
Parametric Overloading
in Polymorphic Programming Languages

Stefan Kaes

Fachbereich Informatik

Technische Hochschule Darmstadt

Magdalenenstr. 11c, D-6100 Darmstadt

81TNET: xlp2fgp|~) ddathd21

Abstract

The introduction of unrestricted overloading in languagues with type systems

based on implicit parametric potymorphism generally destroys the principal type

property: namely that the type of every expression can uniformly be represented

by a single type expression over some set of type variables. As a consequence,

type inference in the presence of unrestricted overloading can become a NP-

complete problem. In this paper we define the concept of parametric overloading

as a restricted form of overloading which is easily combined with parametric

polymorphism. Parametric overloading preserves the principal type property,

thereby allowing the design of efficient type inference algorithms. We present

sound type deduction systems, both for predefined and programmer defined

overloading. Finally we state that parametric overloading can be resolved either

statically, at compile time, or dynamically, during program execution.

1 Intreductlee

Over the last decade, a considerable number of (functional) programming languages with type

disciplines based on the concept of parametric polymorphism [Milner78] have been developed. Among

the better known are ML [Milner84], HOPE [8MQS80] and Miranda [Turner85]. The success of

parametric polymorphism is largely due to the following facts.

Security: Programs are forced to be statically type correct, enabling the detection of a Jarge

number of programming errors at compile time.

Flexibility: Parametric polymorphism provides the programmer with a type system which allows the

reuse of functions for arguments of various types, provided the meaning of the function does not

depend on a particular type.

Efficiency: Since all type checking is done at compile time, expensive runtime type checks can be

eliminated, thus increasing the efficiency of functional language implementations.

At a closer look, however, one can observe that the type systems employed in these languages are

132

not as secure and flexible as they should be. For example, let us consider some predefined operators

in the context of a type system containing integers, reals, booleans, lists of homogenous element type

and functions.

A typical example for a parametrically potymorphic function is the function fen, which determines

the length of lists of arbitrary element type t. In a parametrically polymorphic type system the type

of len could be expressed using the type expression Vt. l i s t (t) - * i n t , where t stands for an arbitrary

type.

tn regard to flexibility, we would certainly like to have an operator +, to denote both integer- and

real addition at the same time. Thus, we require + to be overloaded. In a parametrically polymorphic

type system, this can only be described by assigning a set of type expressions, (equivalent to the

conjunctive types of [CoppoS0]) as the type of +, namely: { in t × int -* int , rea l x rea l -* rea l }.

This presents no conceptual problems for type inference, since it is well known how to deal with this

kind of overloading (see [BaSne86] for a possible approach). However, in the presence of arbitrary

sets of types and undeclared identifiers, the problem becomes computationally hard to solve, in fact,

it can be shown to be NP-complete [ASU86]. It appears as if this problem has led the designers of

HOPE, Miranda and ML(at least in the original version) to the decision of collapsing types integer and

real into a single data type of numbers. Nonetheless, we feel that the distinction of integer and real

numbers is essential and should therefore be reflected in the type system of any programming

laguage.

Note that there is also a semantical difference between overloading and polymorphism: In the case

of the overloaded + operator, we would expect different code to be executed for integer and real

addition respectively, whereas we expect the code of len to be usable for lists of any type. This

distinction has led to the name "adhoc polymorphism" [St r67] . At a second glance it is somewhat

superficial: we could easily imagine a built-in addition instruction, which tests the type of the operands

and then performs either integer or real addition.

As a striking example for the insecurity of pure parametric polymorphism, let us assume that = ,

the equality operator, is applicable to two values of the same type, provided there is no comparison

between functional values involved.

The reason for this restriction is rather obvious: since equality of functions is in general undecidable,

we would like the type system to prohibit any attempt to do so. Using type expressions over some set

of ordinary type variables, one can only assign Vt. t x t -* bool as a polymorphic type to =. This type

expression can be interpreted as: for any type t, = maps two values of type t to a boolean value. Since

any type is admissible, this implies that even two functions of identical type, say in t --* int, are comparable.

Now this example has a flavor not found in the f irst one: if we were to represent the overloaded

type of = by a set of type expressions, we would be forced to use an infinite number of types;

{ i n t x int -* bool l i s t (in t) x l i s t (in t) -* bool l i s t (l i s t (in t)) x l i s t (l i s t (in t)) -* bool }

We conclude therefore that it is necessary to introduce a finite representation for such sets, especially

since these sets arise frequently, some examples being the sets of types o f =, ~, e t c . . Such a

representation is possible, if we restr ict ourselves to p a r a m e t r i c overloading. The difference between

the various kinds of potymorphism can roughly be summarized by the following comparison:

P a r a m e t r i c po l ymorph ism: One semantic object can have different types at each usage, all being

133

instances of a single type expression over variables.

Overloading ("adhoc potymorphism'): A single name can be used to denote different semantic

objects, the types of these objects being completely unrelated.

Parametric overloading: A single name can be used to denote several objects, the types of these

objects being instances of a single type expression over some extended set of type variables.

The remainder of this paper is devoted to the development of a theory of parametric overloading.

It is organized in the following way: First, we recapitulate the theoretical foundations of the notion of

parametric polymorphism in the context of a simple expression language. We present a denotational

semantics for this language, define syntax and semantics of types, give a deduction system for inferring

well typed programs, and state that our type system is sound w.r. t , the semantics of expressions and

types. Second, we give a formal definition of parametric overloading, based on the concept of overloading

assumptions and sorted type variables, restricting ourselves to the case of predefined overloaded function

symbols. We then proceed to show that a unification algorithm for the modified set of type expressions

exists, and that, by simply replacing robinsons algorithm used in Milner's type inference algorithm W

with this new algorithm, we obtain an algorithm to compute principal well typings in presence of

parametrically overloaded functions. In Chapter 4 we extend our base language to include user definable

overloading, and give a deduction system for well typings. Finally we discuss two alternative semantics

for the extended language: the f i rst one is given by mapping overloaded expressions back to expressions

of the original language, resolving overloading statically, the second one is given by changing the semantic

equations to resolve overloading dynamically, during program execution.

2 Parametric Polymorphlsm

2.1 Syntax and Semantics of Expressions

Assuming that x ranges over a countable set of variables, the expressions of our example language

Expr are generated by the grammar

M ::= x I Xx.M I M1 M2 I let x = M1 in M2

In order to assign meaning to expressions we postulate the existence of a domain of denotable

values V as a solution to the recursive domain equation

v = w • (s c l v a %)
where • denotes disjoint union and

(1) W = { • } is the domain of the value • . used to model runtime type errors.

w h e r e . , as a member of V will be denoted by wrong.
(2) C is a finite set of type constructors with arity a(c); e.g. tint, real, x. -~ }

(3) Sc(D~ Da(c)) is a domain corresponding to type constructor c ~ C; e.g.:

Slnt - the fiat cpo of integers

Steal - likewise for real numbers

S×(A,B) - cartesian product space

S-(A,B) - space of continous function from A to B

The meaning of any expression M is given in terms of a function ~.~M~, mapping environments ~

Env = Id ~ V to denotable values:

134

F.: Expr -, Env -~ V
~ x ~ =]1(x)

&EXx.MI~I : (Xv. t-~M]n {v/x})
~.[M, M2]ll = i f f ~ F then (f IF) v else wrong , where f = i¢..~M,]l]1 , v = #.I[M~]]1
F...[let x = M, tn M2]hl = ~.~M,1] ~ F..~M2I]1/x }

where F denotes the function space S- (V,V) and 71{ v /x } = Ay. i fx=y then v else]1(y).

Note that the only possible type error apparent from the equations above, is the application of

non-functions to argument values. However, we may assume that application of functions in]1 to

arguments outside their domain can cause type errors as well.

2.2 Syntax and Semantics of Type Expressions

Let Tvars = {~(,IB,...} be a countable set of type variables and c range over C. The syntax of types

and type-schemes o is defined by

:~ cX I C(~1 "{n) and 0 ::= • I Vc~.O

The variables ~,-.,~n in type-scheme V~l,..,~n.X (an abbreviation of Vc(~ V(Xn. ~) are called generic,

whereas any type variable free in ~ is called specific. Monotypes t are types not containing type

variables. Substitutions S ~ Subst = T v i ' s ~. Types are finite mappings of type variables to types. If

o is a type-scheme, S = [~i/0(i] ~ Sut~t, then S(o) is the type-scheme obtained by instantiating each

free occurence of 0(i in o to ~i, where bound variables in o may be renamed to avoid name clashes

(cf. 0(-conversion). A type scheme e' = VI~ l~n.~' is called generic instance of o (written o'< 0), if

0 = V(x, CCn.I and ~" = ['cl/(x, ~n/~(n]I and no ~i is free in ~.

Following [MQPS84] types can be interpreted as elements in the lattice of weak ideals I(V).

Ideals I_.CV do not contain wrong, are non-empty, downward dosed and limit closed. Moreover, I(V)

is closed under union and intersection. For any c (C of arity n, let /.(c)(L In) denote the image of

Sc(L In) in V. For example, let/,(int) = Sint ,/.(real) = Steal , i(x)(IJ)={ <a,b> I a {A, boB } and

i (- ,) (IJ) = { f~V--V I x (l - f (x) ,J }.

Let (p ~ Tenv = Tvars ~ I(V), then function ¢~" below maps type schemes o to ideals under an

assignment (p of ideals to type variables free in o:

"L'IB(I,P = ~(~)
~' lc('q ~.)Ile =/.(c)('%rE~Jle,...,"t'E~.]~)
'Z 'Ew.oI~ = Ct ~ t l o l ~{ "L ' l t l~ t~ }

t (T.y[l~lml

2.3 Well-typed Expressions

A typing is a statement of the form A ~- M : % where A, a finite set of pairs x:o, is called type

assumption, assigning types to variables occuring free in M. If A is a type assumption, then A. x:o

denotes A u {x:o} and Ax denotes A. except that x does not occurr in Ax. A% the closure of • with

respect to A is defined as A-'~" =~ Vc(, (in.~, where { (z, 0(• } is the largest set of type variables

which occur free in "(, but not h~ A.

Typing A ~- M : ¢ is said to be a well-typing if it can be derived using the following axioms and

135

inference rules:

[VAR] Ax. x : o ~- x :~ i f~ < o

lABS] Ax.X :~a~- M :~r
A F- ~.x.M : la-~'Cr

A~- M1 : ~a'*%r , A ~ " M2 : Ia
lAPP]

A ~- Mr M2 : ~ r

A ~" MI : t l , Ax. x: A~I ~- M2 : ~z [LET]
A ~- let x = M1 In M2 :'c2

Note that this system differs f rom the one given in [DaMi82] in two aspects: instantiation of

type schemes {<) is restr icted to variable usage and generalisation of types (A~) is restr icted to

let- introduced identifiers. The system was f i rst used in [CDDK86], where it was shown to be equivalent

to the system of [DaMi82] in the following sense: Every well-typing derivable in the system above ts

also derivable in the system of [DaMi82] . Conversely, if A ~- M : o is derivable in the system of

[DaMt82] , then there exists a well-typing A ~- M : ~, derivable in the above system, such that o < ~ .

The following two theorems state the key properties of well-typings, namely, that well-typed

expressions do not produce runtime type errors and that type inference can be used to compute

principal types:

Theorem1 (Milner): soundness of type inference
i f A *- M : 3 is a welt-typing and x:~ (A m TI(x) (~Eo~cp then ~.[MIT t (<"~A~']~cp.

l l l o r e r n 2 (Hindley-Damas-Milner): principal well-typings
Let A be a type assumption, A' an instance of A and FV(M) be the variables free in M.

If A* ~- M : 3' is a well-typlng, then there exists a principal wetl-typlng A ~- M : ~,

such that there exists a substitution S satisfying A'lFvcu~ = S(AI~c~ ~) and A'--~' < "~FA"S'~.

Moreover, there exists an algorithm (Algorithm W) to compute A ~- M : 3.

3 Paran~trlc Overloading

3.1 Overloading Schemes and Overloadl~ Assumptions

In this chapter we will to introduce the concept of parametric overloading, which can be characterised

by a set of restrict ions on ordinary overloading:

- overloading is restr icted to function symbols (identifiers)

- the result type of a function application f(x z) is uniquely determined

by the outermost type constructor of the argument types

Moreover, in order to make type inference feasible, we require that the set of types of an overloaded
!

function can always be represented by a pair consisting of a designated type expression called

overloading scheme and a set of instantiation rules both of which together are called overloading
assumption.

DefIrlltion: overloading scheme

Let $ be a special symbol not found in C u Tvars, then e} is called an overloading

scheme if f (a = {oo x ... x (an-~ -~ (an where for all i c 0..n, ~ is either a type ~, or the

special symbol $, and ~ - i = $ " 3 i E 0..n-1 such that ~ = $.

136

In any overloading scheme $ designates the argument positions which may be overloaded.

Examples of overloading schemes are:

$ -* int a discrete measure

$ -* real a continuous measure

$ -~ $ succ. pred

$ x $ - . bool =, ~, ~. ~. <, >

$ x $ ~ $ + , ~ , - , ^ , v

Let ~) be an overloading scheme and ~ some type expression, then:

I: overloads ~ with I:' Iff "~ : [-C/$]r~ and %' is of the form c(cz I c(n) for some e ~ C.

In this case we also say that ~' is an overloading for ~. The restriction on the form of T' is due to

the fact that we want to resolve overloading by looking at outermost type constructors only.

Oeflnltlon= overloading assumption

An overloading assumption 0 is a finite set of pairs x:<~,s>, where each x occurs only

once in 0 , e) is an overloading scheme and s is a set of overloadings for ~, such that

no type constructor occurs twice in s.

Using this definition we could now define the set of valid overloadings of x:<(a,s> to be the set of

types t such that t = [t ' / $] (a where t' is an instance of some type constructor c ~ s.

The overloading assumption { +: <$ × $ - $, { int, real } } would then specify the type set

{ int x int -* int, real x real -, real }. However, if we try to define the possible overloadings of the

predefined equality operator using the assumption

{ =: <$ × $ -~ $, { int, real, list(0() }>},

we still get too large a set: although we have effectively excluded functions from appearing as

arguments of =, we still allow lists of functions to be compared. In order to remedy this situation,

we refine our notion of type variables: type variables come equipped with a set of operator names X,

where intuitively, 0ix stands for the set of all types that can appear at an overloaded argument

position of every operator x ~ X. The overloading assumption

{ =: <$ x $ -" $, { int, real, list(~{=}) } >},

would then restrict the type of arguments for = to all types constructed from the type constructors

int, real and list.

Definition: x t ~ t , X t ~ ~, valid overloadings

Let O be an overloading assumption. If c(is a type variable marked with a set of

operator names, then let ops(c() denote that set. Type ~ can appear at an overloaded

argument position of operator x (written x l :~) Iff either ~ ~ Tvare A X ~ ops(~) or

= c(TI ~n) ^ 0 = Ox. x:<e,{.- c (~ <xn) ...}> ^ V i=1..n: Vy ~ ops(~i): y1~ i .

If X is a set of operators, then Xf"~ ,, Vx~X. x f ~ . The set of valid overloadings of x

is given by { [t /$] {a I x f ° t }.

Example: Suppose we want to impose the following restrictions on the set of valid overloadings of

the operators +, = and ~ : equality is defined for integers, reals, lists and sets, provided set and list

elements can be compared. + is overloaded with integer and rea{ addition, and set union, whereas

is used to denote the arithmetic ~-relation, the sublist- and subset relation. These restrictions are

correctly specified by the overloading assumption

137

+ : < $ x $ -~ $, { int, real, set(cq=}) }. >

= : < $ x $ -* bool, { int, real, !ist(¢{=}), set(c{=}) } >

: < $ x $ -* bool, { int, real, list(={=}), set(c{=}) } >

3 .2 Wel l - typed Expressions

Let A be a type assumption and O be an overloading assumption. We say that A agrees with O Iff

whenever x:<o,s> ~ O and x.-o ~ A then ~ = [0~{x}/$]o. Let <o be the generic instance relation

respecting 1= and let us assume that predefined operators cannot be redeclared. The following

deduction system can be used to infer valid typings in the presence of a fixed overloading assumption:

[VAR] Ax. x : a ~- x :'c if ~ <o a

lABS] A×. x : ~a ~ M : ~r if not x ~ O
A ~ Xx.M : "[a--*'l.'r

A~° MI :~a-*~r , A ~ M2 :~a
[APP]

A ~ M1 M2 : ~r

A 4 M l : " q , A x . x : A'q ~ Mz : l ;z
[LET] if not x ~ 0

A ~ let x = M, In M2 : ~

Note that the main difference between this system and the one given for nonovertoaded expressions

is the restriction that generic instantiation has to respect f~.

Example: Using the system above one can deduce, that given type assumption

A = { +: Vc{+}. c{+} x c{+} -* c{+), ~: Vc{~). 0~{o} x c{~} "~ c{~) },

and overloading assumption

O = { +: < $ x $ -~ $, { int, real } > , * : < $ x $ -~ $, { int, real } > }

the typing

A~° let f = k x . x + x • x In (f 5) : i n t

is a welt typing. Note that the declaration of f causes the type-scheme assigned to f to be

V0~.(x{+,~) x c{+,~) -* c{+,~}

which says that f is a overloaded function applicable to values to which both + and * are applicable

simultaneously. The type of f in the application (f 5) is then instantiated to int x int -* int, since int

is a valid instantiation for c{+,~).

Proving a soundness theorem for the modified deduction system requires an adjustment to the

semantic function c-~' taking into account that variables are sorted w.r.t, operator names. For a fixed

overloading assumption O and ~ ~ Tenv, such that Cs ~ dom (p -, 3t. s f " t A (P(Cs) = ~ o [t]lO, we

define ~ as:

"~'olfc~]]e = e(=,)

'T.oEc(~, t .)~e = ~(c)e~E~,]e,...,~EOE~n]e)
~r.o[v=,.ol~ = N ~ [o] ~{ ~ r . o H , / = ' }.

t c Type=
s~ ' t

In order for ~ to be well defined we have to request that for every set of operator names s, the

set { t I s l ~ t } is always nonempty. This can be achieved simply by adding a nonsense type contructer

? of zero arity to C, such that x l ~ ? holds for every operator x. Additionally, the domain of denotable

138

values is extended by the single valued domain S? = { ? }. Note that the value ? can never be denoted

by expressions. This construction is only necessary in order to simplify the statement and proof of

soundness theorems to follow.

Theorem: soundness of type inference in the presence of predefined overloaded operators:

If A ~ M : ~ is a well-typing, A agrees with O and x:o ~ A , , i1(x) ~ cT, o[o]~p then

(Note: the proof of this and all other theorems in this paper can be found in [Kaes87],)

3.3 Type Inference in the Presence of a Fixed Overloading Assumption

In order to develop a type inference algorithm which computes principal typings for our modified

deduction system, all we need to do is, find an unification algorithm for type expressions over

variables marked with operator names, replace it for the Robinson algorithm in Milner's algorithm W

and we are done ! We will therefore concentrate on the presentation of the new unification algorithm.

For sake of simplicity, for the rest of the paragraph we assume that O is a fixed over loading

assumption. Then, let the functions m: C -, 2 'd and d: C x Nat x 2 Id --, 2 Id be defined in the following

way:

re(c) =d,, { x I x: < (a, {... c(...) ...} > ~ O }

dc(i ,X) =d,f U {ops(= i) I x: < {... c(ot.~ ~xn)...} > ~ O }
x ~ X

m(c) maps type names to the set of operators, where such a type name may possibly occur at an

overloaded argument position, dc(i,X) maps sets of type names to the set Yi, such that if Yi P xi holds

for i=t..n and XCm(c) then XPc(~t ~n) holds as welt.

Let S be a substitution. We say that S respects variable sorts if = ~ dom S ,, ops(c<)P S(=). Let

~1 and ~2 be types. ~2 is a valid instance of ~t (~ m ~2), if there exists a substitution S, respecting

variable sorts, such that ~z = S~t. If St and S2 are substitutions, S~ is more general than S= (S~ ~ Sz),

if dora Sl c dom $2 and 0c E dora St ,o $1(=) > S2(cc).

[.emma: most general substffutions

Let x be a type and X be a set of operator names. Then there exists either no

substitution satisfying XP ~ or a most general one. Moreover, the algorithm cs given

below can be used to compute such a substition.

cs(X, 0~) = [~/ce] 13 a new type variable, ops(~) = s u ops(~)

cs(X, c('~,...,'~n)) = Sn if X c m(c) ^ 3 So ... Sn such that

V i=1..n: Si = cs(dc(i,X), Si-t(~i)) • Si-1

cs fails in all other cases.

Proof; By computational induction one can show that (i) if cs succeeds, it wilt return a substitution S

which respects variable sorts and (ii) for any other substitution R which satisfies (i) one can find

a substition S' such that R = S' ,S.

As an immediate consequence of the existence of most general substitutions respecting variable

sorts we get the following

Theorem: most general unifiers

Given types ~ and ~2 there exists either no unifier S, such that S(~t) = S(~2), or a

139

most general one. Moerover, if a mg~ of ~ and z2 exists, it can be computed by the

unification algorithm ~ below:

bl.(~, ~) = []

/4(~, ~) = [S (~) / ~] • S

/A(c(~,,... ,~n), C(~,',.-.,~n')) = Sn

/4(% I') fails in all other cases.

if not ~: (Tvars

if S = cs(ops(c(), t) exists and not (x ~ vars('~)

if 3 So Sn. So = [] ^ V i=1..n:

Si = ~(Si-t('~i), Si-~('[i')) " Si-1

Proof: Computational induction using the lemma above.

Observe that the algorithms cs and /A are quite independend of the actual semantics behind the

functions m and d and are therefore more general than appears at f i rst sight. For example, given

appropriate definitions of d and m, one can obtain an unfication algorithm for order sorted algebras

from ~, and cs (cf. the algorithm in [BaSne86]). Details of the construction may be found in [Kaes87].

¢ User Definable Parametric Overloading

4.1 Syntax and Type Deduction

In this paragraph we investigate the effect of extending our base language to enable programmers

to define their own overloaded function symbols. We add two clauses=

M ::= x I Xx.M I M1 M2 I let x = M1 In M2

I letOp x: e) in M

I MI : ~ extends x in M2

The letop-clause declares x as an identifier with overloading scheme (a, overloadable in M, whereas

the extend-clause overloads x with the meaning of M~ in M~, provided a is a valid overloading of

overloadable operator x.

As an example, the following program defines the usual overloading of multiplication under the

assumption that pair: VoL6.~-~I~ -*(e,6) contructs pairs, fst:V0q6.(~,{3)-*~ and snd:Vc(JB.(~,13)-~13 select

the f i rst resp. second components of pairs:

letop * : $ × $ -* s i n

intmult: int x int -. int extends • in

realmult: real x reat --* real extends • In

let addsquares = Xp. fst(p)*fst(p)+snd(p)~snd(p) In

addsquares (pair 3 5)

It is not very surprising that we can adapt our type deduction system to the new situation, by

moving the overloading assumption, under which we infer valid types, to the assumption part of our

typings. Therefore A # M : ~ now becomes <O,A> ~- M : ~, which can be read as: under overloading

assumption O and type assumption A for identifiers free in M we can derive that "c is a valid type for

M. This leads to the following deduction system:

[VAR] < O, Ax. x: a > ~- x : ~ if ~ <a a

140

< Ox, Ax. x :~a > ~" M : ~r
[ABS]

< O, A > ~- Xx,M : "Ca-~r

< O, A > ~- M1 ; ~a-*~r , < O, A > ~ Mz : ta
lAPP]

< O , A > ~" M~ Mz : t r

< O, A > "- MI :% , < Ox, Ax. x: A~:I> ~" M2 :'c2
[LET]

< O, A > ~" let x = M1 In M2 :z2

< Ox. x: <e,{?}>, Ax. x: V<xlx}.[~x{x}/m]e > ~- M : 1:
[OP] if ~s ~ vars(~) -- x ~ S

< O , A > ~- letop x: e I r lM : ~

< Ox. x:<e, d>, A > ~- M~ :
< Ox. x:<~, d u {~}>, A > ~- Mz : ~' if o overloads c0 with %,

[OV]
< O×. x:<¢, d>, A > ~- MI: o extends x In Mz : ~' ~ = c(cll (Zn) ^ not c ~ d

The condition l~s ~ vars(~) = x ~ s in the OP-rute ensures, that no overloading can be exported

out of its scope, whereas the condition in OV guarantees, that no type constructor can appear twice

in any overloading set.

Theorem: principal well-typings in the presence o f user definable overloading

tf <O.A'> ~- ~' is a well typing in the system above and A' an instance of A, then there

exists a principal well-typing <O.A> ~- M : ~ such that there exists a substitution S

sat isfying A'l~v~.j = S(AI~c~ ,) and A'--~' <o ~ • Moreover, there exists an algorithm

(Algorithm Z) to compute <O,A>~- M : ~.

Algorithm Z is a rather straightforward extension of algorithm W, obtained by adding the overloading

assumption as an extra parameter and including some functions to manipulate it in the appropriate

way. For details the reader is again referred to [Kaes87].

Although type inference remains relatively simple, the semantics of expressions gets rather

complicated. We can try two approaches: Stat ic overloading resolutlon, through removal of every

occurrence of tetop- or extend clauses from our expessions, or a more direct semantics, extending

semantic domains and equations, thus enabling dynamic overloading resolution.

4.2 Static Overloading Resolution

Static overloading resolution aims at execution efficiency by avoiding any type checking necessary

for overloading resolution at runtime. It does not come for free though, complicating compilation

through the need of (possibly costly) compile time program transformations. In this paragraph we

present a overloading resolution function ~1~, mapping well typed overloaded expressions back to

expressions of our original language.

Let <O,A> ~- M : ~ be a well typing and M ~ be the well typed expression M where att its sub-

expressions are annotated with their type. Let p c Renv = Typedld -* Expr be an overloading resolution

environment and let p \ x denote 9 with all occurences of x removed, then function }1f~'. Expr -, Renv -~ Expr

removes any user defined overloading from M:

~,.~xT] p = i f 3 x ° ~ dom p. o = V~i.%' , 1: = S('C), S overloading resolving

then ~P-~S(p(xe))]] P else x ~

141

~I~(),x,M) 1:] p = (~lx.~I~M]I p \x)~

~lP.~(let x ° = M~ In M2)1~ p = i f o is overloaded then ~,~M~ p{ ~I~M1]]p / x 0 }

else (let x ° = (~lP..,~M~]]p) In (/1P~M2]I p \ x))~

~-~letop x: (a In M] p = ~P.~M~ p

:P.~M~: o extends x In M2~ p = ~-.~Mz]] p{ ~P~M,]Ip / x o }

~P~M~ traverses the expression M, recursively expanding instances of overloaded operators until

every letop- and extend-clause has been removed. Upon encountering M~ : Vc<i.~ extends x In M2, the

resolution environment p is enhanced by the association xVCCi -~ -> ~P-.~M~Ip. If, during the resolution

of overloadings in M2, some instance of this particular overloading of x is found, say x S(~), where S

}nstantiates some overloaded type variable in ~ to a type c(...), then x will be replaced by the result

of resolving all overloadings in S(~P--~M~p). let-clauses are also removed from M, if they introduce

overloaded definitions. This corresponds to the view, that overloaded function definitions are not functions

in the usual sense, but macros which are expanded according to an implicit type parameter.

Note, that for any well-typing <O,A> ,- M : ~, ~I~M~ p is well defined if x:Ü ~ A -, ~il~x~'~p well

defined for every generic instance T' <o o.

Theorem: semantic soundness of ~ :

Let <O,A> ~- M : T be a well-typing, ~1 ~ Env, ~p ~ Tenv, p E Renv and M' = ~P~M¢]]p.

if x :o , A "* ~ ~P-~x'('~p]~I ' ~'~o~'~p for every T' <o a then F--~M']]I , <'r.o~A~-~0.

4.3 Runtlme Overloading Resdutlon

As an alternative to static overloading resolution we present a semantics for dynamic, i.e. runtime

overloading resolution. The key idea behind this scheme is, that given a well-typed application of an

overloaded operator, one can determine the particular overloading instance that is needed to compute

the result by just looking at the summands of arguments.

Speaking in operational terms this implies, that arguments of overloaded operators have to be

evaluated before applying the operator, thereby making it str ict in its overloaded argument positions!

An additional semantic complication is due to the fact, that the meaning of overloaded operators

cannot be fixed statically in the declaring scope: Suppose we define an overloading for set-equality to

be used in M, reducing equality on sets to equality on set elements. Suppose further, that we define

a list comparison overloading inside M to be used in some yet deeper nested expression M'. Then we

would certainly expect sets of lists of integers to be comparable in M', However, having fixed the

meaning of set equality to overloadings visible in M we can only compare lists of sets.

A similar observation can be made in the simpler case of let-introduced overloaded functions, which

leads us to the introduction of a runtime equivalent of the static overloading resolution environment

called operator environment.

Openv = Id ~. C ~t Openv-~ V

~ntuitivety, ,,~ ~ Operw maps operator identifiers to functions which, when given the outermost type

constructor (or summand) of the arguments of an operator application, will return a function mapping

an operator environment to a real function (seen as an element of V).

Moreover, let-introduced identifiers will be treated as elements of the domain Openv -, V, requiring

~42

a change to the static environment domain.

Env' = Id ~, (V • (Openv-~ V))

Finally, the semantics is given by the function ~': Expr -~ Env' -* Openv -~ V, assuming that identifiers

introduced in let- and extend clauses have been annotated with their type rsp. overloading scheme by

the type inference algorithm:

~.'[x]l T) ~ = if l l(x)~Openv -, V then I](x) $ elsif Tl(x)~V then Tl(X) else wrong

~'l[;kx.M] T) $ = (/lv. ~'[M]I TI{ v /x } $)

F.'[M1 M2~ a ~ = i f f E F then (flF) v else wrong , where f = ~'[M1]~I~ , v = ~'[M21115

~ ' [le t x ° = M~ In M2~ ~1 4) = i f o is overloaded then ~' [M2] ri{ ~. 'aM1]rt/x }

else ~.'[M~] ~ ~ M , ~ /x } ~)

F.'[letop x: (a In M] :1 $ = F.'[M]I rl{ resolve(x,(a)/x } &{ ~c./~$'. • / x }

~..'[[M~: o extends x(a In Mr]] TI $ =

i f ~l(x) Openv -. V and o overloads (a with c(...)

then ~'[M2~ rl 8.{ ((-~ x){ ~-t[Mt]~rt / x }) / x } else wrong

resolve: (O, Id) -~ Open¥ -~ V

resolve ((a~ x ... x (an-* (ar, x) $ =

~(vl Vn). ~f 3 c ~ C, ~ : $ " v i ~ Sc(V a(c))

then ((~) x) c ~) (vl vn)

else wrong

Rather than delving into the details of this denotational semantics, we give a theorem stating the

relationship between compile time and runtime overloading resolution, namely that runtime overloading

resolution delivers the same results, apart from possibly introducing nontermination.

Theorem: ~' weakly implements E . ~4~

Let <O,A> ~- M ~ be a well typing , ~l' E Env', $ c Openv, ~ E Env and p ~ Renv.

If x : o ~ A -, F..'[x]bl' ~ ~ F...[~P~xZ'~p]TI for every ~:' <o o

then ~.'1[M]11' ~ E F..[~ M'~]] ~.

5 Final Remarks

We have shown that the restriction to parametric overloading results in rather simple and efficient

tpye-inference algorithms, while still allowing the specification of many useful overloaded functions.

Moreover, it turns out, that overloading resolution is possible either statically, thus yielding no runtime

overhead at all, or dynamically (at runtime), which is particularly advantagous in the context of a

language incorporating a module concept. Indeed, any sensible mixture of the two strategies can be

used in a specific implementation.

On the other hand, one may object that the restriction imposed on the set of possible overloadings

is to severe, disallowing some useful overloaded operations. Although we do not share this opinion,

we suppose that it is possible to integrate unrestricted with parametric overloading, using the

framework of context relations described in [BaSne86].

We have successfully used parametric overloading in developing the predefined operations of the

functional programming language SAMPLE (see [JGK87] for some details of the type system). Having

used the SAMPLE environment for over a year in a number of projects, our personal experience

t43

shows that the inclusion of parametric overloading has significantly improved the usability and type

security of SAMPLE. Our next step wilt therefore be the integration of user definable overloading for

operations on abstract data types, along the lines outlined in chapter 4.2 and 4.3.

A number of possible extensions to parametric overloading have not been discussed here, partly

due to space limitations, partly because their inclusion would have over complicated the presentation.

First, it is possible to combine parametric overloading with the subtyping dispticines of [Mitchell84],

[Letsch86] and [FuhMi87] (we have actually implemented a type inference algorithm handling both

concepts for the SAMPLE language). Second, the set of possible overloading schemes can be extended

to cope with overloadings such as Vc(. c(× $(¢() -, bool, where $ can appear as a typeconstructor. A

main application of this kind of overloading is the member function, with the typeset {VcLc(x list(c() -~

bool, V~.a(x set(G() -, bool }. Third, one can devise a scheme which removes the strictness

restriction from runtime overloading resolution by implicitly adding type parameters to overloaded

functions.

References:

[ASU86]

[BaSne86]

[BMQS80]

[CoppoSO]

[DaMi82]

[CDDK86]

[FuhMi87]

[JGK87]

[Kaes87]

[Letsch86]

[Milner78]

[Milner84]

A.V. Aho, R. Sethi and J.D. Utlman: Compilers: Principles, Techniques,

and Tools, p384, 1986.

R. Bahlke and G. Snelting: The PSG-System: From Formal Language

Definitions to Interactive Programming Environments, TOPLAS 8,4,

p547-576, October 1986.

R. Burstall, D.8. MacQueen and D. Sanella: HOPE: An Experimental

Applicative Language, 1st international LISP Conference, Stanford 1986.

M. Coppo: An Extended Polymorphic Type System for Applicative

Languages, LNCS 88, p194-204, September 1980.

L. Damas and R.Milner; Principal Type Schemes for Functional Programs,

IX POPL, p207, January 1982.

D. Clement, J. Despeyroux, T. Despeyroux and G. Kahn: A simple applicative

language: Mini-ML, 1986 ACM Symposium on LISP and Functional Programming,

p13-27, 1986.

Y. Fuh and P. Mishra: Type Inference With Subtypes, Manuscript, SUNY

at Stony Brook, July 1987.

M. J~ger, M. Gioger and S. Kaes: SAMPLE - A Functional Language,

Report PI-RS/87, TH-Darmstadt, Fachbereich Informatik.

S. Kaes: Parametric Overloading in Polymorphic Programming Languages,

Report PI-R7/87, TH-Darmstadt, Fachbereich Informatik.

T. Letschert: Typinferenzsysteme, Doctoral Thesis, TH Darmstadt,

Fachbereich tnformatik, 1986.

R. Milner: A Theory of Type Polymorphism in Programming, JCCS 17,3,

p348-375, 1978.

R. Milner: A Proposal for Standard ML, 1984 ACM Symposium on LISP

and Functional Programming, p184-197, Austin, August 1984.

144

[Mitchell84] J.C, Mitchell: Coercion and Type Inference, XI POPL, p175-185, 1984.

[MQPS84] D.B. MacQueen, G.D. PlotRin and R. Sethi: An Ideal Model for Recursive

Polymorphic Types, XI POPL, pi65-t74, 1984.

[Str67] C, Strachey." Fundamental Concepts in Programming Languages,

International Summer School in Computer Programming, Kopenhagen 1967.

[Turner85] D.A. Turner: Miranda: A non-strict Functional Language with Polymorphic

Types, LNCS 201, September 1985.

