
 Open access Proceedings Article DOI:10.1145/1230100.1230123

Parametric motion graphs — Source link

Rachel Heck, Michael Gleicher

Institutions: University of Wisconsin-Madison

Published on: 30 Apr 2007 - Interactive 3D Graphics and Games

Topics: Motion estimation, Motion field, Structure from motion, Match moving and Parametric statistics

Related papers:

 Motion graphs

 Interactive control of avatars animated with human motion data

 Interactive motion generation from examples

 Automated extraction and parameterization of motions in large data sets

 Construction and optimal search of interpolated motion graphs

Share this paper:

View more about this paper here: https://typeset.io/papers/parametric-motion-graphs-
51l4fs2qig

https://typeset.io/
https://www.doi.org/10.1145/1230100.1230123
https://typeset.io/papers/parametric-motion-graphs-51l4fs2qig
https://typeset.io/authors/rachel-heck-319vg4qmgz
https://typeset.io/authors/michael-gleicher-2vgjvqbdtn
https://typeset.io/institutions/university-of-wisconsin-madison-1lo9rg1b
https://typeset.io/conferences/interactive-3d-graphics-and-games-13ls4mae
https://typeset.io/topics/motion-estimation-3fj0tj8b
https://typeset.io/topics/motion-field-3k2l8b1u
https://typeset.io/topics/structure-from-motion-3jb74pt1
https://typeset.io/topics/match-moving-2lr04hi7
https://typeset.io/topics/parametric-statistics-ai38vxse
https://typeset.io/papers/motion-graphs-4wcontlhju
https://typeset.io/papers/interactive-control-of-avatars-animated-with-human-motion-5c2jvc15r3
https://typeset.io/papers/interactive-motion-generation-from-examples-52678aw5bl
https://typeset.io/papers/automated-extraction-and-parameterization-of-motions-in-2pn70ml3yp
https://typeset.io/papers/construction-and-optimal-search-of-interpolated-motion-3ncfyqnbpq
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/parametric-motion-graphs-51l4fs2qig
https://twitter.com/intent/tweet?text=Parametric%20motion%20graphs&url=https://typeset.io/papers/parametric-motion-graphs-51l4fs2qig
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/parametric-motion-graphs-51l4fs2qig
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/parametric-motion-graphs-51l4fs2qig
https://typeset.io/papers/parametric-motion-graphs-51l4fs2qig

To appear in the ACM SIGGRAPH Symposium on Interactive 3D Graphics conference proceedings

Parametric Motion Graphs

Rachel Heck and Michael Gleicher∗

University of Wisconsin-Madison

Figure 1: An interactively controllable walking character using parametric motion graphs to smoothly move through an environment. The
character is turning around to walk in the user-requested travel direction, depicted by the red arrow on the ground.

Abstract

In this paper, we present an example-based motion synthesis tech-
nique that generates continuous streams of high-fidelity, control-
lable motion for interactive applications, such as video games. Our
method uses a new data structure called a parametric motion graph
to describe valid ways of generating linear blend transitions be-
tween motion clips dynamically generated through parametric syn-
thesis in realtime. Our system specifically uses blending-based
parametric synthesis to accurately generate any motion clip from
an entire space of motions by blending together examples from that
space. The key to our technique is using sampling methods to iden-
tify and represent good transitions between these spaces of motion
parameterized by a continuously valued parameter. This approach
allows parametric motion graphs to be constructed with little user
effort. Because parametric motion graphs organize all motions of a
particular type, such as reaching to different locations on a shelf, us-
ing a single, parameterized graph node, they are highly structured,
facilitating fast decision-making for interactive character control.
We have successfully created interactive characters that perform se-
quences of requested actions, such as cartwheeling or punching.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: motion capture, motion synthesis, motion graphs

1 Introduction

In many interactive applications, such as video games and simula-
tions, humanoid characters play an essential role. One important
aspect of these characters is the way they move. These movements

∗e-mail:{heckr, gleicher}@cs.wisc.edu

must not only be of sufficient fidelity but must also respond to user
control and dynamically changing environments. Ideally, any mo-
tion synthesis method used in an interactive application should effi-
ciently produce continuous streams of high-fidelity motions; be re-
sponsive to changing inputs; generate motions that accurately meet
supplied constraints, such as the location where a character should
punch; and allow easy authoring of new movements.

Computer animation researchers and practitioners have provided
a number of methods for generating character motions. However,
existing approaches make limiting tradeoffs between motion qual-
ity, accuracy, responsiveness, and ease of authoring. Methods used
in practice for creating the motions in video games require exten-
sive work to author the structures used for motion control, and often
the results are still limited in their movement quality and/or con-
trol accuracy. Alternatively, methods developed by animation re-
searchers provide automated authoring of high-fidelity motions, but
these methods fail to simultaneously provide the accurate control,
flexibility in movement types, and responsiveness demanded by in-
teractive applications. Our goal is to provide a motion synthesis
technique that produces accurate, controllable, high-fidelity motion
streams and allows automated authoring of interactive characters.

In this paper, we introduce the parametric motion graph,
an example-based motion synthesis data structure. Like other
example-based data structures, parametric motion graphs provide
easy authoring of high-quality motions but also supply the respon-
siveness, precise control, and flexibility demanded by interactive
applications. A parametric motion graph describes possible ways
to generate seamless streams of motion by concatenating short mo-
tion clips generated through blending-based parametric synthesis.
Blending-based parametric synthesis allows accurate generation of
any motion from an entire space of motions, by blending together
examples from that space. For example, parametric synthesis can
generate motions of a person picking up an item from any loca-
tion on a shelf by blending together a small set of example mo-
tions. While neither seamless motion concatenation nor parametric
synthesis is a new idea, by combining both techniques, paramet-
ric motion graphs can provide accurate control through parametric
synthesis and can generate long sequences of high-fidelity motion
without visible seams using linear blend transitions.

In contrast to many other automated methods for representing
transitions between motions, parametric motion graphs are highly

1

To appear in the ACM SIGGRAPH Symposium on Interactive 3D Graphics conference proceedings

structured, facilitating efficient interactive character control. The
nodes of a parametric motion graph represent entire parametric mo-
tion spaces that produce short motions for given values of their
continuously valued parameters. The directed edges of the graph
encode valid transitions between source and destination parameter-
ized motion spaces. This structure efficiently organizes the large
number of example motions that can be blended together to pro-
duce the final motion streams. Because of this structure, we have
been able to easily author interactively controllable characters that
can walk, run, cartwheel, punch, change facing direction, and/or
duck in response to user-issued requests.

While prior work on synthesis by concatenation has focused on
representing seamless transitions between individual clips of mo-
tion, we face the problem of defining valid transitions between pa-
rameterized spaces of motions, where it is not often possible to
transition from any motion in one parameterized motion space to
any motion in another. For example, consider a parameterized mo-
tion space representing a person taking two steps, parameterized on
curvature. One can imagine that this parameterized motion space
can follow itself; a person can take two steps, and then take two
more, and so on. However, a transition should not be generated be-
tween a motion where the character curves sharply to the right and
another where the character curves sharply to the left; the resulting
transition would not look realistic. Thus, the edges in a paramet-
ric motion graph must encode the range of parameters of the tar-
get space that a motion from the source space can transition to, as
well as the correct way to make the transition between valid pairs
of source and destination motions. The key challenge to parametric
motion graphs is finding a good way to compute and represent these
transitions. By approaching the problem from a sampling perspec-
tive, we provide an efficient way to compute and encode the edges
of a parametric motion graph, allowing automated authoring and
fast transition generation at runtime.

The rest of this paper is organized as follows. Section 1.1 pro-
vides an overview of our technique. Then, Section 2 discusses other
work related to interactive motion generation. In Sections 3 and 4,
we detail our method for building and extracting information from
a parametric motion graph. Then, Section 5 presents the results
of our work, describing some of the parametric motion graphs we
built and the applications we made to show their utility. Finally,
Section 6 concludes with a general discussion of the presented tech-
nique, including a number of the technique’s limitations.

1.1 An Overview of Our Technique

To provide parametric motion graphs as a method for interactive
character control, we describe how to:

Build Parametric Motion Graphs: Using a method based on
sampling, we can efficiently locate and represent transitions
between parameterized motion spaces.

Extract Data from Parametric Motion Graphs: Our represen-
tation of transitions allows fast lookup of possible transitions
at runtime using interpolation.

Use Parametric Motion Graphs for Interactive Control:
Because parametric motion graphs are highly structured, they
facilitate the fast decision-making necessary for interactive
character control. Furthermore, because all motion clips in
the graph are generated using parametric synthesis, motions
accurately meet relevant constraints.

To illustrate the utility of parametric motion graphs, we give a
concrete example. We can create a character that can be directed
through an environment with continuous steering controls. Using
an existing blending-based parametric synthesis method, we first
build a parametric motion space of a person walking at different
curvatures for two steps. Next, we quickly build a parametric mo-
tion graph from this motion space using the algorithm presented in

this paper. The resulting graph contains a single node, represent-
ing the parameterized walking motion space, and a single edge that
starts and ends at this node. This edge describes how to transition
from the end of a generated walking clip to any generated walking
clip in a subspace of the motion space. This simple structure orga-
nizes many motions in a way that allows efficient character control
at runtime. By translating a user’s desired travel direction into de-
sired curvature requests, we can synthesize a continuous stream of
walking motion that reacts to a user’s commands. This stream of
motion will be smooth, run at interactive rates, and will only con-
tain high-fidelity transitions between clips of motion. See Figure 1
to see a screen capture of our interactive walking character. Unlike
other techniques that can create interactive walking characters, our
technique requires little authoring effort, is capable of accurate mo-
tion generation, and works with a wide range of different motions.
For instance, once we have an interactive walking character, it is
easy to create a character that locomotes by running or cartwheel-
ing simply by building a parameterized motion space of running or
cartwheeling motions, also parameterized on curvature.

2 Related Work

Researchers have studied ways to generate human motion in an au-
tomated way; two of these approaches serve as the foundation of
our work. The first, parametric synthesis, is the set of techniques
that map motion parameters to motion, allowing the generation of
any motion from an entire space of motions by supplying the rel-
evant parameters. Previous work on parametric synthesis can be
divided into two groups: procedural and blending-based. Procedu-
ral parametric synthesis generates very specific parametric motion
spaces using highly-specialized algorithms [Perlin 1995; Perlin and
Goldberg 1996; Hodgins et al. 1995]. Blending-based parametric
synthesis builds parameterized spaces of motion in a general way
using motion interpolation [Bruderlin and Williams 1995] on a set
of examples from that space [Wiley and Hahn 1997; Rose et al.
1998; Kovar and Gleicher 2004; Mukai and Kuriyama 2005]. For
example, blending-based parametric synthesis can generate mo-
tions of a person punching toward any location within an enclosed
area by analyzing and blending example punching motions from
that space. A parametric motion graph uses blending-based para-
metric synthesis to generate clips of motion that accurately meet
user-specified constraints, allowing us to represent an infinite num-
ber of motions in a simple compact structure. What this previous
work on parametric synthesis does not provide is a way to transition
between these different parameterized spaces of motions.

The second motion generation approach that our work builds
upon is synthesis-by-concatenation. This approach generates long
motion streams by piecing together many short motion clips. Early
work focused on realistic ways to transition between two motion
clips [Rose et al. 1996; Lamouret and van de Panne 1996]. More
recent work allows possible transitions in a motion collection to be
represented using graph structures [Arikan and Forsythe 2002; Ko-
var et al. 2002; Lee et al. 2002; Arikan et al. 2003; Kim et al. 2003].
Like with Video Textures [Schödl et al. 2000], these techniques fo-
cus on using automated comparison methods to locate frames of
motion that look similar enough to be used as a transition point, al-
lowing easy authoring of the transition graphs. Like this previous
work, we are interested in finding and representing possible transi-
tions between motions. But because parametric motion graphs use
parametric synthesis to generate accurate motion clips, they must
represent possible transitions between spaces of motion.

While the motion graphs described above are capable of produc-
ing natural motion, they are not structured, thus requiring a costly
global search in order to locate motion sequences that meet speci-
fied constraints. This dependence on global search makes it diffi-
cult to use these structures for interactive character control. Other

2

To appear in the ACM SIGGRAPH Symposium on Interactive 3D Graphics conference proceedings

Figure 2: At the transition point between two motions of a char-
acter turning towards the right, our character remains leaning into
the turn (as shown in green) while the character using a fat graph
must return to the common transition pose with no lean (as shown
in blue), causing the character to “bob” as it goes around the turn.

researchers have augmented these graphs by precomputing graph
properties that aid in control. These techniques include the mo-
bility maps of Srinivasan et al. [2005] and the method of Lee and
Lee [2004]. Unlike parametric motion graphs, these methods are
only able to represent transitions between a discrete number of mo-
tions and become unwieldy as the number of motions becomes
large. Furthermore, these techniques do not directly address the
problem that the underlying graph is unstructured; they instead deal
with the unstructured graph in a more efficient way.

The gaming industry often uses hand-generated, structured
graphs called move trees to represent possible transitions between
motion clips [Mizuguchi et al. 2001]. Because move trees are con-
structed for easy interactive character control, they have a delib-
erate, hand-designed structure that aids in choosing motions based
on user requests. Because parametric motion graphs use parame-
terized motion spaces to represent entire motion families, they also
offer a way to deliberately manage the complexity of the transitions
between many motions. This structure facilitates the use of para-
metric motion graphs for controlling characters in realtime.

Other researchers have built structured representations for online
locomotion generation. Sun and Metaxas [2001] use a procedural
parametric walking motion to generate streams of motion that ad-
just to uneven terrain and user-defined curvature. Using a similar
method, Park et al. [2002] generate locomotion, such as walking
and jogging, whose curvature is controllable. Kwon et al. [2005]
group motion segments based on footstep patterns and generate
transitions between these groups using a hierarchical motion graph,
where the coarsest level describes general transition patterns and
the more detailed levels capture the cyclic nature of locomotion.
These techniques for generating controllable locomotion show the
utility of using structure to produce controllable motion in realtime.
Our technique uses structure to control more general motions with
a wide variety of different motion properties.

One structured-graph technique that shares many of our goals
is Snap-Together Motion [Gleicher et al. 2003]. The key of this
technique is to identify poses that appear many times in the origi-
nal motion examples. These poses become “hub” nodes in a graph,
and edges between these nodes correspond to motion clips that can
transition between these poses. A recent extension to this work
groups similar clips that connect the same “hub” nodes into para-
metric edges, forming a new structure called a fat graph [Shin and
Oh 2006]. Fat graphs and parametric motion graphs are very sim-
ilar in that they combine parametric synthesis and synthesis-by-
concatenation to provide interactive control. But parametric motion

graphs have a number of other benefits. Because all motions rep-
resenting the same logical action, such as walking or dodging, are
always grouped together, parametric motion graphs provide even
more structure and a graph author can easily see the logical con-
nections between motion types. Parametric motion graphs also rep-
resent continuously changing transition points and ranges within a
single type of motion. A fat graph must use more than one “hub”
node in order to capture a portion of the complexity of these shift-
ing transition possibilities. Fat graphs are also limited in the quality
of their results by the use of “hub” nodes; motions are constantly
forced to return to a common pose at each transition point, as il-
lustrated in Figure 2. On the other hand, parametric motion graphs
handle natural variations in the transition poses of similar motions.

3 Building a Parametric Motion Graph

To facilitate efficient motion synthesis at runtime, we do much of
the needed computation for controlling interactive characters while
building a parametric motion graph offline. A parametric motion
graph only needs to be built once, resulting in a small text file rep-
resentation of the graph that can be loaded in at runtime.

As described in Section 1, each node of a parameterized mo-
tion graph represents a parametric motion space implemented using
blending-based parametric synthesis. For all of our examples, we
perform blending-based parametric synthesis using the techniques
of Kovar and Gleicher [2004]. Kovar and Gleicher describe how
to automatically find and extract logically similar motions, or mo-
tions where the character is performing the same basic action, from
a motion database; they then provide a method for building and
representing parameterized spaces from these motions using blend-
ing techniques. We chose to use this method because it produces
high-quality results, allows for quick experimentation with many
different types of motion, provides a simple and efficient method
for producing motion clips at runtime, and results in parameterized
motion spaces that are smooth. A parameterized motion space is
considered smooth if small changes in the input parameters pro-
duce small changes in the generated motion.

While we can build the nodes of a parametric motion graph using
this existing technique, our key challenge is finding a way to iden-
tify and represent possible transitions between these parameterized
nodes. The smoothness property of the motion spaces represented
by our graph nodes allows us to tackle this challenge using sam-
pling. The rest of this section describes in detail how to identify
and represent edges between source and target graph nodes, Ns and
Nt respectively. Throughout this description, we define a motion
as the continuous function M(t), which provides values for each
of the degrees of freedom of a hierarchical skeleton model at time
t. In practice, M(t) is represented as regularly sampled frames,
M(t1), . . . ,M(tn), and values for times not sampled are produced
using linear interpolation on the degrees of freedom. The parame-
terized motion space represented by node Ni is denoted by P i(l),
where l is a vector of relevant motion parameters, such as the target
of a punch; a parametric motion space produces a short motion, Mi,
for any given value, li, of its continuously valued parameters.

3.1 Identifying Transitions Between Motion Spaces

To start, consider the case where the nodes Ns and Nt represent
small motion spaces whose valid parameter ranges only include
a single point. This case reduces to the traditional synthesis-by-
concatenation problem; can we locate a frame of motion near the
end of the motion generated by Ns, M1, and a frame of motion near
the beginning of the motion generated by Nt , M2 that are similar
enough to allow a linear blend transition from one to the other over
a short window centered at these frames? To compute the simi-
larity between two frames of motion, D(M1(ti),M2(t j)), we use a

3

To appear in the ACM SIGGRAPH Symposium on Interactive 3D Graphics conference proceedings

B
o
x
i
n
g

D
a
n
c
e

Boxing Punch

Figure 3: A distance grid. Darker regions denote greater similarity
between frames of a boxing dance motion and frames of a punching
motion. The light red dot marks the optimal transition point.

distance metric originally introduced by Kovar et al. [2002]. First,
for both frames, we form a point cloud based on the locations of
each skeletal joint over a small window of time surrounding the
frame. We then compute the optimal sum-of-squared-distances be-
tween corresponding points in the two point clouds, given that each
cloud may be translated along the floor plane and rotated about the
vertical axis. Depending on the length of the window over which
the point cloud is built, this distance metric can take into account
relative joint positions, joint velocities, and joint accelerations when
measuring similarity. Refer to [Kovar et al. 2002] for a closed form
solution to the optimization.

Given the point cloud similarity metric, we can conclude that a
good transition exists from M1 to M2 if and only if there exists a
frame, t1, near the end of M1 and a frame, t2, near the beginning
of M2 such that D(M1(t1),M2(t2)) ≤ TGOOD, where TGOOD is a
tunable threshold. We first calculate the distance between every pair
of frames in the possible transition regions, forming a grid. The pair
of frames corresponding to the grid cell with the minimum distance
value is called the optimal transition point. If the distance value
of the optimal transition point is below TGOOD, then it is possible
to transition between M1 and M2 at that point, (t1

o , t2
o), by aligning

the motions using the optimal translation and rotation computed for
the computation D(M1(t

1
o),M2(t

2
o)). Figure 3 shows an example of

this distance grid computation between two motions.

Now consider the general case where Ns and Nt represent larger
spaces. For any sufficiently large space, it is unlikely that the mo-
tions represented by the space look similar enough to be treated like
a single motion. For example, in the walking example discussed in
Section 1, the walking character can only transition to other walk-
ing motions where the character walks at a similar curvature to its
current one. However, since each parameterized motion space rep-
resents an infinite number of motions, it is infeasible to compare
all possible pairs of motions represented by each of the parameter-
ized nodes. One possible approach is to reduce each parameterized
motion space to a discrete number of motions chosen from the full
space. To find and represent good transitions between all pairs of
motions from a source set of size m and a target set of size n, we
would need to repeat the technique described above mn times. Un-
fortunately, by transforming a continuous motion space into a dis-
crete set of motions, we lose much of the accuracy that parametric
synthesis provides us; accuracy can be increased by adding more
motions to these sets but this results in a combinatorial explosion
in the number of required comparisons and the amount of space
needed to store the possible transitions.

Yet, we observe that in a smooth parameterized motion space,
motions generated for any local neighborhood of parameter space
look similar. For example, consider a parameterized motion space

a b c

Figure 4: Process for determining the valid transition region in tar-
get parameter space for a particular motion. (a) A set of randomly
chosen samples from the target space. (b) Darkened circles pro-
duce good transitions, crossed out circles produce bad transitions,
and empty circles produce neutral transitions. The shaded box en-
closes all good samples but also includes some bad samples. (c) The
adjusted shaded box excludes all bad samples. In practice, usually
little to no adjustment is made to the bounding box.

representing motions of a person punching, parameterized on the
location of the punch. Two motions in this space where the punches
land 1mm apart look similar. In this case we can compute the pos-
sible transitions from one of these motions and use the result for
both. This observation leads us to approach the problem of iden-
tifying and representing transitions between parameterized motion
spaces using sampling, extending the method for locating possible
linear blend transitions between individual motions.

3.2 Building a Parametric Motion Graph Edge

An edge between source and target nodes, Ns and Nt respectively,
maps any point, ls

i , in Ps to the subspace of Pt that can be tran-
sitioned to from Ms

i = Ps(ls
i). It also supplies the time at which

that transition should occur. Assuming it is possible to transition
from every point in Ns to some subspace in Nt , we can build an
edge between these nodes using sampling. We start by generat-
ing two lists of random parameter samples, Ls = {ls

1, . . . , l
s
ns
} and

Lt = {lt
1, . . . , l

t
nt
} (see Figure 4a). In order to accurately capture the

variations in the target space, nt should be large. The exact number
depends heavily on the size of the parameter space, but we found
1000 samples to be more than enough for all of the cases we tried,
even for parameterized motion spaces that have three parameters. In
contrast, ns should be small, while still covering the source space,
as this number affects the amount of storage needed for an edge.
For our examples, ns was around 50.

Now consider a sample from Ls, ls
1. This sample corresponds to

the motion Ms
1 = Ps(ls

1). We can determine if Ms
1 can transition to

each motion represented by the parameter samples in Lt by comput-
ing the optimal transition point with each motion {Mt

1, . . . ,M
t
nt
}.

Samples from Lt that produce good transitions are added to the list
of parameter samples Lt

GOOD. Using the observation that motions
close in parameter space look similar, we can assume that any pa-
rameter vector for Pt whose nearest parameter samples from Lt

appear in Lt
GOOD can also be transitioned to from Ms

1. Thus, the

list Lt
GOOD defines the subspace of Pt to which Ms

1 can transition.

Unfortunately, we cannot represent the subspace of Nt that can
be transitioned to from Ms

1 by listing the points in Lt
GOOD because,

as described in Section 1.1, we plan to determine what transitions
are possible at runtime using a simple and efficient interpolation
scheme (as shown in Figure 5); interpolating between potentially
different numbers of uncorrelated points in a meaningful way is
difficult, if not impossible. So, instead, we represent each subspace
as a simple shape that can always be interpolated (i.e. bounding
boxes, spheres, triangles). We have found axis-aligned bounding
boxes work well for our data; we use axis-aligned bounding boxes
to represent all of the transition parameter subspaces.

4

To appear in the ACM SIGGRAPH Symposium on Interactive 3D Graphics conference proceedings

Using simple, easily interpolated shapes to represent transition
regions introduces a considerable problem. Any simple shape that
contains all points in Lt

GOOD could also contain other points from

Lt that were not deemed good transition candidates (see Figure 4b).
To guarantee that bad transitions are not included in the transi-
tion subspace of Nt , we take a conservative, double threshold ap-
proach. First, while constructing the list Lt

GOOD, we also form a

list, Lt
BAD, containing all samples from Lt that generate motions

whose optimal transition point distance is greater than TBAD, where
TBAD ≥ TGOOD. Next, we compute the bounding box of all param-
eter samples in Lt

GOOD. Finally, we consider each sample in Lt
BAD;

if the sample falls within the subspace defined by the bounding box,
we make the minimal adjustment to the dimensions of the bound-
ing box such that the sample falls at least ε away, where ε > 0. In
this way, we construct a bounding box that contains many, if not
all, of the samples from Lt

GOOD without including any of the sam-

ples from Lt
BAD. Neutral samples from Lt whose optimal transition

point distance falls between TGOOD and TBAD are considered good
enough if they fall within the transition subspace of Nt but will not
be explicitly included in the space (see Figure 4c). In practice, the
system makes very few bounding box adjustments to remove bad
samples and in most cases makes none at all.

We also compute a single transition point from Ms
1 to any of

the motions located in the subspace of Nt defined by the computed
bounding box. Previously, we described the optimal transition point
of two motions as the pair of frames where the two motions are most
similar. For computing a generic transition point for the entire sub-
space, it is useful to normalize these frame numbers to the range 0
to 1. Again, because nearby motions in a motion space look similar,
the optimal transition points are likely to be at similar normalized
times. So, we average the normalized optimal transition points for
each sample of Lt

GOOD that falls inside the adjusted bounding box
to calculate the transition point for the subspace.

Putting all the pieces together, an edge can be defined between
Ns and Nt as a list of transition samples, one for each parameter
vector in Ls. Each sample includes:

• The Value of the Parameter Vector ls
i

• The Computed Transition Bounding Box for ls
i

• The Average, Normalized Transition Point for ls
i

We could also store the average alignment transform between the
motion Ms

i and each of the motion samples in Lt
GOOD but recom-

puting this alignment is very fast; we save storage space by com-
puting the alignment transform for each transition at runtime.

Up until this point, we have assumed that we can transition from
every point in Ns to some subspace of Nt . We define that a transi-
tion exists between nodes Ns and Nt if and only if for any motion
contained in Ns there exists some motion in Nt that it can transition
to. Thus, if we find a sample in Ls whose adjusted bounding box is
empty, we cannot create an edge between Ns and Nt

4 Parametric Motion Graph Lookup

Synthesizing motion using a parametric motion graph is quick and
efficient. The data that is stored in each node of the graph allows
fast lookup for possible transitions. In particular, given the node,
Ns, and relevant parameter vector, l̃s, for a motion clip, we can de-
termine what subspaces of other parameterized motion spaces can
be transitioned to as well as when that transition should occur.

For each outgoing edge of Ns, we begin by finding the k-nearest
neighbors to l̃s from the transition sample list in terms of Euclidean
distance, where k is normally one more than the number of di-
mensions of Ps. Let us call these neighbors ls

1, . . . , l
s
k, ordered

from closest to farthest from 1̃s. Following the work of Allen et

Figure 5: Mapping a parameter vector, depicted by the X, from the
1-D parameter space on the left, to a valid transition region in the
2-D parameter space on the right. X’s bounding box is the weighted
average of the bounding boxes for its 2-nearest neighbors.

al. [2002], each ls
i is associated with a weight, wi:

wi =
w′

i

∑k
j=1 w′

j

(1)

w′
i =

1

ε(l̃s, ls
i)

−
1

ε(l̃s, ls
k
)

(2)

where ε gives the Euclidean distance between parameter samples.
For any outgoing edge of Ns, we can calculate the subspace of

the target node, Nt , that we can transition to, B(Ns,Nt), as follows:

B(Ns,Nt) =
k

∑
i=1

wi ∗β(ls
i) (3)

where β(ls
i) gives the value of the bounding box for the sample ls

i ,
represented by the location of the box’s center and its width in each
dimension, as stored in the edge (see Figure 5). Similarly, we can
compute the normalized transition point as a weighted sum of the
average, normalized transition points for each ls

i stored in the edge.

5 Results

The examples in this paper were computed on a laptop computer
with a 1.75GHz Pentium M Processor, 1GB of RAM, and an ATI
Mobility Radeon X300 graphics card. All of the generated motions
were sampled at 30Hz. Each of the parametric motion graphs we
generated can synthesize and render streams of motion at more than
180 frames per second. In this section, we provide details for some
of the example parametric motion graphs we designed for interac-
tive character control. Following the description of these graphs,
we present the results of a number of experiments for testing the
usefulness of these graph structures in interactive applications.

5.1 Graphs

To build each graph described below, an author starts by choos-
ing the parameterized motion spaces needed for the graph from
our available motion space database. These parameterized motion
spaces then appear as disconnected nodes in the graph. Next, the
author simply chooses two nodes to generate an edge between and
specifies values for TGOOD, TBAD, ns, and nt . While it is possible to
set the values of TGOOD and TBAD without user input, the ability to
adjust these values allows an author to determine where to set the
tradeoff between motion quality and flexibility. For our example

5

To appear in the ACM SIGGRAPH Symposium on Interactive 3D Graphics conference proceedings

punch

dance duck

Figure 6: A boxing graph.

graphs, the amount of time it took to generate a single edge varied
from 2− 147 seconds, depending on the complexity of the source
and target parameterized motion spaces. In practice, we found it
took two or three iterations in order to tune the parameters TGOOD

and TBAD for each edge. Empirically, we find that setting TGOOD

to .5 and TBAD to .7 serves as a good starting point. Even for our
largest graph, it was possible to store the graph’s structure and edge
information in a plain text file requiring less than 50KB of space.

5.1.1 Single Node Locomotion Graphs

While other researchers have dealt specifically with generating con-
trollable streams of locomotion in realtime, we chose to create sev-
eral single-node locomotion graphs because it is easy to see errors
in this commonly performed activity. In our first graph, we en-
coded streams of walking motion that only contains smooth turns.
This graph consists of a single node representing a parameterized
motion space of a character walking for two steps at different cur-
vatures. The parameterized motion space maps the angular change
in the character’s travel direction from the beginning to the end
of the motion (between −131 degrees and 138 degrees) to synthe-
sized motions. Similarly, we built a running graph out of a single
node representing a parameterized motion space with a valid angu-
lar travel direction change between −120 degrees and 99 degrees.

Since our technique requires little authoring effort, it is possible
to experiment with non-obvious motions. We also built a parametric
motion graph that encodes locomotion control through cartwheel-
ing. Like the graphs for walking and running, our cartwheel loco-
motion graph contains only a single node. This node represents a
parameterized motion space of a character doing a cartwheel, ro-
tating towards the right by varying amounts on one foot, and then
doing a cartwheel in another direction. Again, the parameterized
motion space maps the angular change in travel direction of the
character from the beginning of the motion to the end (between −13
degrees and 157 degrees) to synthesized motions. Each of these sin-
gle node locomotion graphs take less than 5 minutes to build from
beginning to end using our unoptimized system.

5.1.2 General Graphs

In addition to single-node locomotion graphs, we have also built
several larger graphs. The simplest is a two-node graph that com-
bines the walking and running nodes described earlier. This graph
can control the travel direction of a character that can both run and
walk. We have also built a seven-node, fourteen-edge graph con-
taining motions for walking and running at different curvatures, sit-
ting down and standing up from chairs of heights between 1ft and

1.9ft tall, stepping up onto and stepping off of platforms of heights
between .8ft and 1.8ft tall, and leaping over distances between 2
and 3ft. It takes about 11 minutes to build this graph. The final
graph organizes a total of 256 example motions so that they can be
blended to produce continuous streams of controllable animation.

In order to show that our technique works when controlling a
number of different non-locomotion actions, we built a parametric
motion graph that encodes the motions of a boxer punching, duck-
ing, and “dancing” from one foot to the other. The boxing graph
consists of exactly three nodes. The first node represents all mo-
tions of a boxing character punching to some location in a 6ft wide,
2ft tall, and 5ft deep space. The parameterized motion space maps
desired punch locations in relation to the starting configuration of
the root to synthesized punching motions. The second node of the
boxing graph represents motions of a boxing character ducking be-
low different heights (between 3.4ft and 5.6ft from the ground) and
is parameterized on how low the character ducks. The third and
final node encodes motions of a character “dancing” from one foot
to another while maintaining a boxing ready stance. When “danc-
ing”, the character rotates by different amounts (between −27 and
46 degrees). Thus, the “dancing” motion space maps the change in
facing direction from the beginning of the motion to the end of the
motion to synthesized “dancing” motions. In total, the parameter-
ized motion spaces used for these graph nodes blend between 275
different motion captured examples. A discrete motion transition
graph that represents transitions between this number of motions
would be very large and unwieldy. In contrast, our final graph (Fig-
ure 6) contains only nine edges, one connecting every pair of nodes.
It takes approximately 7 minutes and 40 seconds to build the graph.

5.2 Applications

We implemented a number of different applications to test the use-
fulness of our technique. In this section, we describe these applica-
tions in detail and provide our results.

5.2.1 Random Graph Walks

Our first application shows that parametric motion graphs can gen-
erate seamless, high-fidelity motion streams in realtime. For each
of our graphs, we can produce a random stream of motion by tak-
ing random walks on the graph. We start by choosing a random
node and parameter vector from the graph. When the parameterized
motion space associated with the node is supplied with the chosen
parameter vector, we can render a motion that matches this param-
eter request in realtime. While playing the motion, when we reach
the possible transition region, we randomly choose an edge from
those leaving our current node. The node that this edge points to is
the new target node. Using the method described in Section 4, we
compute the optimal transition point and the parameter subspace of
the target node that we can transition to from our current parame-
ter vector. We then randomly choose a new target parameter vector
enclosed in this subspace. Finally, when we reach the blending win-
dow centered at the optimal transition point, we compute the point
cloud alignment between our current motion and our newly cho-
sen motion, align the motions, and then blend between them. This
process is repeated indefinitely. By randomly generating continu-
ous streams of motion, we can confirm that our technique produces
smooth motions and avoids poor transitions. Please see our accom-
panying video for the results of this application.

5.2.2 Target Directed Control

Our second application tests whether our walking character can ac-
curately reach a target location using a greedy graph search similar
to the one used for locomotion control in [Srinivasan et al. 2005]

6

To appear in the ACM SIGGRAPH Symposium on Interactive 3D Graphics conference proceedings

Figure 7: Using parametric motion graphs, this character walks to
a specified location, depicted by the red square on the ground.

and crowd control in [Sung et al. 2005]. For this application, we
generate a motion stream in the same way we do for random graph
walks, except that when it is time to choose a new parameter vector
from the target bounding box, we choose the parameter vector that
best adjusts the character’s travel direction towards a target. Fig-
ure 7 shows that our character is able to accurately reach a target
location without wandering by using this simple control algorithm.

We also allow a user to request that the character reach the target
location oriented in a particular direction. For this case, we choose
the parameter vector that both adjusts the character’s travel direc-
tion towards the target and orients the character towards the desired
facing direction. We place more weight on the orientation compo-
nent of this optimization function as the character gets closer to the
target. In several cases, our character can perform the requested ac-
tion very well. But we find that in others, the character approaches
the target and then turns in circles trying to orient themselves. This
result is anticipated as we know that the character’s minimum turn-
ing radius is quite large. Inspired by the work of Reitsma and Pol-
lard [2004], we used a discrete, brute force method to embed our
parametric motion graph in the environment in hopes of better un-
derstanding this problem. This embedding made it clear that our
character could easily meet location constraints within a reasonable
radius but that for most locations, there were only a few orientations
that the character could be in when they arrived.

5.2.3 Interactive Character Control

Our last and most important application allows users to interactively
control a character. To do this, we attach a function to each node
that translates user requests to parameters. For example, for walk-
ing and cartwheeling, we wanted a user to control the travel direc-
tion of the character by specifying the desired travel direction using
a joystick. So, we attached a function to each of these nodes that
could compute the angular change between the character’s current
direction of travel and desired direction of travel.

With these translation functions in place, we can again generate
motion streams as we did when generating random graph walks
except that when it is time to choose a parameter vector from the
target bounding box, we query the user’s current request. Then we
use the translation function for the requested node to compute a
parameter vector. If they are not already, these parameter values are
adjusted so that they fall within the target bounding box.

This process has the effect of creating interactive characters that
perform requested actions as accurately as possible without intro-
ducing poor transitions between motion clips. By limiting the tran-
sitions to good ones, our characters occasionally miss targets; in
these cases, the character still “reacts” to the target by choosing a
good transition that gets closest to meeting the request. Using our
technique, we produced walking, running, and cartwheeling char-
acters whose travel direction can be controlled; a character who can
either run or walk in a desired travel direction; a boxing character
that is able to change facing direction while “dancing”, punch to-
wards specified 3D locations, and duck below a specified height;
and a character that can walk or run in a desired direction, step onto
and off of platforms, sit down and stand up from chairs, and leap

Figure 8: An interactively controllable character using parametric
motion graphs. The character has just stepped up onto a platform
after sitting down in a chair.

Figure 9: An interactively controllable cartwheeling character us-
ing parametric motion graphs to smoothly move through an envi-
ronment. The character has changed cartwheeling direction in order
to travel in the user-requested direction depicted by the red arrow.

over distances. Figures 1, 8, 9, and 10 show some of our results.
The accompanying video provides examples of all of these charac-
ters being controlled in realtime.

6 Discussion

As presented, parametric motion graphs are able to produce seam-
less, controllable motion streams in realtime. The authoring process
is highly automated, making parametric motion graphs useful for
interactive applications that would not normally have the resources
to build the structures necessary for accurate character control.

While we use the method of Kovar and Gleicher [2004] to pro-
duce parameterized motion spaces, our methods do not require that
motions be generated with any particular parametric motion synthe-
sis method. However, parametric motion graphs do require smooth
parameterized motion spaces; our sampling and interpolation meth-
ods depend on nearby motions in parameter space looking simi-
lar (see Section 3). While we have not provided an example, our
method should work just as well using a procedural parametric syn-
thesis method, as long as it produces smooth motion spaces.

One larger limitation is that we cannot represent transitions be-
tween two nodes if there is any motion in the source node that can-
not transition to the target node. For example, consider two nodes
that represent a person walking at different curvatures where the
first allows a much wider range of curvatures than the other. Be-
cause the extreme motions of the first node do not look like any of
the motions in the second node, we will be unable to create an edge
between the nodes. One possible solution to is to dynamically add
additional nodes to the graph when large enough continuous pieces
of a source node can transition to the target node. This new node

7

To appear in the ACM SIGGRAPH Symposium on Interactive 3D Graphics conference proceedings

Figure 10: An interactively controllable boxing character that uses
parametric motion graphs. The character is punching towards a
user-requested target in the top image. In the bottom image, the
character is ducking below a user specified height.

would represent the same parameterized motion space as the first
except that its range would be limited to the range of parameters
that have valid transitions to the target node.

Our method is also limited to transitioning between motions only
at one point near the end of a clip. Similarly, we do not adjust
the parameter vector while generating a motion. These limitations
mean that for motion spaces that represent long motions, it may take
time for the character to react to user requests. This problem can
be lessened by choosing parameterized motion spaces that represent
short motion clips. Other methods for improving the responsiveness
of longer clips is future work. We also plan to explore better local
search methods than the greedy one in Section 5.2.2.

This paper shows that motions for interactive characters can be
designed in an automated way, allowing fast, accurate, high-fidelity
motion generation in realtime. Our method gains the benefits of ac-
curate motion generation using parametric synthesis as well as the
ability to make good transitions between clips using a continuous
representation of transitions between parameterized spaces of mo-
tion. This technique can decrease the amount of time it takes to
author interactive characters, increase the accuracy of these charac-
ters, and provide high-fidelity motion in a reliable way.

7 Acknowledgements

We thank Lucas Kovar and Mohamed Eldawy for their help during
development, Jehee Lee for the use of his boxing data, and the NSF
for their support through grants CCR-0204372 and IIS-0416284.

References

ALLEN, B., CURLESS, B., AND POPOVIC, Z. 2002. Articulated body deformation

from range scan data. ACM Transactions on Graphics.

ARIKAN, O., AND FORSYTHE, D. A. 2002. Interactive motion generation from

examples. ACM Transactions on Graphics.

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. 2003. Motion synthesis from

annotations. ACM Transactions on Graphics.

BRUDERLIN, A., AND WILLIAMS, L. 1995. Motion signal processing. In ACM

SIGGRAPH.

GLEICHER, M., SHIN, H. J., KOVAR, L., AND JEPSEN, A. 2003. Snap-together

motion: Assembling run-time animation. In ACM SIGGRAPH Symposium on In-

teractive 3D Graphics.

HODGINS, J., W.WOOTEN, BROGAN, D., AND O’BRIEN, J. 1995. Animating hu-

man athletics. In ACM SIGGRAPH.

KIM, T., PARK, S., AND SHIN, S. 2003. Rhythmic-motion synthesis based on motion-

beat analysis. ACM Transactions on Graphics.

KOVAR, L., AND GLEICHER, M. 2004. Automated extraction and parameterization

of motions in large data sets. ACM Transactions on Graphics.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion graphs. ACM Transac-

tions on Graphics.

KWON, T., AND SHIN, S. Y. 2005. Motion modeling for on-line locomotion synthesis.

In ACM SIGGRAPH/Eurographics Symposium on Computer Animation.

LAMOURET, A., AND VAN DE PANNE, M. 1996. Motion synthesis by example. In

Eurographics workshop on Computer animation and simulation.

LEE, J., AND LEE, K. H. 2004. Precomputing avatar behavior from human motion

data. In ACM SIGGRAPH/Eurographics Symposium on Computer Animation.

LEE, J., CHAI, J., REITSMA, P., HODGINS, J., AND POLLARD, N. 2002. Interac-

tive control of avatars animated with human motion data. ACM Transactions on

Graphics.

MIZUGUCHI, M., BUCHANAN, J., AND CALVERT, T. 2001. Data driven motion

transitions. In Eurographics Short Presentations.

MUKAI, T., AND KURIYAMA, S. 2005. Geostatistical motion interpolation. In ACM

SIGGRAPH.

PARK, S. I., SHIN, H. J., AND SHIN, S. Y. 2002. On-line locomotion genera-

tion based on motion blending. In ACM SIGGRAPH/Eurographics Symposium on

Computer Animation.

PERLIN, K., AND GOLDBERG, A. 1996. Improv: A system for scripting interactive

actors in virtual worlds. In ACM SIGGRAPH.

PERLIN, K. 1995. Real time responsive animation with personality. IEEE Transac-

tions on Visualization and Computer Graphics.

REITSMA, P. S. A., AND POLLARD, N. S. 2004. Evaluating motion graphs for

character navigation. In ACM SIGGRAPH/Eurographics Symposium on Computer

Animation.

ROSE, C., GUENTER, B., BODENHEIMER, B., AND COHEN, M. 1996. Efficient

generation of motion transitions using spacetime constraints. In ACM SIGGRAPH.

ROSE, C., COHEN, M., AND BODENHEIMER, B. 1998. Verbs and adverbs: multidi-

mensional motion interpolation. IEEE CG&A.

SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I. 2000. Video textures.

In ACM SIGGRAPH.

SHIN, H. J., AND OH, H. S. 2006. Fat graphs: Constructing an interactive char-

acter with continuous controls. In ACM SIGGRAPH/Eurographics Symposium on

Computer Animation.

SRINIVASAN, M., METOYER, R. A., AND MORTENSEN, E. N. 2005. Controllable

character animation using mobility maps. Graphics Interface.

SUN, H., AND METAXAS, D. 2001. Automating gait animation. In ACM SIGGRAPH.

SUNG, M., KOVAR, L., AND GLEICHER, M. 2005. Fast and accurate goal-directed

motion synthesis for crowds. In ACM SIGGRAPH/Eurographics Symposium on

Computer Animation.

WILEY, D., AND HAHN, J. 1997. Interpolation synthesis of articulated figure motion.

IEEE CG&A.

8

