speed and turbulence intensity for each ten-minute data setyfydel, that induce the scatter in the data. Note that the goal here
large spread in solid symbols about the regression line indicateg anot to predict the moment statistics in a single 10-minute his-
sizeable dependence on turbulence Iekeey., Fig. 6&)’'s mean tory, but rather the long-run average of such 10-minute samples
flap range while a small variation in the solid symbols indicatesver the entire turbine lifetime.
that the turbulence has little effect on that particular monter., Thet statistic, which is the estimated coefficient divided by the
Fig. 6(c)’s flap skewness This sensitivity can also be inferred standard deviation of the estimate, indicates whether a particular
from the magnitude of the; coefficients in Table 2. The smaller coefficient is statistically significant. AAvalue less than about two
the value oft;, the less the importance bfin the estimate of the would indicate that the coefficient is not significantly different
i™ moment. from zero at about the 95% confidence level. Since the leading

Table 3 summarizes the regression uncertainties in terms of dwefficients,a;, are estimates of the moments at the reference
widely usedR? and t statistics. A highR? value, approaching conditions, they are always significantly different from zero, aind
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Table 3 Regression parameter summary

LE+0 — «‘
Parameter Flap Edge “ V=17 mis
R2-Mean, 0.51 0.76 Bo Q.
a, (0) 0.108 0.050 s LE2 NG
b, (o, t statistig (0.081,9.9 (0.020,17.% E] .
¢, (o, t statistio (0.032,6.4 (0.008,4.9 B N
R2-COV, i, 0.05 0.43 g N
a, (o) 0.003 0.003 S LE4 NE
b, (o, t statistio (0.076,0.3 (0.080,7.12 N \\
C, (o, t statistio (0.030,2.7 (0.031,2.0 = U
2. 0.17 0.05 3 N
53 (?Tliewnessug’ 0.018 0.016 -§ 1.E-6 -+~ ——Reference Intensity \\
bs (o, t statisti (0.301,4.2 (0.266,1.8 & - - - IEC Class A Intensity N
;5 (o, t statistio (0.117,2.8 (0.104,1.3 — -IEC Class B Intensity
Avg. Cycle Rate 1.75 Hz 138 Hz 1LE-8 J
0 20 40 60 80
(a) Flap bending moment range, r
is not reported for them. However, thesalues ofb; andc; indi- LE+0
cate whether any functional variation with respect to wind spet¢
or turbulence intensity, respectively, is supported by the data. V=17 mis
Examination of Tables 2 and 3 suggests that the mean lo

range is strongly related to both wind speed and turbulence,
though the relation to turbulence has small exponéh02 and
0.039. The only higher moment relationships that have high \
statistics are the edge COV relation to wind speed and the fl 8 1LE4 —- T
skewness relation to wind speed. The overall low exponents an

statistics for the higher moments indicate that the distributic

shapes are relatively constant over all input conditions. The var & 1g.6 + ——Reference Intensity ‘

1LE-2 q
N

Probability of exceedance of r

tion seen in Figs. 6 and 7 beyond that indicated by the sol - - - IEC Class A Intensity
symbols is sample-to-sample variation not indicative of a systet — -IEC Class B Intensity
atic relationship with the independent variablgsand|. Part of
this remaining variation will be irreducible, a natural outcome c
random processes, but some could possibly be reduced with (b)
gression over better turbulence descriptors than the simple turl ..
lence intensity. .
The Lavrio data set used in this example is limited to a range Y
wind speeds from 15 to 19 m/s. The long-term analysis in the ne
section will, for example purposes only, assume the regressio
trends found in high winds apply to all wind speeds. In an actual
application, the data from a particular turbine will need to be
examined over the entire range of damaging wind speeds. It might
be amenable to regression fits that run all the way from cut-in to _
cut-out. More likely, the wind speed range will have to be parti- F(r)—f FrvV.I(v)f(V)dV, Q)
tioned into divisions over which the response moments are well
behaved enough to be fit with simple regression. For example, ivigiereF(r) is the long-term distribution of stress ranges,and
likely that the response will have different characteristics above(r|V,I(V)) is the short-term distribution of stress ranges condi-
and below rated wind speed. In that case, the analysis preseritedal on the ten-minute average wind speédand the specified
here would have to be repeated for each wind-speed division Iserbulence intensity) (V). f(V) is the wind speed probability
fore proceeding with the long-term analysis in the next section.density function(PDF). The integration is carried out over all
may also be the case that the response in low winds has an inslgmaging wind speeds. The distribution functionsrotan be
nificant contribution to the fatigue damage and the analysis caither the CDF or the exceedendeCDF). However, the integra-
safely deal with only high wind response. The individual applicgion must be over the probability density function for wind speed,
tion will determine the constraints. f(V). For this and many other wind load data sets, cycle rate
differences for differenV and| values are small and are usually
. ignored. However, one can explicitly account for cycle rate effects
Long-Term Analysis for specifiedv andl levels in the long-term load distribution as is
The long-term distribution of fatigue loads is obtained by inteshown by Havef13] for loads on offshore structures.
grating the short-term distributiorifor loads conditional on wind ~ Examples of the short-term distribution used in K@) are
conditiong over the specified distribution of wind conditions.shown in Fig. 8 for a ten-minute average wind speédequal to
Current IEC standards specify a Rayleigh distribution of wind7 m/s and for three different turbulence intensity levels—the
speed with the annual average depending on class. Class | sitfsrence turbulence intensity for the data set and the turbulence
have a 10 m/s average and Class Il sites have a 8.5 m/s averdgeels for IEC Classes A and B.
Wind-speed classes defined $gecialare also allowed with con-  Any environmental conditions can be used with Ef). once
ditions that may be defined by the designer. The turbulence intdhe response moments have been defined with respect to the tur-
sity is a deterministic function of wind speddV), given by Eq. bulence levels and wind speeds. This has been accomplished by
(2). A lifetime load distribution must sum all the short-term disthe regression of the moments owérand| and by determining
tributions at each wind speed and associated turbulence intengity short-term distributionss (r|V,1), from the moments. As ex-
weighting them by the annual wind speed distribution. This can laenples we will calculate the long-term distributions for two
written as standard-driven and two site-driven environments.

1.E-8 ‘
20 40 60 80
Edge bending moment range, r

. 8 Distribution of bending moment ranges conditional on
d speed and turbulence intensity: (a) Flap-wise bending;
nd (b) Edge-wise bending
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Fig. 10 Lavrio site turbulence intensity as a function of wind
speed, regression fits, and IEC Category A and B definitions

1E-2

mean level, leads to higher probability of loads in the range plot-
ted, although the curves converge at very high load levels for the
flap bending moment ranges.
Generally, replacing a random variable by its mean value may
W, produce either conservative or unconservative results, depending
%  on the functional dependence of the outgure, the cumulative
3 distribution function on the random variable of interest. Thus,
although one might expect integration over a range of turbulence
levels to produce a higher load spectrum than that from using the
mean values, it does not appear to do so in this case. While it
would produce a higher estimate of the extreme load, this is not
the case with fatigue load spectra which integrate loads rather than
search for the overall largest. Treatimgas a random variable
increases the dispersion in the loads increasing the frequency of
both higher and lower response levels. This results in an overall
larger maximum, but can result in a decrease in the spectrum at
lower levels as is apparently the case here. The flap results indi-
cate a crossover point at about 80 kN-m; the random variable
model predicts greater probabilities of exceeding flap bending mo-
Figures 9@) and 9) show the long-term distributions of flap ment ranges above 80 kN-m than doesftked-turbulencenodel.
and edge loads respectively for the IEC Class | wind speed distfihe edge loads do not reach a crossover point until much higher
bution (Rayleigh 10 m/sand for both turbulence Categories A andoad levels. One should perhaps not give too much credence to the
B. Both of these standard environments define the turbulence legenerality of the results presented here as they may be distorted
as a function of wind speed by EffL). by the limited range of data and the choice of a normal distribu-
The specification of a fixed turbulence intensity functionallyion for the turbulence intensity; a log-normal model could argu-
related to the wind speed is somewhat artificial; measuremesfgly be considered a better choice, resulting in a different distri-
indicate that the turbulence intensity varies over a range of valuggtion of the very low and very high turbulence levels.
for each ten-minute samplsee Fig. 1 A more realistic represen-
tation than Eq. 7 for the long-term distribution might be to includ®iscussion

turbulence intensity as a random variable by integrating over bothTne | avrio site’s mean-plus-one-sigma turbulence intensity at

1E-4

~4— [EC-A Turbulence Intensity

-2 IEC-B Turbulence Intensity

Probability of exceedance

1E-6 +
-0~ I assumed normal random variable

-o- Average I at each wind speed
1E-8 ‘ | |
0 20 40 60 80
(b) Edge bending moment range (KN-m)

Fig. 9 Long-term distribution of edge-wise bending moment
ranges (Rayleigh distributed wind speed with mean =10m/s):
(a) Flap-wise bending; and (b) Edge-wise bending

wind speed and turbulence intensity as follows: 15 m/s wind speed is quite similar to the IEC standard specifica-
tion of 16% (Class B to 18%/(Class A. This similarity in turbu-
F(r)= f f F(rVv,Df(V,hdIdV (8) lence levels is evident throughout the high wind range as shown in

Fig. 10. The differences between the distributions in Figureg 9(

Figures 9@) and 9f) show the long-term flap and edge distri-and 9 () therefore provide an indication of the conservatism built
butions derived by integrating over both wind speed and turbinto the IEC load cases relative to a fairly turbulent site.
lence. The wind speed is a 10 m/s-average Rayleigh distributionwithin the context of standards development, it may be reason-
as prescribed for IEC Class | sites. The turbulence is assumedatsie to argue for lower turbulence specifications if differences as
be normally distributed with mean, defined byl =2.5/V, and seen above can be shown to be significant and consistent. How-
standard deviation equal to 0.025, based on a best fit to the dat@weér, because the standards are based on past experience and in-
turbulence vs. wind speed shown in Fig. 10. dustry consensus rather than objective risk-based analysis, it may

Also plotted in Fig. 9 is the result of assuming the turbulence &e dangerous to remove conservatism from one area without also
the Lavrio site is defined by the average value at each wind spestcking elsewhere to insure that this conservatism isn't covering
(the solid line in Fig. 1@ This simpler assumption allows the us€or an unknown lack of conservatism elsewhere in the design
of Eqg. (7). The comparison indicates that the integration over glirocess.
turbulence levels, which is the most realistic reflection of the mea-In general, the current standards give a load calculatcipe
surements, produces a much lower load spectrum in the raribat is meant to meet some specific reliability criteria. If these
plotted. The simplified alternative, i.e., fixing the turbulence at theurrent reliability levels are deemed adequate on aveftager
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various cases one cannot reduce conservatism in turbulenc 1E+0
specification without adjusting the recipe to compensate els
where; e.g., through use of a higher load factor. Note that tF
alternative procedure—unbiased turbulence with higher lo:
factor—may result in more uniform reliability across a range c
cases. In contrast, current standards may lead to potential o\
design of machines that are particularly sensitive to turbulenc
and under-design in turbulence-insensitive cases.

1E-2

Estimating Uncertainty in Long-Term Loads > Deterministic Estimate

To review, the parametric load modeling proposed hel
proceeds by: I modeling loads by their statistical momenis ~0-95% Confidence Level
(i=1,2,3), and 2 modeling each momenk; as a parametric
function of V and| (Eq. (6)). The moment-based model in stef
(1) is in principle independent of the turbine characteristic
(although the optimal choice among such models may be son
what case-dependent Hence, in this parametric approach,
the turbine characteristics are reflected solely through the mom:  1E+0
relations in Eq.(6); specifically, the 9 coefficients;, b;, c;
(i=1,2,3). For clarity, we organize these here into a vectc
0={a,,b,,cqy,a,,b,,c,,a;3,bs,c3}. Simpler 2-moment models
would require only 6 coefficients.

The preceding section has shown one benefit of this parame
model. Because it permits load statistics to be estimated for ar
trary V andl, the results can be weighted to form the long-terr
loads distribution as in Eq$7)-(8) (and Figs. 94,b)). Symboli-
cally, we rewrite Eq(7) here, noting explicitly its dependence on
the vectoré.

Probability of exceedance
©
IS
|

1E-8 1
0 20 40 60 80
(a) Flap bending moment range (kN-m)

1E-2 — o

1E-4 \

-o- Deterministic Estimate

—(F

Probability of exceedance

~0-95% Confidence Level ‘
F(r|0):f F(r|V,I(V),0)f(V)dV 9) ] ‘ |
1E-8 i ‘ | !
(Equation(8) can be rewritten analogousiyhe foregoing results 0 20 40 60 80
(Figs. 9@,b)) have used our best estimates for the entrieg;of (b) Edge bending moment range (kN-m)
i.e., the mean values of each entrydnThese are the values of
a;, b;, andc; cited in Table 2. Fig. 11 95% confidence levels on the exceedance probability
A further advantage of the parametric model lies in its usefudf fatigue loads for the Lavrio site with turbulence set to the
ness in estimating the effects of statistical uncertainty. To clarif§verage value for each wind speed:  (a) Flap-wise bending; and
it is useful to distinguish between the various terms in(@y.The  (b) Edge-wise bending
guantitiesV and| arerandom variablesthat is, their future out-
comes will show an intrinsic randomness that cannot be reduced
by additional study of past wind conditions. In contrast, the §2mples. If the same mean trends had resulted from fewer
coefficients ind are in principle fixedunder the model’s assump- S@mples, the resulting 95% confidence results would be corre-
tions. We may, however, be uncertain as to their values due %E)ondlngl_y higher than the mean_resqlts. Note also that, at least
limited response data. Thisncertainty(as opposed toandom- for flap-wise loads, the conservatism induced by the IEC turbu-
ness can be reduced through additional sampling. The congénce models exceeds that required to cover our statistical Ioads
quence of having only limited data can be reflected through gsypcertainty, based_on the data at h_and. Of course, as noted earlier,
confidence levels, for example, on the exceedance probabififys [EC conservatism may be desirable to cover other sources of
1-F(r). These are conceptually straightforward to establish B{certainty. Finally, we caution again that these long-term load
simulation. Assuming the entries @fare each normally distrib- results are intended for example purposes only; accurate numeri-
uted, for example, one may) simulate multiple outcomes of, cal values would require data across a broader range of wind
2) estimateF (r) for eachd as in Eq.(9); and 3 sort the resulting SP€€ds.
F(r) values(at each fixed value to establish confidence bands;
e.g., in which 95% of the values lie. Summary
Figures 114) and 11p) show the 95% confidence level on Fatigue load spectra are essential elements of wind turbine de-
the exceedance probability, B¢r), which result from the simu- sign, analysis, and certification. However, the spectra alone only
lation procedure described above. Each of the 9 coefficients in Eell a portion of the story. It would seem preferable to design with
(9) were generated as statistically independent, normally distria-margin consistent with the statistical uncertainty inherent in the
uted random variables, with means and standard deviations giteads data. Fewer data implies greater uncertainty and should re-
by Tables 2 and 3, respectivelfCorrelation among these vari- quire a larger margin while more data implies less uncertainty and
ables can also be included; however, this was not done)ldte. ought to require a modest margin. Safety factors are still required
of these results adopt the site-specific mean turbulence model; ite.account for other non-statistical sources of uncertainty.
the results labeled “Average | at each wind speed” in Figs. The parametric models presented in this paper offer a system-
9(a,b). These results from Figs. 8(b). are repeated in Figs. atic method of analyzing loads data to provide a definition of the
11(a,b), and referred to there aketerministiaesults. Also shown loads as a function of the inflow conditions. The example data set
are 95% confidence results; i.e., probability levels below whidind loads analysis presented here illustrate how this process may
95% of the simulations fall. be conducted. The loads data sets studied here were first truncated
The increase in probability, over the deterministic results ito eliminate undamaging fatigue ranges that distort the analysis.
order to achieve 95% confidence, is found to be relatively modeStuch truncations can usefully improve fits of the model to the
This reflects the benefit of having as many as 101 10-minui@ads data while not underestimating fatigue-related damage.
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