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Nd:YAG laser beammachining (LBM) process has a great potential to manufacture intricate shaped microproducts with its unique
characteristics. In practical applications, such as drilling, grooving, cutting, or scribing, the optimal combination of Nd:YAG LBM
process parameters needs to be sought out to provide the desired machining performance. Several mathematical techniques, like
Taguchi method, desirability function, grey relational analysis, and genetic algorithm, have already been applied for parametric
optimization of Nd:YAG LBM processes, but in most of the cases, suboptimal or near optimal solutions have been reached. �is
paper focuses on the application of arti	cial bee colony (ABC) algorithm to determine the optimalNd:YAGLBMprocess parameters
while considering both single and multiobjective optimization of the responses. A comparative study with other population-
based algorithms, like genetic algorithm, particle swarm optimization, and ant colony optimization algorithm, proves the global
applicability and acceptability of ABC algorithm for parametric optimization. In this algorithm, exchange of information amongst
the onlooker bees minimizes the search iteration for the global optimal and avoids generation of suboptimal solutions. �e results
of two sample paired �-tests also demonstrate its superiority over the other optimization algorithms.

1. Introduction

Increasing demand for advanced di
cult-to-machine mate-
rials and availability of high-power lasers have stimulated
interest among the researchers for the development of laser
beam machining (LBM) processes [1]. �e LBM, which is
a thermal energy-based machining process, is now being
widely applied to ful	ll the present day requirements of high
�exibility and productivity, noncontact processing, elimi-
nation of 	nishing operations, adaptability to automation,
reduced processing cost, improved product quality, greater
material utilization, processing of materials irrespective of
electrical conductivity, minimum heat a�ected zone (HAZ),
and green manufacturing. In this process, the material is
removed by (a) melting, (b) vaporization, and (c) chemical
degradation where the chemical bonds are broken causing
the materials to degrade. When a high energy density laser
beam is focused on a work surface, the thermal energy is
absorbed which heats and transforms the work volume into
a molten, vaporized, or chemically changed state that can

easily be removed by the �ow of high pressure assist gas jet.
�is process also does not involve any mechanical cutting
force and tool wear. Using LBM method, several material
processing operations, such as laser microdrilling, cutting,
microgrooving, microturning, marking, or scribing can be
done [2, 3].

Among various types of lasers used for machining in
industries, CO2 and Nd:YAG lasers are the most established.
Although CO2 lasers have wide application in commer-
cial sheet metal cutting operations, the bene	ts o�ered by
Nd:YAG laser make it an interesting 	eld of investigation.
Experimental results show that Nd:YAG laser has some
unique characteristics. Although the mean beam power is
relatively low, the beam intensity can be relatively high due to
smaller pulse duration and better focusing behavior. Smaller
kerf width, microsize holes, narrower HAZ, and better cut
edge kerf pro	le can be obtained in Nd:YAG LBM process.
�e smaller thermal load o�ered by Nd:YAG laser allows the
machining of some brittle materials, such as SiC ceramics,
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which cannot be machined by CO2 laser without crack
damage.

As Nd:YAG LBM is a complex dynamic process with
numerous parameters, like lamp current, pulse frequency,
air pressure, pulse width, and cutting speed, so in order
to maintain a high production rate and an acceptable level
of quality for the machined parts, it is important to select
the optimal combination of the process parameters, because
these parameters directly a�ect the physical characteristics
of the machined parts, as signi	ed by kerf width, HAZ
thickness, taper, and surface roughness. Experimental and
theoretical studies show that the performance of Nd:YAG
LBM process can be signi	cantly improved by proper selec-
tion of the machining parameters [4]. For this purpose, the
process engineers have to o�en rely on the manufacturer’s
data or handbook data. Hence, there is an ardent need for
some sound optimization tools to determine the optimal
machining parameters for Nd:YAG LBM process to have
enhanced performance.

Mathew et al. [5] developed predictive models based on
some important process parameters to determine the optimal
process parameter ranges for pulsedNd:YAG lasermachining
operation on carbon 	bre reinforced plastic composites.
Using response surface methodology (RSM), Kuar et al. [6]
performed parametric analysis to determine the optimal
setting of process parameters, like pulse frequency, pulse
width, lamp current, and assist air pressure, for achieving
minimumHAZ thickness and taper of microholes machined
on zirconium oxide (ZrO2) by pulsed Nd:YAG laser. Kuar
et al. [7] studied the e�ects of several laser machining param-
eters on HAZ thickness and taper of the microdrilled holes
on alumina-aluminium composites using RSM technique.
Dhupal et al. [8] considered lamp current, pulse frequency,
pulse width, assist air pressure, and cutting speed as the
machining parameters during pulsed Nd:YAG laser micro-
grooving operation and developed RSM-based equations to
study the e�ects of those parameters on upper width, lower
width, and depth of trapezoidal microgrooves. �e optimal
parametric combination was validated through experimenta-
tion and arti	cial-neural-network-(ANN-) based predictive
model. Dubey and Yadava [9] presented a hybrid Taguchi
method andRSM technique for simultaneous optimization of
kerf width and material removal rate (MRR) for a laser beam
cutting process. Dhupal et al. [10] investigated the e�ects of
lamp current, pulse frequency, pulsewidth, assist air pressure,
and cutting speed of workpiece on upper deviation, lower
deviation, and depth characteristics of laser-turned micro-
grooves produced on cylindrical Al2O3 workpiece. Dubey
and Yadava [11] simultaneously optimized kerf deviation and
kerf width using Taguchi quality loss function during pulsed
Nd:YAG laser beam cutting of aluminium alloy sheet. Dhupal
et al. [12] developed RSM-based mathematical models and
analyzed the machining characteristics of pulsed Nd:YAG
laser duringmicro-grooving operation on aluminum titanate
workpiece. Çaydaş and Hasçalık [13] presented a grey rela-
tional analysis-based approach for optimization of laser
cutting process of St-37 steel with multiple performance
characteristics. Dhupal et al. [14] selected lamp current, pulse
frequency, pulse width, cutting speed, and assist gas pressure

as the major machining parameters for producing square
micro-grooves on cylindrical surface. A predictive model for
laser turning process parameters was developed using a feed-
forward ANN technique, and an optimization problem was
constructed based on RSM and then solved using genetic
algorithm. Rao and Yadava [15] proposed a hybrid opti-
mization approach for determining the optimal laser cutting
process parameters to minimize kerf width, kerf taper, and
kerf deviation together during pulsed Nd:YAG laser cutting
of a thin sheet of nickel-based superalloy. Ciurana et al.
[16] modeled the relationship between laser micromachining
process parameters and quality characteristics using ANN
and carried out multi-objective particle swarm optimization
of the process parameters for minimum surface roughness
and volume error. Based on RSM technique, Sivarao et al.
[17] studied the e�ects of cutting speed, frequency, and duty
cycle on surface roughness in the laser cutting process of
mild steel. Doloi et al. [18] developed RSM-based mathe-
matical models and analyzed the machining characteristics
of pulsed Nd:YAG laser during micro-grooving operation
on �at surface of aluminium titanate in order to optimize
the parametric setting for achieving accurate taper angles
of micro-grooves. Kuar et al. [19] performed RSM-based
parametric analysis to investigate the change in the responses
with the input parameters, such as pulse frequency, pulse
width, lamp current, and assist air pressure, for achieving
minimum height of the recast layer and maximum depth of
the microgroove. Sharma et al. [20] performed parametric
optimization of the kerf quality characteristics (kerf width,
kerf taper, and kerf deviation) during pulsed Nd:YAG laser
cutting of nickel-based superalloy thin sheet. Biswas et al.
[21] investigated the e�ects of di�erent process parameters
on hole circularity at exit and taper of the hole during
Nd:YAG laser microdrilling on gamma-titanium aluminide.
Kibria et al. [22] performed experimental analysis onNd:YAG
laser microturning of cylindrical-shaped ceramic materials
to achieve the desired responses, that is, depth of cut and
surface roughness while varying the laser micro-turning
process parameters, such as lamp current, pulse frequency,
and laser beam scanning speed. Biswas et al. [23] observed
the e�ects of 	ve parameters on circularity and taper of holes
in pulsed Nd:YAG laser microdrilling process and concluded
that the circularity of the drilled hole at entry, exit, and
taper were the important attributes in�uencing the quality
of the hole. Biswas et al. [24] investigated the e�ects of
lamp current, pulse frequency, pulse width, air pressure, and
focal length of Nd:YAG laser micro-drilling process on hole
circularity at entry and exit using RSM-based experimental
results. Panda et al. [25] applied grey relational approach
for determining the optimal process parameters to minimize
HAZ and hole circularity and maximize MRR in pulsed
Nd:YAG laser micro-drilling on high carbon steel. Sibalija et
al. [26] presented a hybrid design strategy for determining the
optimal laser drilling parameters in order to simultaneously
meet all the requirements for seven quality characteristics of
the holes produced during pulsed Nd:YAG laser drilling on a
thin sheet of nickel-based superalloy.

Although the earlier researchers have applied di�erent
optimization techniques, like Taguchimethod, grey relational
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analysis, desirability function, and genetic algorithm, for
	nding out the optimal process parameter values, in most
of the cases, suboptimal or near optimal solutions have been
reached In this paper, the application of arti	cial bee colony
(ABC) algorithm is validated as an e�ective and e
cient
tool for parametric optimization of Nd:YAG LBM process.
�e optimization performance of ABC algorithm is also
compared with that of other population-based algorithms,
like genetic algorithm (GA), particle swarm optimization
(PSO), and ant colony optimization (ACO) which proves the
superiority of ABC algorithm.

2. Artificial Bee Colony Algorithm

Arti	cial bee colony algorithm is an evolutionary computa-
tional technique, developed by Karaboga et al. [27–30]. In
this algorithm, the colony of arti	cial bees consists of three
groups, that is, employed bees, onlookers, and scouts. �e
	rst half of the colony consists of the employed arti	cial bees
and the second half includes the onlookers. For every food
source, there is only one employed bee. �us, the number
of employed bees is equal to the number of food sources
around the hive. �e employed bee whose food source has
been abandoned becomes a scout.

In this algorithm, the position of a food source represents
a possible solution to the considered optimization problem
and the nectar amount of the food source is proportional
to the quality or 	tness of the associated solution. �e
number of the employed bees or onlooker bees is equal to the
number of solutions in the population. In the 	rst step, the
ABC algorithm generates randomly distributed prede	ned
number of initial population,�, (position of the food sources)
of SN populations, where � ∈ SN. Each position of the food
source, ����, is three-dimensional with � = 1, 2, . . . , SN; � =
1, 2, . . . , �; 	 = 1, 2, . . . , 
, where � is the dimension of each
variable and 
 is the number of variables in the objective
function. A�er initialization, the population of the positions
(solutions) is subjected to repeated cycles,� = 1, 2, . . . ,MCN
(maximum cycle number) of the search processes of the
employed, onlooker, and scout bees.

An employed bee produces amodi	cation on the position
(solution) in its memory depending on the local information
(visual information) and tests the nectar amount (	tness
value) of the new food source (new solution). Provided that
the nectar amount of the new source is higher than that of the
previous one, the beememorizes the new position and forgets
the old one. Otherwise, it keeps the position of the previous
source in its memory. When all the employed bees complete
the search process, they share the nectar information of
the food sources and their position information with the
onlooker bees in the dance area. An onlooker bee evaluates
the nectar information taken from all the employed bees and
selects a food source with a probability related to its nectar
amount. As in the case of an employed bee, the onlooker bee
produces a modi	cation on the position in its memory and
checks the nectar amount of the candidate source. If its nectar
amount is higher than that of the previous one, the onlooker
bee memorizes the new position and forgets the old one.

An arti	cial onlooker bee selects a food source depending
on the probability value associated with that food source, ��,
as given in the following equation:

�� =
	t�

∑SN�=1 	t�
, (1)

where 	t� is the 	tness value of �th solution which is propor-
tional to the nectar amount of the food source in �th position
and SN is the number of food sources which is equal to the
number of employed bees.

In order to produce a candidate food position from the
old one in memory, the ABC algorithm adopts the following
expression:

V��� = ���� + � (���� − ����) , (2)

where V��� is the candidate food position. Although � is deter-
mined randomly, it has to be di�erent from � ⋅ � is a random
number between −1 and 1. It controls the production of the
neighborhood food sources around ��� and represents the
visual comparison of two food positions by a bee. From (2), it
can be seen that as the di�erence between the parameters of
���� and ���� decreases, the perturbation on the position ����
gets decreased too. �us, as the search process approaches
to the optimal solution in the search space, the step length
is adaptively reduced. If a parameter value produced by this
operation exceeds its predetermined limit, the parameter can
be set to an acceptable value. Here, the value of the parameter
exceeding its limit is set to its limit value.

�e food source of which the nectar is abandoned by
the bees is replaced with a new food source by the scouts.
In ABC algorithm, this is simulated by producing a random
position and replacing it with the abandoned one. In this
algorithm, providing that a position (solution) cannot be
improved further through a predetermined number of cycles,
then that food source is assumed to be abandoned. �e
value of the predetermined number of cycles is an important
control parameter of ABC algorithm, which is known as
“limit” for abandonment. Assume that the abandoned source
is �� and � ∈ {1, 2, 3, . . . , �}, 	 ∈ {1, 2, 3, . . . , 
}, then the
scout discovers a new food source to be replaced with ��.�is
operation can be de	ned using the following equation:

���� = �min�� + rand (0, 1) (�max�� − �min��) , (3)

where �max�� and �min�� are the upper and lower bounds of

kth variable, respectively. At each candidate source position,
the value of V��� is searched out and evaluated by the arti	cial
bees. Its performance is then compared with that of the old
one. If the new food source has equal or better nectar amount
than the old one, it is replacedwith the old one in thememory.
Otherwise, the old food source is retained in the memory. In
otherwords, a greedy selectionmechanism is employed as the
selection process between the old and the candidate one.�e
main steps of ABC algorithm are given below [27].

(i) Initialize.

(ii) Repeat.
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(a) Place the employed bees on the food sources in
the memory.

(b) Place the onlooker bees on the food sources in
the memory.

(c) Send the scouts to the search area for discover-
ing new food sources.

(iii) Until (all the requirements are met).

�e detailed pseudocode of ABC algorithm is presented
as follows [31]:

(1) Initialize the population of solutions � ��� (� =
1, 2, . . . , SN; � = 1, 2, . . . , �; 	 = 1, 2, . . . , 
).
(2) Evaluate the population.
(3) Cycle = 1.

(4) Repeat.
(5) Produce new solutions V��� for the employed bees
and evaluate them.

(6) Apply the greedy selection process.

(7) Calculate the probability values for the solutions
����.
(8) Produce the new solutions V��� for the onlookers
from the solutions ���� selected depending on proba-
bility values and evaluate them.

(9) Apply the greedy selection process.

(10)Determine the abandoned solution for the scout,
if exists, and replace it with a new randomly produced
solution ����.
(11)Memorize the best solution achieved so far.

(12) Cycle = cycle + 1.

(13) Until cycle = MCN.

3. Optimization of Nd:YAG LBM Processes

In order to validate the applicability and performance of
ABC algorithm for parametric optimization of Nd:YAG LBM
process, the experimental data andmathematicalmodeling of
two LBMprocesses [6, 10] are analyzed here. For each of these
processes, both the single and multi-objective optimizations
of the responses are performed. For application of ABC
algorithm, a computer code is developed in MATLAB 7.6
(R2008a) with the following control parameters: swarm size
= 10, number of employed bees = 50% of the swarm size,
number of onlookers = 50% of the swarm size, number of
scouts per cycle = 1, number of cycles = 2000, and runtime
= 2.

�e role of various control parameters in ABC algorithm
is also quite important, which mainly drive the operational
aspect of this algorithm. For example, swarm size, number of
employed bees, and number of onlookers directly in�uence
selection of the initial starting point for this algorithm and
control the number of bees participating in the search process
(in this case, beginning of simultaneous search conditions
initiated by each bee). Also, the number of onlookers directly

Table 1: Machining parameters with their levels.

Parameter
Levels

−2 −1 0 1 2

Lamp current (�1) (amp) 17 19 21 23 25
Pulse frequency (�2) (kHz) 1 2 3 4 5
Air pressure (�3) (kg/cm2) 0.6 1 1.4 1.8 2.2
Pulse width (�4) (%) 2 6 10 14 18

in�uences how quickly the potential food sources are evalu-
ated: higher number of onlooker bees means quick collection
of information from the employed bees and thus selection or
rejection of food sources will be faster. Similarly, number of
scouts per cycle will quicken the search process for new food
source in every cycle. Finally, the number of cycles represents
howmany times the algorithmwill be run before termination
and may prove to be useful where there are a large number of
variables to be evaluated.

Changing the values of various control parameters in
ABC algorithm may increase/decrease the number of itera-
tions to reach the optimal solution, but there will not be any
signi	cant change in the optimal solution. In this paper, the
control parameters are selected based on the nature of the
mathematical model (second-order equations with four/	ve
variables) and capacity of CPU used (1.83GHz Core 2 DUO
processor with 1 GB RAM): high end CPU may run with
higher number of cycles and higher number of swarm size,
but for CPU with limited resource, higher values of control
parameters may cause CPU to freeze and RAM to over�ow.

3.1. Example 1. Kuar et al. [6] performed laser beam micro-
drilling operation on zirconia (ZrO2) ceramics of size 20 ×
20mm and 1mm thick and studied the in�uences of four
process parameters, that is, lamp current, pulse frequency, air
pressure, and pulse width on HAZ thickness and taper of the
drilled holes. Each of those four process parameters was set
at 	ve di�erent levels, as given in Table 1.

To determine the multiparametric optimal combinations
for pulsedNd:YAG laser beammicrodrilling process on ZrO2
ceramics, experiments were carried out according to a central
composite rotatable second-order design plan based on RSM
technique and the following two equations were developed
for HAZ thickness and taper:

�� (HAZ) = 0.3796 + 0.07888�1 − 0.04120�2
− 0.04301�3 − 0.00570�4 + 0.02146�21
− 0.00957�22 + 0.00266�

2
3 − 0.01234�

2
4

− 0.0228�1�2 − 0.00679�1�3 − 0.03158�1�4
+ 0.01341�2�3 − 0.00983�2�4 − 0.00497�3�4,

�� (Taper) = 0.07253 + 0.00912�1 + 0.00887�2
− 0.00606�3 + 0.00449�4 + 0.00153�21
+ 0.00225�22 + 0.00233�

2
3 + 0.00399�

2
4

+ 0.00431�1�2 − 0.00646�1�3 − 0.00519�1�4
− 0.00110�2�3 − 0.00023�2�4 − 0.07253�3�4.

(4)
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Table 2: Results for single objective optimization.

Optimization method Response Optimal value Lamp current (amp) Pulse frequency (kHz) Air pressure (kg/cm2) Pulse width (%)

Kuar et al. [6] HAZ 0.0675 17 2 2 2

Taper 0.0319 17 2 0.6 2

GA
HAZ 0.1066 19 1 2 2

Taper 0.0843 23.86 2.29 1.38 13.92

PSO algorithm
HAZ 0.0604 18 1.25 2.12 2.4

Taper 0.0458 20.23 4.10 1.81 11.95

ACO algorithm
HAZ 0.0324 17 1.5 2 2

Taper 0.0377 18.04 4.47 1.73 14.18

ABC algorithm
HAZ 0.0174 17.0 4.8 2.1 2

Taper 0.0202 18.2 1.25 0.6 2

Table 3: Single objective optimization performance.

Optimization method Response Optimal value Mean Standard deviation Standard error

GA
HAZ 0.1066 0.1231 0.0102 0.0032

Taper 0.0843 0.1056 0.0151 0.0047

PSO algorithm
HAZ 0.0604 0.0883 0.0212 0.0067

Taper 0.0458 0.0662 0.0138 0.0043

ACO algorithm
HAZ 0.0324 0.0505 0.0129 0.0041

Taper 0.0377 0.0507 0.0098 0.0031

ABC algorithm
HAZ 0.0174 0.0301 0.0094 0.0030

Taper 0.0202 0.0346 0.0092 0.0029

3.1.1. Single Objective Optimization. In this case, the second-
order RSM-based equations for the two responses are opti-
mized separately. Here, both the responses are to be min-
imized with respect to the constraints set as 17 ≤ x1 ≤
25, 1 ≤ x2 ≤ 5, 0.6 ≤ x3 ≤ 2.2, and 2 ≤ x4 ≤ 18. Kuar
et al. [6] obtained the optimal settings of lamp current =

17 amp, pulse frequency = 2 kHz, air pressure = 2 kg/cm2 and
pulse width = 2%; lamp current = 17 amp, pulse frequency

= 2 kHz, air pressure = 0.6 kg/cm2, and pulse width = 2%
for minimum values of HAZ thickness of 0.0675mm and
taper of 0.0319mm, respectively. �ese optimal parametric
settings are shown in Table 2. �is table also shows the
results when ABC algorithm is applied to optimize these two
RSM-based equations with respect to the given constraints.
It is observed that while employing ABC algorithm, the
minimum value of HAZ thickness is drastically reduced
from 0.0675 to 0.0174mm and the minimum taper is also
decreased from 0.0319 to 0.0202mm. �e optimal process
settings are also changed. �e optimization results for GA,
PSO, and ACO algorithms are also given in Table 2, which
proves the superiority of ABC algorithm over the others with
respect to their optimization performance. Figure 1 shows
the convergence diagram for all the considered optimization
techniques for HAZ thickness. �e termination criterion for
each algorithm is set at 500 iterations; that is, a�er 500
iterations, the algorithm will be terminated and all the 500
solutions will be plotted on the convergence diagram. �e
best value is taken as the optimal solution of the objective
function obtained by the algorithm. From Figure 1, it is

clear that ABC algorithm outperforms the other population-
based algorithmswhile achieving theminimumvalue ofHAZ
thickness.

In order to study the optimization performance of ABC,
ACO, PSO, and GA algorithms in details, the mean, standard
deviation, and standard error of the obtained optimal values
are computed, as given in Table 3. It is noted that the
optimization performance of ABC algorithm is better than
that of ACO, PSO, and GA with respect to the dispersion of
the optimal solution values. �e results of two sample paired
�-tests, as exhibited in Table 4, show that the di�erences
in optimization performance between ABC algorithm and
other considered population-based algorithms are statisti-
cally signi	cant at 5% signi	cance level. It is also observed
that the optimization performance of ABC algorithm is
relatively more consistent than that of other algorithms.
Table 5 compares the required computational (CPU) times
for all the considered algorithms when run in an Intel Core
2 DUO, 1.83GHz, 1 GB RAM CPU computer platform. It is
interesting to note that althoughABC algorithmhas excellent
optimization performance, its CPU time is not so very
high compared to the other algorithms under consideration.
Hence, it can be an e�ective optimization tool for 	nding out
the best parametric combination of Nd:YAG LBMprocess for
its enhanced machining performance.

Figure 2 shows the variations of HAZ thickness with
respect to the four LBM process parameters. It is observed
that with the increase in lamp current and pulse width, HAZ
thickness increases, whereas it decreases with increasing
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Table 4: Two sample paired �-tests between di�erent algorithms.

Optimization methods Response Results of paired �-test

GA versus ABC algorithm
HAZ

95% CI for mean di�erence: (0.08886, 0.09616), �-test of mean di�erence = 0 (versus
not = 0), � value = 50.97, � value = 0.000

Taper
95% CI for mean di�erence: (0.06522, 0.07526), �-test of mean di�erence = 0 (versus
not = 0), � value = 28.13, � value = 0.000

PSO algorithm versus ABC algorithm
HAZ

95% CI for mean di�erence: (0.05068, 0.06520), �-test of mean di�erence = 0
(versus not = 0), � value = 16.05, � value = 0.000

Taper
95% CI for mean di�erence: (0.02703, 0.03450), �-test of mean di�erence = 0
(versus not = 0), � value = 16.55, � value = 0.000

ACO algorithm versus ABC algorithm
HAZ

95% CI for mean di�erence: (0.01633, 0.02440), �-test of mean di�erence = 0 (versus
not = 0), � value = 10.13, � value = 0.000

Taper
95% CI for mean di�erence: (0.01000, 0.01835), �-test of mean di�erence = 0 (versus
not = 0), � value = 6.82, � value = 0.000

Table 5: CPU time for ABC, ACO, PSO, and GA algorithms.

Optimization method Average CPU time (in sec)

ABC algorithm 13.8
ACO algorithm 13.6
PSO algorithm 14.1
GA 13.4

Generation
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Figure 1: Convergence of ABC, ACO, PSO, and GA algorithms for
HAZ thickness.

values of pulse frequency and assist air pressure. �e energy
of a laser beam is directly proportional to lamp current.
High lamp current generates high thermal energy, which
produces high HAZ thickness. At low pulse frequency, peak
power of the laser beam is higher causing excessive material
removal. But at higher pulse frequency as the peak power
of laser beam is less, HAZ thickness is comparatively lower.
It has also been found that the assist air pressure has an

almost linear relationship with HAZ thickness [6]. Low assist
air pressure is unable to remove the excess heat generated
at the micro-drilling zone as well as being unable to assist
the removal of ejected material. �is phenomenon causes
high HAZ thickness. However, at higher assist air pressure,
the excess amount of heat can be rapidly removed which
also helps in ejecting the molten material. As a result, low
HAZ thickness can be observed. At lower pulse width, highly
concentrated laser beam can easily penetrate into thematerial
causing less HAZ thickness. �en HAZ thickness rapidly

increases due to surface deposition of the molten material.

During pulsed Nd:YAG laser micro-drilling operation,
minimization of taper of themicro-hole is highly required for
maintaining quality and accuracy of the hole. Kuar et al. [6]
observed that taper increases signi	cantly with lamp current.
High lamp current generates high thermal energy, and as a
result, the top surface of work sample where the laser beam is
focused getsmelted and vaporized instantly, and large volume
of material is removed from the top surface, which produces
large taper. At very high pulse frequency, relatively large taper
is observed, but at low pulse frequency, low taper is generated.
At very low pulse frequency, the beam energy is slightly high
but the time between two successive incident beams is more;
therefore, material is removed only from the narrow focusing
spot on the top surface of work sample. It has been observed
that taper is signi	cantly increased with the increase in assist
air pressure [6]. Zirconia has a very low thermal conductivity
and the higher assist air pressure cools the localized heating
zone causing slower rate of material removal to penetrate
up to the whole thickness of the work sample. As a result,
laser beam energy for longer period causes large areamaterial
removal from the top surface of the hole, resulting in an
increase in taper with increasing assist air pressure. At low
pulse width, highly concentrated laser beam energy causes
faster rate of penetration, and as a result less taper is formed.
�ese same observations are also obtained in Figure 3 where
the variations of taper with respect to four LBM process
parameters are exhibited.

3.1.2. Multiobjective Optimization. In multi-objective opti-
mization of Nd:YAG LBM process, instead of treating the
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Figure 2: Variations of HAZ thickness with LBM process parameters.

two responses separately, both are simultaneously optimized,
based on the following objective function [31]:

Min (�1) =
�1�� (HAZ)
HAZmin

+ �2�� (Taper)
Taper

min

, (5)

where Y�(HAZ) and Y�(Taper) are the second-order RSM-
based equations for HAZ thickness and taper, respectively;
HAZmin and Taper

min
are the minimum values of HAZ

thickness and taper, respectively; w1 and w2 are the weights
or priority values assigned to HAZ thickness and taper,
respectively. �ese weights can be anything such that w1 +
w2 = 1. Assignment of the weights (relative importance) to
di�erent responses is entirely based on the knowledge and
experience of the concerned process engineers. Sometimes,
analytic hierarchy process [32] is employed to determine
these weight values. �e HAZmin and Taper

min
values are

obtained from the single objective optimization results. Here,
equal weights for both the responses, that is, w1 = w2 =
0.5, (case 1) are 	rst considered and the results obtained

a�er solving this multi-objective optimization problem using
ABC algorithm are given in Table 6. �e constraints for this
multi-objective optimization problem are the same as set for
single objective optimization. �e minimum HAZ thickness
and taper values are obtained as 0.1019mm and 0.0248mm,
respectively, which are quite better than those observed by
Kuar et al. [6]. �e optimal solution (Z1) is 0.0634. Table 6
also shows the results of multi-objective optimization where
two other weighting schemes to the responses (case 2: w1
= 0.9 and w2 = 0.1, and case 3: w1 = 0.1 and w2 = 0.9) are
considered. In case 2, maximum weight is assigned to HAZ
thickness and in case 3, minimization of taper is given more
importance. In both these cases, the optimal process settings
are changed. Table 7 gives a comparative analysis of themulti-
objective optimization performance of ABC algorithm for
all the three cases and it is important to note that the best
performance is achieved when equal importance is given to
the responses. �us, based on these optimization results, it
is always recommended to assign equal weights to all the
responses.
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Figure 3: Variations of taper with various LBM process parameters.

Table 6: Results for multi-objective optimization.

Case Response Optimal value �1 Lamp current (amp)
Pulse frequency

(kHz)
Air pressure
(kg/cm2)

Pulse width (%)

Kuar et al. [6]
HAZ 0.1296

0.0848 17 1.62 1.04 2
Taper 0.0400

Case 1 (�1 = 0.5 and �2 = 0.5)
HAZ 0.1019

0.0634 17.18 1.5 1.33 2
Taper 0.0248

Case 2 (�1 = 0.9 and �2 = 0.1)
HAZ 0.0281

0.2007 17.2 1.5 2.16 2
Taper 0.3733

Case 3 (�1 = 0.1 and �2 = 0.9)
HAZ 0.3124

0.1891 18.66 1.34 1.20 7.95
Taper 0.0329

Table 7: Multi-objective optimization performance.

Case �1 Mean Standard deviation Standard error

Case 1 (�1 = 0.5 and �2 = 0.5) 0.0634 0.0854 0.0151 0.0048
Case 2 (�1 = 0.9 and �2 = 0.1) 0.2007 0.2532 0.0413 0.0130
Case 3 (�1 = 0.1 and �2 = 0.9) 0.1891 0.2196 0.0309 0.0098
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Table 8: LBM process parameters with their levels.

Parameter
Levels

−2 −1 0 1 2

Air pressure (�1) (kg/cm2) 0.3 0.8 1.3 1.8 2.3
Lamp current (�2) (A) 13 16 19 22 25
Pulse frequency (�3) (kHz) 1 2 3 4 5
Pulse width (�4) (%) 2 4 6 8 10
Cutting speed (�5) (rpm) 7 12 17 22 27

3.2. Example 2. Using an Nd:YAG laser-turning system,
Dhupal et al. [10] performed micro-grooving operation on
cylindrical Al2O3 workpiece (10mm diameter and 40mm
length) and also investigated the e�ects of 	ve process
parameters (air pressure, lamp current, pulse frequency, pulse
width, and cutting speed) on the upper deviation (�uw), lower
deviation (�lw), and depth deviation (��) of the machined
micro-groove. Each of the 	ve process parameters was set at
	ve di�erent levels, as shown in Table 8.

Dhupal et al. [10] conducted experiments based on a
central composite rotatable second-order design plan and
developed the following RSM-based equations for the con-
sidered three responses:

�� (uw) = −0.00376 − 0.01690�1 − 0.00251�2
− 0.00288�3 + 0.00048�4 + 0.00185�5
+ 0.00678�21 + 0.00232�

2
2 + 0.00276�

2
3

− 0.00012�24 + 0.00207�
2
5 + 0.00004�1�2

− 0.00134�1�3 + 0.00188�1�4 − 0.00225�1�5
− 0.00149�2�3 − 0.00081�2�4 − 0.00052�2�5
+ 0.00114�3�4 − 0.00262�3�5 + 0.00120�4�5,

�� (lw) = 0.01857 − 0.01330�1 − 0.00247�2
− 0.00268�3 + 0.00120�4 − 0.00391�5
+ 0.00299�21 + 0.00224�

2
2 − 0.00137�

2
3

− 0.00122�24 + 0.00051�
2
5 + 0.00235�1�2

− 0.00122�1�3 − 0.00168�1�4 + 0.00197�1�5
− 0.00197�2�3 − 0.00175�2�4 + 0.00166�2�5
− 0.0078�3�4 − 0.00211�3�5 + 0.00378�4�5,

�� (�) = 0.01265 − 0.02510�1 − 0.00263�2
+ 0.00451�3 + 0.00479�4 − 0.00229�5
+ 0.00338�21 + 0.00383�

2
2 + 0.00168�

2
3

+ 0.00157�24 − 0.00112�
2
5 − 0.00214�1�2

− 0.00472�1�3 − 0.00264�1�4 + 0.00260�1�5
− 0.00035�2�3 − 0.00314�2�4 − 0.00365�2�5
− 0.00425�3�4 + 0.00006�3�5 + 0.00393�4�5.

(6)

3.2.1. Single Objective Optimization. �e three above-
mentioned RSM-based second-order equations for the
responses are now optimized using ABC algorithm while
treating the responses separately. �e constraints are set as
0.3 ≤ x1 ≤ 2.3, 13 ≤ x2 ≤ 25, 1 ≤ x3 ≤ 5, 2 ≤ x4 ≤ 10, and 7
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Figure 4: Convergence of ABC, ACO, PSO, and GA algorithms for
upper deviation.

≤ x5 ≤ 27. �e results of this single objective optimization
of the responses are given in Table 9. In this case, all the
three responses need to be minimized. It is observed from
Table 9 that the minimum values for all the three responses
are obtained when ABC algorithm is employed as the
optimization tool. �e performance of ABC algorithm is
also better than the other population-based optimization
methods, as shown in Table 9. Here, it is not possible to
compare the results obtained using ABC algorithm with
those of Dhupal et al. [10] as they did not consider the single
objective optimization of Nd:YAG laser-turning process. �e
convergences of ABC, ACO, PSO, and GA algorithms for
upper deviation of the machined micro-groove are shown in
Figure 4. Table 10 compares the single objective optimization
performance of the considered algorithms which again
proves the superiority of ABC algorithm over the others.

�e variations of upper deviation with respect to air
pressure, lamp current, pulse frequency, pulse width, and
cutting speed are exhibited in Figure 5. �e dimensional
upper deviation from the target is to beminimized. Dhupal et
al. [10] observed that the upper deviation becomes lower with
increasing values of lamp current and pulse frequency. As
the lamp current increases, the laser beam energy increases
and the top surface of the work material melts at a faster
rate. High-energy laser beam produces low upper deviation
because it removes material from the top surface and pene-
trates at a faster rate into the material to obtain the desired
depth. It has also been observed that the change in upper
deviation with pulse frequency is less compared to that of
lamp current. �e pulse width has moderate e�ect on upper
deviation as comparedwith lamp current. At low pulse width,
the upper deviation of the micro-groove approaches to zero,
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Figure 5: Variations of upper deviation with various LBM process parameters.
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Figure 6: Variations of lower deviation with various LBM process parameters.
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Figure 7: Variations of depth deviation with 	ve LBM process parameters.
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Table 9: Single objective optimization results.

Optimization
method

Response Optimal value
Air pressure
(kg/cm2)

Lamp current
(amp)

Pulse frequency
(kHz)

Pulse width (%)
Cutting speed

(rpm)

GA

�uw 0.0024 1.73 18.25 1.39 3.62 21.48
�lw 0.0038 2.22 16.89 4.57 5.15 15.28
�� 0.0037 1.68 23.50 1.75 7.60 17.25

PSO
algorithm

�uw 0.0014 1.73 14.85 2.78 9.35 17.79
�lw 0.0024 2.18 21.61 4.17 5.04 17.21
�� 0.0022 1.93 17.20 4.00 8.40 24.50

ACO
algorithm

�uw 0.0007 1.70 19.51 1.74 8.11 19.45
�lw 0.0008 2.22 21.91 4.27 4.64 25.19
�� 0.0006 1.85 20.20 2.67 9.26 23.00

ABC
algorithm

�uw 0.0002 2.22 23.56 4.74 2.00 20.54
�lw 0.0003 2.20 25.00 3.75 2.72 14.25
�� 0.0003 0.30 25.00 1.10 2.35 18.30

Table 10: Single objective optimization performance.

Optimization method Response Optimal value Mean Standard deviation Standard error

GA

�uw 0.0024 0.0033 0.00067 0.00021
�lw 0.0038 0.0049 0.00083 0.00026
�� 0.0037 0.0049 0.00099 0.00031

PSO algorithm

�uw 0.0014 0.0025 0.00073 0.00023
�lw 0.0024 0.0032 0.00060 0.00019
�� 0.0022 0.0029 0.00057 0.00018

ACO algorithm

�uw 0.0007 0.0014 0.00049 0.00016
�lw 0.0008 0.0017 0.00059 0.00019
�� 0.0006 0.0015 0.00071 0.00022

ABC algorithm

�uw 0.0002 0.0008 0.00046 0.00014
�lw 0.0003 0.0010 0.00048 0.00015
�� 0.0003 0.0009 0.00041 0.00013

and the desired value of upper deviation can be achieved
while performing laser turning operation at lower pulse
width. �en, the upper deviation increases with increase in
pulse width. Higher air pressure has been recommended for
higher dimensional accuracy in the form of upper deviation.
It has been found that at low cutting speed of the workpiece,
the upper deviation becomes less. At low cutting speed,
the material of the workpiece absorbs su
cient amount of
heat energy for longer time, and as a result, the material is
removed from the upper surface to obtain the required upper
deviation. At high cutting speed, the ablation rate of material
from the upper surface is higher, and as a result, the upper
deviation becomes high. �ese 	ndings of Dhupal et al. [10]
exactly match with those observed in Figure 5.

�e variations of lower deviation of the micro-groove
with respect to 	veNd:YAG laser-turning process parameters
are exhibited in Figure 6. It is observed that with the increase
in the values of air pressure and lamp current, the lower
deviation decreases, and it increases with the increasing value
of pulse width. �e e�ects of pulse frequency and cutting
speed on lower deviation are almost nonlinear. On the other
hand, Figure 7 shows the e�ects of 	vemachining parameters
on depth deviation of the microgroove. Depth deviation
almost linearly increases with the gradual increment in the
values of air pressure, pulse frequency, and pulse width,

whereas minimum depth deviation is achieved at higher
values of lamp current. Cutting speed has a nonlinear e�ect
on depth deviation. Dhupal et al. [10] extensively studied
and analyzed the in�uences of the 	ve process parameters
on lower deviation and depth deviation of the machined
microgroove.

3.2.2. Multiobjective Optimization. �e same optimization
problem is now solved using ABC algorithm while giving
equal weights to all the three responses. For this multi-
objective optimization problem, the following objective func-
tion is developed and solved with respect to the constraints as
imposed in the case of single objective optimization as

Min (�2) =
0.33�� (uw)

uwmin

+ 0.33�� (lw)
lwmin

+ 0.33�� (�)�min

, (7)

where ��(uw), ��(lw), and ��(d) are the second-order RSM-
based equations for upper deviation, lower deviation, and
depth deviation respectively; uwmin, lwmin, and �min are
the minimum values of upper deviation, lower deviation
and depth deviation, respectively. �ese minimum values
are obtained from the results of single objective optimiza-
tion. �e multi-objective optimization results are shown
in Table 11. Dhupal et al. [10] applied desirability function
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Table 11: Multi-objective optimization results.

Optimization
method

Response Optimal value
Air pressure
(kg/cm2)

Lamp current
(amp)

Pulse frequency
(kHz)

Pulse width (%)
Cutting speed

(rpm)

Dhupal et al.
[10]

�uw −0.0001
0.93 22.51 1.48 2.39 10.43�lw −0.0002

�� −0.0009

ABC
algorithm

�uw 0.0002

1.64 18.87 3.21 9.80 7.67�lw 0.0006

�� 0.0003

approach to optimize the multiple responses of Nd:YAG
laser-turning process for generation of micro-groove and
achieved the optimal values of the responses as negatives
which are infeasible to obtain. Applying ABC algorithm, it

is observed that a combination of air pressure = 1.64 kg/cm2,
lamp current = 18.87 amp, pulse frequency = 3.21 kHz, pulse
width = 9.80%, and cutting speed = 7.67 rpm would simulta-
neously optimize all the three responses of the LBM process.
�eoptimal value of the objective function (Z2) is determined
as 0.000365.

�e ABC algorithm is based on the foraging behavior of
the honey bee colonies. �e model consists of three essential
components, that is, employed and unemployed foraging
bees, and food sources. It also de	nes two leading modes
of behavior which are necessary for self-organizing and
collective intelligence, that is, recruitment of foragers to rich
food sources resulting in positive feedback and abandonment
of poor sources by foragers causing negative feedback.

In ABC algorithm, a colony of arti	cial forager bees
(agents) search for rich arti	cial food sources (good solutions
for a given problem). To applyABC algorithm, the considered
optimization problem is 	rst converted to the problem of
	nding the best parameter vector which minimizes the
given objective function. �en, the arti	cial bees randomly
discover a population of initial solution vectors and then
iteratively improve themby employing the strategy ofmoving
towards better solutions by means of a neighborhood search
mechanism while abandoning poor solutions.

�emost innovative feature of ABC algorithm is the con-
cept of exchange of information amongst the onlooker bees
to 	nd out a better food source which minimizes the search
iteration for the global optimal and avoids candidate solutions
which are sub-optimal.�e same point is observed inFigure 1
(convergence of ABC, ACO, PSO and GA algorithms for
HAZ thickness) and Figure 4 (convergence of ABC, ACO,
PSO, and GA algorithms for upper deviation) where it is
evident that due to its superior searching methodology, ABC
algorithm reaches the convergent solution much earlier than
ACO, PSO, and GA.

4. Conclusions

In this paper, the parametric optimization problems for two
Nd:YAG laser beammachining processes are solved applying
ABC algorithm. For both the cases, the results of single
as well as multi-objective optimization of the LBM process

are derived. It is observed that the optimal values of the
responses derived by ABC algorithm are far better than
those obtained by the past researchers. �e comparison of
the performance of ABC algorithm with other population-
based algorithms proves its superiority and applicability as
an e�ective optimization tool. �e optimal response values
obtained using ABC algorithm have minimum dispersion
and are close to the target solutions. AlthoughABC algorithm
gives excellent results, its CPU time is quite comparable with
that of the other optimization algorithms. �e results of two
sample paired �-tests also demonstrate its superiority over
the other considered algorithms. It is also observed that for
multi-objective optimization, it is always preferable to assign
equal importance to all the considered responses.�e derived
parametric combinations for Nd:YAG LBM process would
now help the process engineers to set the operating levels of
various process parameters at their optimal values to have
enhanced machining performance. �is algorithm may also
be e�ectively applied for parametric optimization of other
machining processes.
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