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Parametric multi-state survival models:

flexible modelling allowing

transition-specific distributions with

application to estimating clinically

useful measures of effect differences

Michael J. Crowther1,2∗† and Paul C. Lambert1,2

Multi-state models are increasingly being used to model complex disease profiles. By modelling

transitions between disease states, accounting for competing events at each transition, we can gain

a much richer understanding of patient trajectories and how risk factors impact over the entire

disease pathway. In this article we concentrate on parametric multi-state models, both Markov and

semi-Markov, and develop a flexible framework where each transition can be specified by a variety of

parametric models including exponential, Weibull, Gompertz, Royston-Parmar proportional hazards

models or log-logistic, log-normal, generalised gamma accelerated failure time models, possibly

sharing parameters across transitions. We also extend the framework to allow time-dependent effects.

We then use an efficient and generalisable simulation method to calculate transition probabilities

from any fitted multi-state model, and show how it facilitates the simple calculation of clinically

useful measures, such as expected length of stay in each state, and differences and ratios of proportion

within each state as a function of time, for specific covariate patterns. We illustrate our methods

using a dataset of patients with primary breast cancer. User friendly Stata software is provided.
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1. Introduction

Multi-state models allow rich insights into complex disease pathways, where a patient may experience many non-

fatal/intermediate events, and we wish to investigate covariate effects for each specific transition between two states,

not just for example, on the first event, or a terminal event [1].

Methodological development has generally focused on semi-parametric approaches, utilising the Cox model as

the fundamental framework of the multi-state model. As with standard survival analysis, use of the Cox model

avoids making assumptions for the underlying shape of the baseline hazard function, and indeed thanks to the

widely used mstate package in R [2], the methods are highly accessible to researchers. We argue that the benefits

of a fully parametric approach are less well known, and indeed should be used more extensively [3]. With the

drive towards personalised medicine, and expanded availability of large registry-based data sources, including

data-linkage, there are substantial opportunities to gain greater understanding of disease processes, and how they

change over time. Through a parametric approach, there are a number of distinct advantages, such as; prediction,

extrapolation, quantification (i.e. absolute and relative measures of risk), ease of modelling time-dependent effects

(non-proportional hazards) in comparison to semi-parametric approaches, and a greater understanding of how

risk changes and evolves over time [4]. A particularly important area where parametric models must be employed

is within a health economic framework, as often it is required to extrapolate survival to a lifetime horizon [5]. Of

course, extrapolation is fraught with dangers, and arguably should only be attempted in the presence of appropriate

external data [6].

Previous parametric multi-state models can be considered limited, in the fact that often the same distribution

must be assumed for all transitions, such as in the extensive flexsurv package in R [7]. For example, Omar et al.

(1995) [8] developed an illness-death model assuming Weibull transitions. Piecewise exponential multi-state models

have been implemented in R by Jackson (2011) [9], with a focus on panel data. This allows the convenience of the

exponential distribution and indeed can capture complex shapes; however, assuming a discontinuous baseline hazard

function is often not biologically plausible, which has motivated other approaches [10]. Titman (2011) [10] proposed

smooth hazard models for non-homogeneous Markov models through the use of quadratic B-splines to model the

transition specific baseline hazard functions, and employed a differential equation solver to calculate transition

probabilities. Król and Saint-Pierre recently developed the SemiMarkov package in R which allows transition

specific distributions for semi-Markov models, but the only distributions available are the exponential, Weibull

and exponentiated-Weibull, which can still be considered too simplistic for many practical situations [11]. Blaser et

al. (2015) developed a flexible approach, implemented in the gems package in R, allowing transition-specific models;

however, used a piecewise approximation to simulate event times from the fitted models. Others have employed

numerical integration to calculate transition probabilities, but this is generally limited to illness-death models, as

anything more complex than a two-dimensional numerical integration can become highly computationally intensive

and loss of accuracy can occur [12, 13]. Arguably, transition-specific distributions in a multi-state setting is relatively

simple, as it’s fundamentally a matter of data setup and fitting models using standard software [1]. The challenge

lies in calculating predictions from a given multi-state model.

In this article we concentrate on Markov uni-directional models, and assume transition times are observed exactly.

We develop a framework allowing the specification of a model for each transition, coming from possibly different

parametric distributions or functional forms, also allowing for parameters to be shared across transitions (regardless

of the transition specific distribution chosen). In many situations there will be sparse data for specific transitions and

we may wish to assume simple distributions such as the exponential or Weibull, and where we have more information

for a transition, we can apply a more flexible model such as the generalised gamma [14] or a spline based specification

[15]. We then incorporate time-dependent effects into any transition model. We adopt the simulation approach to

calculate transition probabilities and other quantities of interest [16, 17, 18, 7], using a general survival simulation
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algorithm which can be readily applied to any combination of transition specific distributions to simulate from

the multi-state model [19]. Finally, we show the flexibility of the simulation approach to obtain clinically useful

measures, such as total length of stay [20], and differences and ratios of proportions within each state for specific

covariate patterns, and accompanying confidence intervals.

The article is organised as follows. In Section 2, we introduce the multi-state modelling framework for Markov

models, briefly describing previous approaches. In Section 3, we develop multi-state models allowing for transition-

specific distributions, and the general simulation approach to calculating transition probabilities. In Section 4,

we extend multi-state models to incorporate time-dependent effects (non-proportional hazards). In Section 5 we

describe other clinically useful measures and contrasts. In Section 6, we apply our methods to a dataset of breast

cancer patients who begin in a healthy state and can experience relapse, death, or death after relapse. We conclude

the paper in Section 7 with a discussion.

2. Multi-state models

We begin with a brief introduction to multi-state models, describing how to fit commonly used models, before

describing our proposed extensions in the next section. Following [16], consider a random process Y(t), t ≥ 0 which

takes the values in the finite state space Z = {1, . . . , Z}. We define the history of the process until time s, to be

Hs = {Y (u); 0 ≤ u ≤ s}. The transition probabilities can then be defined as,

P (Y (t) = b|Y (s) = a,Hs−) (1)

where a, b ∈ Z. This is the probability of being in state b at time t, given that it was in state a at time s and

conditional on the past trajectory until time s. A Markov multi-state model makes the following assumption,

P (Y (t) = b|Y (s) = a,Hs−) = P (Y (t) = b|Y (s) = a) (2)

which implies that the future behaviour of the process is only dependent on the present state. Hs− is the history

of the process up to a time just before s. The transition intensity is then defined as,

hab(t) = lim
δt→0

P (Y (t+ δt) = b|Y (t) = a)

δt
(3)

alternatively, and more conveniently for the remainder of the article, we can describe the model indexing by

transition. Therefore, for the kth transition from state ak to state bk, we have

hk(t) = lim
δt→0

P (Y (t+ δt) = bk|Y (t) = ak)

δt
(4)

which represents the instantaneous failure rate of moving from state ak to state bk. The Markov assumption can

be relaxed, to become a semi-Markov model, where the transition probabilities and subsequently the intensities

can depend on the time at which earlier states were entered. This is commonly simplified further, by defining the

transition intensities to be dependent only on the time spent in the current state, as opposed to time spent in

previous states [1]. We discuss the semi-Markov extension in Section 7.

2.1. Estimation

A multi-state model can be specified by a combination of transition-specific survival models. The most convenient

way to do this is through the stacked data notation (see the appendix for an example), described in the excellent
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tutorial paper by Putter et al. (2007) [1]. A patient has a row of data for each transition that they are at risk for,

using start and stop notation. We can therefore specify a model for the kth transition,

hk(t;X) = h0k(t) exp(Xkβk) (5)

where Xk is a vector of time-independent covariates, possibly different for different transitions, with associated

log hazard ratios βk. Once the data is setup, a model can be fitted using any standard survival command, for

example allowing transition intensities to be proportional to a reference transition, or stratify by transition, and

allow covariate effects to be constrained to be equal across transitions. However, fitting a parametric multi-state

model to the stacked data imposes the limitation that all transitions must be modelled using the same distribution.

This is a limitation which we address in this paper.

2.2. Calculating transition probabilities

Obtaining fitted/predicted transition intensities is relatively simple as when using a parametric approach we

have an analytical expression; however, calculating transition probabilities is generally non-trivial. When using

a parametric approach, i.e. modelling the baseline hazard function for each transition (in any form be it separate or

stacked data models), generally the calculation of transition probabilities is computationally challenging. Early work

concentrated on the use of the exponential distribution, as it provides a computationally convenient solution to the

forward Kolmogorov equation, allowing direct calculation of the transition probabilities. A simple extension is to

specify piecewise-exponential distributions, partitioning the data at user-defined cut-points and assuming a constant

baseline hazard function within each interval. This allows the convenience of the exponential distribution and indeed

can capture complex shapes; however, assuming a discontinuous baseline hazard function is often not biologically

plausible, and can result in many model parameters, which has motivated other approaches [10]. Titman (2011)

[10] proposed smooth hazard Markov models through the use of quadratic B-splines to model the transition specific

baseline hazard functions, and employed a differential equation solver to calculate transition probabilities. Some

authors have also considered numerical integration [12, 21], but this can be considered limited in its generalisability.

In this article we concentrate on the simulation approach, which can be considered the most convenient and

general approach. The benefits of the approach becomes even more apparent in later sections focusing on extended

predictions. We begin by simulating a large sample, N (we use a default of 10,000), using the fitted transition

intensities, and iterating through the transition matrix until all patients have reached an absorbing state or are

censored at a specified maximum follow-up time [16, 18]. This is done by viewing the simulation as a sequence of

competing risk scenarios. Following Fiocco et al (2008) [16], we describe the procedure as follows:

Let a be the starting state, entered at time ta = s. We specify a maximum follow-up time to be tmax. Repeat the

following,

1. Let B be the set of states that can be reached from state a, and Na the number of possible next states. If

B = 0, stop. Otherwise, let, for b ∈ B, hab(t) be the hazard function for transition a → b.

2. Using hab(t), sample a survival time using the general inversion method described by Crowther and Lambert

[19], for each possible transition, denoted by t∗ab.

3. Set t∗ = min{t∗a1, . . . , t
∗
aNa

, tmax}, if t
∗ = tmax, stop.

4. Set a = c, where t∗ = tac, c ∈ B and set ta = t∗.

We simply repeat the above procedure for a large N number of paths through the multistate model, with

the same covariate vector, and then at various time points, count the number of paths for which each event

occurred, to give us our patient-specific transition probabilities. The appeal of this approach is in its generality, as

it’s immediately applicable to both Markov and non-Markov models. The associated Stata package can calculate

transition probabilities through simulation, after fitting a variety of parametric survival models on the stacked data,
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including the exponential, Weibull, Gompertz, log-logistic, log-normal, generalised gamma, and Royston-Parmar

models. Simulating from standard distributions is computationally efficient, and even in situations where there is no

tractable simulation solution, such as for the Royston-Parmar model, we can employ the general survival simulation

algorithm of Crowther and Lambert (2013) [19]. This allows us to incorporate time-dependent effects, or model on

alternative scales, for example using an accelerated failure time model.

Furthermore, we can conduct a single large simulation, with a specified maximum follow-up tmax, and then for a

vector of times between t = {0, . . . , tmax}, we can calculate the transition probabilities at each time point using the

single generated dataset, because we have each patient’s state and transition time history. This provides a highly

efficient way of producing graphical displays of transition probabilities, such as those seen in Figure 3, and extended

predictions.

2.2.1. Confidence intervals Following the fit of a multi-state model, we obtain our vector of estimated coefficients

(be they log hazard ratios or log acceleration factors), β̂ab, for the a → b transition. As we are currently assuming

that the same underlying distribution is being used, i.e. a single model has been fitted to the stacked data, we have

an overall parameter vector, b, and associated variance-covariance matrix, V. To obtain confidence intervals for

the predicted transition probabilities, we follow the approach of Fiocco et al. (2008) [16], where we can simply draw

from a multivariate normal distribution with mean b, and variance V, calculate the transition probabilities at the

specified time points for a given simulated sample of size N , and repeat a total of M times. We can then construct

95% confidence intervals by calculating the variance of our sets of M estimates. Due to the expected computational

burden of the nested simulations, Fiocco et al (2008) proposed a method of variance adjustment, which allowed

them to reduce M and subsequently apply a variance correction formula to obtain unbiased estimates. In their

article this allowed them to use N=10,000 and M=50. However, as we discuss later, our implementation is very

efficient and hence in our article we use N=10,000 and M=200 to obtain similar levels of accuracy. The correction

formula of Fiocco et al. (2008) will be added to the associated software package.

3. Extending multi-state models to transition-specific distributions

As described in the previous section, we can use any standard survival model fitting command to estimate the

transition intensities, once the data is correctly setup. However, this imposes the limitation that all transitions

must come from the same distributional model, e.g. all transitions must assume a Weibull baseline function, which

could of course be common across transitions, proportional between transitions, or separate (stratified) across

transitions. In this section we relax this assumption, to allow each transition to come from potentially different

parametric distributions, producing substantial flexibility in model fitting.

3.1. Transition specific distributions

The stacked data format, which is often used when fitting multi-state models, is an extremely convenient way to

conduct such analyses. However, it is not strictly necessary when fitting transition specific hazard models. Models

can be fitted separately to each transition, which can actually be more computationally efficient, compared to fitting

the full model on the stacked data. By fitting models separately to each transition, this crucially allows the use

of different distributions for each transition. This is important as often there will be limited data for particular

transitions, and hence being able to fit an exponential distribution for example, for a sparse transition, and more

complex distributions for other transitions, allows an effective strategy to still make use of all the available data.
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Consider a set of available covariates X. We therefore define, for the kth transition, the hazard function at time

t is,

hk(t) = h0k(t) exp(Xkβk) (6)

where h0k(t) is the baseline hazard function for the a → b transition, which we now allow to take any parametric form

such that h0k(t) > 0. Previously in Equation (5) we assumed the same underlying distribution for all transitions.

To maintain flexibility, we have a vector of patient-level covariates included in the ak → bk transition, Xk, where

Xk ∈ X. This allows different covariates to be included in different transitions, or indeed the same set. We also

have the associated log hazard ratios, βk. In the associated Stata package, we provide a variety of choices including

the exponential, Weibull, Gompertz, log-logistic, log-normal, generalised gamma, and Royston-Parmar model. This

allows combinations of proportional hazards models and accelerated failure time models, emphasising the flexibility

of this framework.

If no parameters are shared across transitions, then a very complex and flexible multi-state model can be fitted

by considering each transition to be a separate survival analysis. In other words, the likelihood is the same when

fitting separate models to each transition, compared to fitting a model to the stacked data, if the baseline and

covariate effects are completely separate. Alternatively, to maintain the convenience of the stacked data setup, we

propose a model fitting routine, which maximises the combined likelihood, across transitions, allowing for different

distributions for each transitions. With either separate models, or a model fitted to the stacked data, the challenge

is then to calculate transition probabilities, which we describe in Section 3.3.

3.2. Sharing parameters across transitions

One of the benefits to the stacked data approach is the ability to share parameters across transitions. This can

be done, for example, when we wish to assume that a covariate’s effect is equal across various transitions, or

indeed to incorporate proportionality between baseline hazard functions within the same distributional model,

across transitions [2]. This may be useful if you have sparse data for a particular transition. In the transition

specific multi-state model described in the previous subsection, we can allow the sharing of covariate effects across

transitions simply by imposing constraints on relevant parameters during the model fitting.

3.3. Calculating transition probabilities

As in Section 2.2, we adopt the simulation approach, using each transition-specific hazard model to simulate

individual survival times as each observation moves through the transition matrix until they reach an absorbing

state or are censored at the maximum follow-up time. In the accompanying Stata software, these calculations can

be conducted either when completely separate models are fitted to each transition, or if a transition-specific model

is fitted to the full stacked data. In the associated Stata software, we use as a default sample size of 10,000.

3.3.1. Confidence intervals To calculate confidence intervals, we can once again draw from a multivariate normal

distribution, with mean the estimated parameter vector and variance the associated variance-covariance matrix. If

separate models are fitted, then parameters between transition models are independent and we can therefore sample

from MVN(bk,Vk), for each transition (or alternative stack the parameter vectors, and fill in the appropriate

covariances with zeroes). If fitting a transition-specific model, with possibly shared coefficients, then we simply

draw from a multivariate normal distribution with mean the overall parameter vector, b, and variance-covariance

matrix, V. Repeating this procedure a total of M times, we then construct 95% confidence intervals as before.
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4. Time-dependent effects

The occurrence of time-dependent effects or non-proportional hazards are commonplace in medical research. For

example in register based studies, where follow-up is often over many years, it is extremely important to investigate

the presence of time-dependency in covariate effects. Incorporating time-dependent effects within a multi-state

model framework has received very little attention. In our parametric transition specific approach, we extend

the framework to allow time-dependent effects, in either the separate modelling approach, or the combined models

fitted to the stacked data. The ease of incorporating time-dependent effects is a distinct advantage of the parametric

approach. We therefore have for the kth transition,

hk(t) = h0k(t) exp [Xkβk(t)] (7)

where βk(t) is now allowed to vary over time through some parametric function, relaxing the proportionality

assumption. For example, for a Weibull model of the form, with baseline hazard function,

h0(t) = λγtγ−1 (8)

we can include covariates in the linear predictor of the shape parameter, γ, on the log scale. Similarly for the

generalised gamma accelerated failure time model, we can allow the three parameters to vary depending on

covariates. The most flexible model we have currently implemented within the associated Stata package is the

Royston-Parmar survival model. In this model, time-dependent covariate effects can be specified by forming an

interaction between the covariate and a restricted cubic spline function of log time [15]. An example can be found

in the appendix. Such flexibility means that we can fit a model with any particular transition containing time-

dependent effects, and then use the general simulation approach described above to calculate transition probabilities.

Obtaining complex predictions is not that much harder when incorporating time-dependent effects, because we are

using a parametric approach.

5. Extended predictions

When calculating transition probabilities using the general simulation algorithm described above, we generate a

complete dataset of N individuals, where we know each observations exact transition history. Once the data has

been generated, we can therefore use it to calculate a wide variety of clinically useful measures, with little extra

effort. In this section we describe the calculations of length of stay, and describe differences and ratios of statistics,

in order to illustrate covariate impact.

5.1. Length of stay

Following Grand and Putter (2015) [20], the residual restricted expected length of stay in state b during the time

period from s to τ , conditional on the patient being alive at time s and in state a (non-absorbing), which we refer

to as length of stay for simplicity, is defined as

eab(s) =

∫ τ

s

P (Y (u) = b|Y (s) = a)du (9)

which defines the amount of time spent in state b, starting in state a at time s, up until time τ . If τ = ∞, and

state a = b is a healthy state and all possible next states are deaths, then Equation (9) represents life expectancy

[20]. This can be viewed as the multi-state extension of restricted mean survival [22]. Through the simulation
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approach described above, we can easily calculate mean length of stay using the observed simulated data, by simply

calculating the mean length of time spent in the target state b, truncating any observation > τ at τ . Furthermore,

confidence intervals are also easily calculated by repeated simulations. Arguably, the most sensible choice for τ is

the maximum observed event time seen in the dataset under analysis, though a smaller value may be preferable as

there is often a lack of data in the tail, and for some covariate combinations you would be extrapolating.

5.2. Differences and ratios of probabilities and length of stay

To illustrate the impact of different covariate levels, we can calculate differences and ratios between specified

covariate patterns of quantities of interest, such as transition probabilities, or length of stay. Given two different

covariate patterns, X1 and X2, we can calculate the difference between transition probabilities as,

P (Y (t) = b|Y (s) = a,X1)− P (Y (t) = b|Y (s) = a,X2) (10)

Similarly, we can calculate difference in length of stays as,

eab(s,X1)− eab(s,X2) =

∫ τ

s

P (Y (u) = b|Y (s) = a,X1)du−

∫ τ

s

P (Y (u) = b|Y (s) = a,X2)du (11)

Alternatively, we may be interested in the ratio between the quantities, where the ratio of transition probabilities

for covariate patterns X1 and X2 is,
P (Y (t) = b|Y (s) = a,X1)

P (Y (t) = b|Y (s) = a,X2)
(12)

and equivalently for length of stay,

eab(s,X1)

eab(s,X2)
=

∫ τ

s

P (Y (u) = b|Y (s) = a,X1)du∫ τ

s

P (Y (u) = b|Y (s) = a,X2)du

(13)

All of the quantities shown in Equations (10) to (13) are calculated simply by simulating two populations, both of

size N , the first with covariate pattern X1 and the second with covariate pattern X2. Uncertainty is then obtained

by conducting repeated simulations, drawing coefficients from the multivariate normal distribution with mean the

overall parameter vector, b, and variance-covariance matrix, V. Repeating this procedure a total of M times, we

then construct 95% confidence intervals by calculating the variance of our M estimates.

6. Modelling time to relapse and death in patients with primary breast cancer using

a multi-state model

To illustrate our approach, we use data from 2,982 patients with primary breast cancer, where we have information

on the time to relapse and the time to death. All patients begin in the initial post-surgery state, which is defined as

the time of primary surgery, and can then move to a relapse state, or a dead state, and can also die after relapse.

This is the commonly known illness-death model, shown in Figure 1.

Of the 2,982 patients starting in the healthy state, 1,518 of them went on to experience a relapse, 195 died without

relapse, 1,075 died after experiencing a relapse. Covariates of interest include age at primary surgery, tumour size

(three classes; ≤ 20mm, 20-50mm, > 50mm), number of positive nodes, progesterone level (fmol/l), and whether

patients were on hormonal therapy (binary, yes/no). In all analyses we use a transformation of progesterone level
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State 1: Post-surgery

State 2: Relapse

State 3: Dead

Transition 1

h
1
(t)

Transition 3

h
3
(t)

Transition 2

h
2
(t)

Figure 1. Illness-death model for the primary breast cancer example.

(log(pgr + 1)), as has been done previously [4]. Our initial analysis focuses on how to model the baseline hazard

for each of the three transitions, without any covariates. To each transition, we apply parametric models including;

exponential, Weibull, Gompertz, log-logistic, log-normal, generalised gamma, and the Royston-Parmar model with

2 to 7 degrees of freedom. In Table 1, we present the AIC and BIC for each of the models fitted, and for each

transition.

We find that the best fitting model for transition 1, both in terms of the AIC and BIC is the Royston-Parmar

model with 3 degrees of freedom. The best fitting model for transition 2 is the Weibull based on the AIC, and

the Royston-Parmar model with 2 degrees of freedom based on the BIC. The best fitting model for transition 3 is

the Royston-Parmar model with 3 degrees of freedom based on the AIC, and the log-normal model based on the

BIC. The fitted cumulative hazard functions for each of the transition-specific baseline models is shown in Figure

2, overlaid on the Nelson-Aalen curves.

We can now incorporate covariates into each of the selected transition-specific distributions. We include all

available covariates in each of the models, and assess the proportional hazards assumption. To do this we can fit

a Cox model to each transition separately and use the Schoenfeld residuals to test for non-proportionality [23], or

include an interaction with a function of time. For transition 1, we found statistically significant (p < 0.05) evidence

against the null hypothesis of proportionality, for tumour size (both levels, ref: ≤ 20mm), and progesterone level.

For transition 2, evidence of non-proportionality was not found for any covariates. For transition 3, we found

evidence of non-proportionality in progesterone level only. Parameter estimates for the three-transition model are

in Table 2. For simplicity, we did not investigate non-linearities in covariate effects, or interactions, however both

are seamlessly incorporated into the model framework. Ideally, clinical guidance should be used to drive covariate

selection, but AIC/BIC can be used as informal guides.

Given our fitted multi-state model, we can now obtain predicted transition probabilities for any covariate pattern.

We illustrate this in Figure 3, showing transition probabilities for a patient aged 54, with a transformed progesterone

level of 3, and in each of the tumour size groups, with varying number of positive nodes {0, 10, 20}. As tumour size

increases, and number of positive nodes increase, we can see the increased probability of death across follow-up.
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Figure 2.Best fitting parametric cumulative hazard curves overlaid on the Nelson-Aalen estimate for each transition. Transition 1 model:

Royston-Parmar with 3 degrees of freedom. Transition 2 model: Weibull. Transition 3 model: Royston-Parmar with 3 degrees of freedom.

The transition probabilities shown in Figure 3 also represent state occupation probabilities, as they are calculated

assuming the patient starts in state 1 at time s = 0. Both the stating state and entry time can be easily changed

through the associated software package, to give transition probabilities for alternative settings.

Stacked transition probability plots, such as Figure 3, are an extremely useful way of showing how risk evolves

over time; however, uncertainty in the estimates cannot be easily portrayed. In Figure 4, we show the predicted

transition probabilities from the left panel of Figure 3, now with associated confidence intervals, using the simulation

approach.

Figures 3 and 4 exemplify the ease of obtaining patient-specific, clinically useful, predictions from a fully

parametric, flexible, multi-state model. We can also illustrate the impact of different covariate levels by calculating

differences or ratios in transition probabilities. For example, in Figure 5 we present differences and ratios of transition

probabilities for a patient aged 54, with a progesterone level of 3, and comparing the three levels of tumour size.

Through simulation, we can obtain 95% confidence intervals for these contrasts.

Figure 5a illustrates the difference in transition probabilities when comparing between the smallest tumour size

(≤ 20mm) and the medium sized group (>20-50mm), showing a higher probability of remaining healthy in the

smaller tumour size group over time, and an increased probability of death when in the medium tumour size group.

To illustrate computation time when calculating confidence intervals, to produce the data required for Figure 5a,

with a default sample size of N = 10, 000 and M = 200, with probabilities calculated at 100 evenly spaced times

across follow-up, took 32.5 seconds on a standard HP laptop with i5 processor and 9GB of RAM. Point estimates

are virtually instantaneous (under a third of a second).

We can also calculate the lengths of stay in each state, given a specific covariate pattern, such as that shown in

Figure 6. Figure 6 shows that after 15 years, a patient aged 54, with progesterone level of 3 and in the smallest

tumour size group, spends approximately 10 years in the healthy state, 2 years in the relapse state, and 3 years in

the dead state (though as this is an absorbing state, this interpretation is less useful).

We can further show how length of stay is affected by changes in covariate patterns, for example in Figure 7 we

present differences and ratios of the length of stay in each state for a patient aged 54, with a progesterone level of
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3, and comparing the three levels of tumour size, with associated 95% confidence intervals for these contrasts.

We see from Figures 7a, 7c, and 7e that having a smaller tumour size indicates a greater length of stay in the

healthy state, and having a larger tumour size consequently leads to a greater length of stay in the death state,

over a 15 year period. Note the large confidence interval widths in Figures 7b, 7d, and 7f for states 2 and 3, due to

all patients starting in the healthy state 1.

7. Discussion

Parametric survival models have a number of advantages, and we believe should be used more widely. By direct

modelling of the baseline hazard function, we can gain more understanding of how complex disease processes evolve

over time. Incorporating time-dependent effects, extrapolation and out of sample prediction are also much more

convenient within a fully specified parametric model. Parametric survival models are of particular importance in the

realm of health economic modelling [5]. There are also a variety of approaches which provide substantial flexibility

in capturing complex underlying hazard functions [24, 15, 3]. In particular, the use of restricted cubic splines to

capture complex hazard functions have recently been comprehensively evaluated through simulation [25, 26].

Within a multi-state framework, parametric approaches have generally only considered models which assume

the same underlying distribution for all transitions. In this paper, we have introduced the use of transition-

specific distributions for Markov multi-state models, allowing a wide variety of parametric distributional choices,

including the combination of proportional hazards and accelerated failure time models, and spanning from the

simple exponential, to the highly flexible Royston-Parmar model. We have further incorporated time-dependent

effects into the modelling strategy. We then utilise a general survival simulation algorithm to calculate transition

probabilities and length of stay, and associated confidence intervals, from any fitted model. This allows us to avoid

the piecewise approximation of Blaser et al. (2015) [27]. We have further shown how to calculate clinically useful

differences and ratios of transition probabilities and length of stays, to illustrate the impact of changing covariate

levels. Hence, we can fit a complex multi-state parametric model, but still get interpretable quantities with ease.

Finally, we have developed a framework allowing the flexibility of transition-specific hazard functions, but still

enabled the sharing of parameters across transitions, by directly maximising the likelihood of the stacked models.

With the growing use of electronic health records, allowing the integration of clinical registries and administrative

records, there are substantial opportunities to use multi-state models for expanded modelling of patient profiles

across disease histories [28]. This has benefits not only for clinical effectiveness modelling, but also for cost-

effectiveness modelling due to the parametric approach [29].

We illustrated our approach using a dataset of patients with primary breast cancer, who experience relapse or

death, or death after relapse, i.e. an illness-death process. We chose this simple example to illustrate the framework;

however, it is important to note that it generalises to any uni-directional multi-state model, such as [28, 2]. We also

only discussed Markov models in this article. The extension to semi-Markov models, or the clock-reset approach,

whereby we use time since entry to each state as our underlying timescale, is equally applicable, and is implemented

in the associated software. We show an example in the appendix.

Our approach can be extended in a number of ways. Essentially, any functional form for the baseline hazard could

be chosen, therefore we plan to incorporate the general survival modelling framework of Crowther and Lambert

[3, 30]. Furthermore, an important extension is to allow reversible transitions, which will sync quite seamlessly into

the modelling and simulation framework described in this article, and hence will be incorporated into the software

in the near future. Incorporating frailties is another area of interest, for example, to account for recurrent events,

or hierarchical structures within a dataset.

The accompanying Stata software is available from the Statistical Software Components archive, which can be
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installed by typing ssc install multistate in Stata. This includes the predictms command to calculate all

types of predictions described in this article, and the stms estimation command for fitting the transition-specific

models to stacked data.
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A. Example use of the multistate package

. //install the software

. ssc install multistate

.

. //load data

. use http://fmwww.bc.edu/repec/bocode/m/multistate_example,clear

.

. //data is in wide format

. list pid rf rfi os osi if pid==1 | pid==1371, sepby(pid) noobs

pid rf rfi os osi

1 59.1 0 59.1 alive

1371 16.6 1 24.3 deceased

.

. //reshape to stacked format

. msset, id(pid) states(rfi osi) times(rf os)

.

. //each patient now has a row of data for each transition they are at risk for

. list pid rf rfi os osi if pid==1 | pid==1371, sepby(pid) noobs

pid rf rfi os osi

1 59.1 0 59.1 alive

1 59.1 0 59.1 alive

1371 16.6 1 24.3 deceased

1371 16.6 1 24.3 deceased

1371 16.6 1 24.3 deceased

.

. //msset creates internal variables for use in subsequent analyses

. list pid _start _stop _from _to _status _trans if pid==1 | pid==1371
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pid _start _stop _from _to _status _trans

1. 1 0 59.104721 1 2 0 1

2. 1 0 59.104721 1 3 0 2

2765. 1371 0 16.558521 1 2 1 1

2766. 1371 0 16.558521 1 3 0 2

2767. 1371 16.558521 24.344969 2 3 1 3

.

. //store default transition matrix

. mat tmat = r(transmatrix)

.

. //declare as survival data (changing timescale from months to years)

. stset _stop, enter(_start) failure(_status==1) scale(12)

failure event: _status == 1

obs. time interval: (0, _stop]

enter on or after: time _start

exit on or before: failure

t for analysis: time/12

7482 total observations

0 exclusions

7482 observations remaining, representing

2790 failures in single-record/single-failure data

38474.539 total analysis time at risk and under observation

at risk from t = 0

earliest observed entry t = 0

last observed exit t = 19.28268

.

. //create indicator variables for tumour size

. tab size, gen(sz)

Tumour

size, 3

classes (t) Freq. Percent Cum.

<=20 mm 3,339 44.63 44.63

>20-50mmm 3,327 44.47 89.09

>50 mm 816 10.91 100.00

Total 7,482 100.00

.

. //fit final models to each of the three transitions and store the model object

> ts

. //trans1

. stpm2 age sz2 sz3 nodes pr_1 hormon if _trans==1, df(3) scale(h) ///

> tvc(sz2 sz3 pr_1) dftvc(1)

Iteration 0: log likelihood = -3522.9535

Iteration 1: log likelihood = -3479.1473

Iteration 2: log likelihood = -3476.6534

Iteration 3: log likelihood = -3476.6455

Iteration 4: log likelihood = -3476.6455

Log likelihood = -3476.6455 Number of obs = 2,982

Coef. Std. Err. z P>|z| [95% Conf. Interval]
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xb

age -.0062709 .0021004 -2.99 0.003 -.0103875 -.0021543

sz2 .4777289 .0634816 7.53 0.000 .3533073 .6021505

sz3 .744544 .0904352 8.23 0.000 .5672943 .9217937

nodes .0784025 .0045454 17.25 0.000 .0694937 .0873113

pr_1 -.0783066 .0122404 -6.40 0.000 -.1022973 -.0543159

hormon -.0797426 .0824504 -0.97 0.333 -.2413424 .0818572

_rcs1 .9703563 .0472652 20.53 0.000 .8777182 1.062994

_rcs2 .3104222 .0218912 14.18 0.000 .2675162 .3533282

_rcs3 -.0176099 .0114839 -1.53 0.125 -.0401179 .0048982

_rcs_sz21 -.1740546 .0446893 -3.89 0.000 -.261644 -.0864652

_rcs_sz31 -.2669255 .0616161 -4.33 0.000 -.3876909 -.1461601

_rcs_pr_11 .072824 .0086399 8.43 0.000 .0558901 .0897578

_cons -.9480559 .1266088 -7.49 0.000 -1.196205 -.6999071

. est store m1

.

. //trans 2

. streg age sz2 sz3 nodes pr_1 hormon if _trans==2, dist(weib) nohr

failure _d: _status == 1

analysis time _t: _stop/12

enter on or after: time _start

Fitting constant-only model:

Iteration 0: log likelihood = -789.49708

Iteration 1: log likelihood = -772.22637

Iteration 2: log likelihood = -771.90383

Iteration 3: log likelihood = -771.90373

Iteration 4: log likelihood = -771.90373

Fitting full model:

Iteration 0: log likelihood = -771.90373

Iteration 1: log likelihood = -759.32799

Iteration 2: log likelihood = -585.02458

Iteration 3: log likelihood = -580.52674

Iteration 4: log likelihood = -580.44872

Iteration 5: log likelihood = -580.4487

Weibull regression -- log relative-hazard form

No. of subjects = 2,982 Number of obs = 2,982

No. of failures = 195

Time at risk = 17203.80014

LR chi2(6) = 382.91

Log likelihood = -580.4487 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .1250736 .0079699 15.69 0.000 .1094529 .1406942

sz2 .1615513 .1614483 1.00 0.317 -.1548816 .4779841

sz3 .4153083 .2332724 1.78 0.075 -.0418973 .8725138

nodes .0439416 .0182545 2.41 0.016 .0081633 .0797198

pr_1 .0223507 .0334238 0.67 0.504 -.0431587 .0878601

hormon -.1399098 .2291893 -0.61 0.542 -.5891126 .309293

_cons -14.02238 .6218293 -22.55 0.000 -15.24114 -12.80362

/ln_p .5106518 .0572511 8.92 0.000 .3984416 .622862

p 1.666377 .095402 1.489502 1.864256
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1/p .6001043 .0343567 .5364071 .6713655

. est store m2

.

. //trans 3

. stpm2 age sz2 sz3 nodes pr_1 hormon if _trans==3, df(3) scale(h) ///

> tvc(pr_1) dftvc(1)

note: delayed entry models are being fitted

Iteration 0: log likelihood = -943.78807

Iteration 1: log likelihood = -930.00714

Iteration 2: log likelihood = -929.1202

Iteration 3: log likelihood = -929.11658

Iteration 4: log likelihood = -929.11658

Log likelihood = -929.11658 Number of obs = 1,518

Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb

age .0049441 .0024217 2.04 0.041 .0001977 .0096906

sz2 .1653563 .0712326 2.32 0.020 .025743 .3049696

sz3 .3243048 .0992351 3.27 0.001 .1298075 .5188021

nodes .0297031 .0057735 5.14 0.000 .0183873 .0410189

pr_1 -.1843876 .0211383 -8.72 0.000 -.225818 -.1429572

hormon .0315634 .0976384 0.32 0.746 -.1598045 .2229312

_rcs1 .5057489 .0581187 8.70 0.000 .3918383 .6196595

_rcs2 .1035699 .03143 3.30 0.001 .0419681 .1651716

_rcs3 -.0100584 .0117741 -0.85 0.393 -.0331352 .0130185

_rcs_pr_11 .0636225 .0121503 5.24 0.000 .0398085 .0874366

_cons .391217 .1659763 2.36 0.018 .0659094 .7165246

. est store m3

.

. //calculate transition probabilities, starting in state 1 at time 0 for a pat

> ient age 54 (all other covariates set to 0)

. predictms, transmatrix(tmat) models(m1 m2 m3) at(age 50)

.

. //produce stacked graph

. predictms, transmatrix(tmat) models(m1 m2 m3) at(age 50) graph

.

. //calculate confidence intervals

. predictms, transmatrix(tmat) models(m1 m2 m3) at(age 50) obs(100) n(10000) m(

> 200) ci

.

. //calculate length of stay in each state

. predictms, transmatrix(tmat) models(m1 m2 m3) at(age 50) los

.

. //calculate the difference in transition probabilities for a patient with age

> 50 compared to a patient aged 60:

. predictms, transmatrix(tmat) models(m1 m2 m3) at(age 50) at2(age 60)

.

. //calculate the ratio of transition probabilities for a patient with age 50 c

> ompared to a patient aged 60:

. predictms, transmatrix(tmat) models(m1 m2 m3) at(age 50) at2(age 60) ratio

.
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. //calculate the ratio of length of stay for a patient with age 50 compared to

> a patient aged 60, with confidence intervals:

. predictms, transmatrix(tmat) models(m1 m2 m3) at(age 50) at2(age 60) los rati

> o ci

.

. //fit a transition-specific multi-sate model, but sharing the effect of age a

> cross transitions and 3

. stms (age sz2 sz3 nodes pr_1 hormon, model(fpm) df(3) scale(h)) ///

> (age sz2 sz3 nodes pr_1 hormon, model(weib)) ///

> (age sz2 sz3 nodes pr_1 hormon, model(fpm) df(3) scale(h)) ///

> , transvar(_trans) constraints(age 1 3)

To fit a semi-Markov model, we simply use a different timescale, i.e. the time since entry into each state. Below

we show how to do this with the multistate package. Essentially we use a new time variable, and specify the

reset option of predictms. All other commands are as above.

. //install the software

. ssc install multistate

checking multistate consistency and verifying not already installed...

all files already exist and are up to date.

.

. //load data

. use http://fmwww.bc.edu/repec/bocode/m/multistate_example,clear

.

. //reshape to stacked format

. msset, id(pid) states(rfi osi) times(rf os)

.

. //store default transition matrix

. mat tmat = r(transmatrix)

.

. //generate time since entry

. gen _time = _stop - _start

.

. //declare as survival data (changing timescale from months to years)

. stset _time, failure(_status==1) scale(12)

failure event: _status == 1

obs. time interval: (0, _time]

exit on or before: failure

t for analysis: time/12

7482 total observations

0 exclusions

7482 observations remaining, representing

2790 failures in single-record/single-failure data

38474.539 total analysis time at risk and under observation

at risk from t = 0

earliest observed entry t = 0

last observed exit t = 19.28268

.

. //create indicator variables for tumour size

. tab size, gen(sz)

Tumour

size, 3

classes (t) Freq. Percent Cum.
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<=20 mm 3,339 44.63 44.63

>20-50mmm 3,327 44.47 89.09

>50 mm 816 10.91 100.00

Total 7,482 100.00

.

. //fit final models to each of the three transitions and store the model objects

. //trans1

. stpm2 age sz2 sz3 nodes pr_1 hormon if _trans==1, df(3) scale(h) ///

> tvc(sz2 sz3 pr_1) dftvc(1)

Iteration 0: log likelihood = -3522.9535

Iteration 1: log likelihood = -3479.1473

Iteration 2: log likelihood = -3476.6534

Iteration 3: log likelihood = -3476.6455

Iteration 4: log likelihood = -3476.6455

Log likelihood = -3476.6455 Number of obs = 2,982

Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb

age -.0062709 .0021004 -2.99 0.003 -.0103875 -.0021543

sz2 .4777289 .0634816 7.53 0.000 .3533073 .6021505

sz3 .744544 .0904352 8.23 0.000 .5672943 .9217937

nodes .0784025 .0045454 17.25 0.000 .0694937 .0873113

pr_1 -.0783066 .0122404 -6.40 0.000 -.1022973 -.0543159

hormon -.0797426 .0824504 -0.97 0.333 -.2413424 .0818572

_rcs1 .9703563 .0472652 20.53 0.000 .8777182 1.062994

_rcs2 .3104222 .0218912 14.18 0.000 .2675162 .3533282

_rcs3 -.0176099 .0114839 -1.53 0.125 -.0401179 .0048982

_rcs_sz21 -.1740546 .0446893 -3.89 0.000 -.261644 -.0864652

_rcs_sz31 -.2669255 .0616161 -4.33 0.000 -.3876909 -.1461601

_rcs_pr_11 .072824 .0086399 8.43 0.000 .0558901 .0897578

_cons -.9480559 .1266088 -7.49 0.000 -1.196205 -.6999071

. est store m1

.

. //trans 2

. streg age sz2 sz3 nodes pr_1 hormon if _trans==2, dist(weib) nohr

failure _d: _status == 1

analysis time _t: _time/12

Fitting constant-only model:

Iteration 0: log likelihood = -789.49708

Iteration 1: log likelihood = -772.22637

Iteration 2: log likelihood = -771.90383

Iteration 3: log likelihood = -771.90373

Iteration 4: log likelihood = -771.90373

Fitting full model:

Iteration 0: log likelihood = -771.90373

Iteration 1: log likelihood = -759.32799

Iteration 2: log likelihood = -585.02458

Iteration 3: log likelihood = -580.52674

Iteration 4: log likelihood = -580.44872

Iteration 5: log likelihood = -580.4487

Weibull regression -- log relative-hazard form
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No. of subjects = 2,982 Number of obs = 2,982

No. of failures = 195

Time at risk = 17203.80014

LR chi2(6) = 382.91

Log likelihood = -580.4487 Prob > chi2 = 0.0000

_t Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .1250736 .0079699 15.69 0.000 .1094529 .1406942

sz2 .1615513 .1614483 1.00 0.317 -.1548816 .4779841

sz3 .4153083 .2332724 1.78 0.075 -.0418973 .8725138

nodes .0439416 .0182545 2.41 0.016 .0081633 .0797198

pr_1 .0223507 .0334238 0.67 0.504 -.0431587 .0878601

hormon -.1399098 .2291893 -0.61 0.542 -.5891126 .309293

_cons -14.02238 .6218293 -22.55 0.000 -15.24114 -12.80362

/ln_p .5106518 .0572511 8.92 0.000 .3984416 .622862

p 1.666377 .095402 1.489502 1.864256

1/p .6001043 .0343567 .5364071 .6713655

. est store m2

.

. //trans 3

. stpm2 age sz2 sz3 nodes pr_1 hormon if _trans==3, df(3) scale(h) ///

> tvc(pr_1) dftvc(1)

Iteration 0: log likelihood = -2083.3928

Iteration 1: log likelihood = -2075.987

Iteration 2: log likelihood = -2075.9448

Iteration 3: log likelihood = -2075.9448

Log likelihood = -2075.9448 Number of obs = 1,518

Coef. Std. Err. z P>|z| [95% Conf. Interval]

xb

age .0052585 .0024332 2.16 0.031 .0004895 .0100276

sz2 .212097 .0709341 2.99 0.003 .0730688 .3511253

sz3 .4260375 .0980746 4.34 0.000 .2338147 .6182602

nodes .0347199 .0055692 6.23 0.000 .0238045 .0456354

pr_1 -.1644984 .0172515 -9.54 0.000 -.1983108 -.130686

hormon .1006494 .0966689 1.04 0.298 -.0888182 .290117

_rcs1 1.228126 .0606233 20.26 0.000 1.109307 1.346946

_rcs2 -.006099 .0409719 -0.15 0.882 -.0864024 .0742045

_rcs3 .0629436 .0179447 3.51 0.000 .0277726 .0981146

_rcs_pr_11 .063054 .0157993 3.99 0.000 .0320879 .0940202

_cons -1.01157 .1495324 -6.76 0.000 -1.304648 -.7184917

. est store m3

.

. //calculate transition probabilities, starting in state 1 at time 0 for a pat

> ient age 54 (all other covariates set to 0)

. predictms, transmatrix(tmat) models(m1 m2 m3) at(age 50) reset
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Figure 3.Probability of being in each state for a patient aged 54, with progesterone level (transformed scale) of 3, varying across tumour size

and number of positive nodes.
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Figure 4.Probability of being in each state for a patient aged 54, size ≤20 mm, with progesterone level (transformed scale) of 3, and associated

confidence intervals.



M. J. CROWTHER AND P. C. LAMBERT

Statistics

in Medicine

-0.4

-0.2

0.0

0.2

0.4

0 5 10 15
Follow-up time

Post-surgery

-0.4

-0.2

0.0

0.2

0.4

0 5 10 15
Follow-up time

Relapsed

-0.4

-0.2

0.0

0.2

0.4

0 5 10 15
Follow-up time

Died

Prob(Size <=20 mm) - Prob(20mm< Size <50mmm)

Difference in probabilities 95% confidence interval

(a)

0.0

1.0

2.0

3.0

0 5 10 15
Follow-up time

Post-surgery

0.0

1.0

2.0

3.0

0 5 10 15
Follow-up time

Relapsed

0.0

1.0

2.0

3.0

0 5 10 15
Follow-up time

Died

Prob(Size <=20 mm) / Prob(20mm< Size <50mmm)

Ratio of probabilities 95% confidence interval

(b)

-0.4

-0.2

0.0

0.2

0.4

0 5 10 15
Follow-up time

Post-surgery

-0.4

-0.2

0.0

0.2

0.4

0 5 10 15
Follow-up time

Relapsed

-0.4

-0.2

0.0

0.2

0.4

0 5 10 15
Follow-up time

Died

Prob(Size <=20 mm) - Prob(Size >=50mmm)

Difference in probabilities 95% confidence interval

(c)

0.0

1.0

2.0

3.0

0 5 10 15
Follow-up time

Post-surgery

0.0

1.0

2.0

3.0

0 5 10 15
Follow-up time

Relapsed

0.0

1.0

2.0

3.0

0 5 10 15
Follow-up time

Died

Prob(20mm< Size <50mmm) / Prob(Size >=50mmm)

Ratio of probabilities 95% confidence interval

(d)

-0.4

-0.2

0.0

0.2

0.4

0 5 10 15
Follow-up time

Post-surgery

-0.4

-0.2

0.0

0.2

0.4

0 5 10 15
Follow-up time

Relapsed

-0.4

-0.2

0.0

0.2

0.4

0 5 10 15
Follow-up time

Died

Prob(20mm< Size <50mmm) - Prob(Size >=50mmm)

Difference in probabilities 95% confidence interval

(e)

0.0

1.0

2.0

3.0

0 5 10 15
Follow-up time

Post-surgery

0.0

1.0

2.0

3.0

0 5 10 15
Follow-up time

Relapsed

0.0

1.0

2.0

3.0

0 5 10 15
Follow-up time

Died

Prob(20mm< Size <50mmm) / Prob(Size >=50mmm)

Ratio of probabilities 95% confidence interval

(f)

Figure 5.Differences (5a, 5c, 5e) and ratios (5b, 5d, 5f) of probabilities of being in each state for a patient aged 54, progesterone level

(transformed scale) of 3, and comparing the three levels of tumour size. Associated 95% confidence intervals are also shown.
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Figure 6. Length of stay in each state for a patient aged 54, size ≤20 mm, with progesterone level (transformed scale) of 3, and the smallest

tumour size, with associated confidence intervals.
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Figure 7.Differences (7a, 7c, 7e) and ratios (7b, 7d, 7f) of length of stay in each state for a patient aged 54, progesterone level (transformed

scale) of 3, and comparing the three levels of tumour size. Associated 95% confidence intervals are also shown.


