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Abstract

The family of g-and-h transformations are popular algorithms used
for simulating non-normal distributions because of their simplicity and
ease of execution. In general, two limitations associated with g-and-
h transformations are that their probability density functions (pdfs)
and cumulative distribution functions (cdfs) are unknown. In view of
this, the g-and-h transformations’ pdfs and cdfs are derived in general
parametric form. Moments are also derived and it is subsequently shown
how the g and h parameters can be determined for prespecified values of
skew and kurtosis. Numerical examples and parametric plots of g-and-h
pdfs and cdfs are provided to confirm and demonstrate the methodology.
It is also shown how g-and-h distributions can be used in the context
of distribution fitting using real data sets.

Mathematics Subject Classification: 65C05, 65C10, 65C60

Keywords: Distribution fitting, Moments, Monte Carlo, Non-normality,
Random variable generation, Simulation, Statistical modeling

1 Introduction

The Tukey [18] g-and-h family of non-normal distributions (see also [5], [7],
[8], and [15]) are often used in Monte Carlo or statistical modeling studies.
A primary advantage that this family of distributions has is that it is based
on elementary transformations of standard normal deviates. The g-and-h or
the simpler g or the h classes of distributions have been used in statistical
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modeling of extreme events or simulation studies that have included such topics
as: common stock returns [1] and [2], interest rate option pricing [4], portfolio
management [17], stock market daily returns [16], extreme oceanic wind speeds
[3], and regression, generalized additive models, or other applications of the
general linear model [10], [11], [12], [13], [14], [19], [20], and [21].

In general, however, two problems associated with any given non-normal
distribution generated by the g-and-h transformation are that its probability
density function (pdf) and cumulative distribution function (cdf) are unknown
[5]. As such, it may be difficult to determine a g-and-h distribution’s tailweight
or other measures of central tendency such as a mode or trimmed mean (TM).
Another problem associated with this transformation is that it is cumbersome
to fit a g-and-h distribution to a set of data [2] or theoretical pdf given their
specified values of skew and kurtosis [8]. See, for example, the laborious proce-
dure used for fitting a g-and-h distribution to the χ2

df=6 distribution (or other
data sets) given in Hoaglin et al. [8].

In view of the above, the present aim is to derive the parametric forms of
the pdfs and cdfs associated with the g-and-h family of distributions. In so
doing, more heuristic methods for calculating percentage points, locating mea-
sures of central tendency e.g. modes, TMs, and fitting g-and-h pdfs to data
will be available to the user as opposed to other previous suggested methods
in [7] and [8]. In Section 2 we develop the notation for the g-and-h family
of transformations and provide the derivations of the pdfs, cdfs, and various
measures of central tendency associated with these transformations. Section
3 gives the equations to calculate moments and a method for obtaining val-
ues of g and h for prespecified values of skew and kurtosis. Section 4 gives
examples of fitting g-and-h distributions to real-data to demonstrate the pro-
posed methodology. Mathematica [22] 6.0 notebooks are available from the
first author for implementing the procedures.

2 The g-and-h, g, and h distributions

The g-and-h family considered herein is based on three transformations to
produce non-normal distributions with defined or undefined moments. These
transformations are computationally efficient because they only require the
knowledge of the g and h parameters and an algorithm that generates standard
normal pseudo-random deviates. We begin the derivation of the parametric
forms of the g-and-h family of pdfs and cdfs with the following definitions.

Definition 2.1 Let Z be a random variable that has a standard normal dis-
tribution with pdf and cdf expressed as
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fZ(z) = (2π)−
1
2 exp{−z2/2} (1)

FZ(z) = Pr(Z ≤ z) =

∫ z

−∞
(2π)−

1
2 exp{−w2/2}dw, −∞ < z < +∞. (2)

Let z = (x, y) be the auxiliary variable that maps the parametric curves of (1)
and (2) as

f : z → �2 := fZ(z) = fZ(x, y) = fZ(z, fZ(z)) (3)

F : z → �2 := FZ(z) = FZ(x, y) = FZ(z, FZ(z)). (4)

Definition 2.2 Let the analytical and empirical forms of the quantile function
for g-and-h distributions be defined as

q(z) = qg,h(z) = g−1(exp{gz} − 1) exp{hz2/2} (5)

q(Z) = qg,h(Z) = g−1(exp{gZ} − 1) exp{hZ2/2} (6)

where qg,h(z) is said to be a strictly increasing monotonic function in z i.e.
derivative q′g,h(z) > 0, with parameters g, h ∈ � subject to the conditions that
g �= 0 and h > 0. The parameter ±g controls the skew of a distribution in
terms of both direction and magnitude. The parameter h controls the tail-
weight or elongation of a distribution and is positively related with kurtosis.

Two subclasses of distributions based on (5) are the g and the h classes
which are defined as

q(z) = qg,0(z) = lim
h→0

qg,h(z) = g−1(exp{gz} − 1) (7)

q(z) = q0,h(z) = lim
g→0

qg,h(z) = z exp{hz2/2} (8)

where (7) and (8) consist of asymmetric g and symmetric h distributions,
respectively. By inspection of (8), it is straightforward to see that q0,0(z) = z
and where skew and kurtosis are defined to be zero. We note that the explicit
forms of the derivatives associated with (5), (7), and (8) are

q′(z) = q′g,h(z) = exp{gz + (hz2)/2} + g−1(exp{(hz2)/2}(exp{gz} − 1))hz

(9)
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q′(z) = q′g,0(z) = lim
h→0

q′g,h(z) = exp{gz} (10)

q′(z) = q′0,h(z) = lim
g→0

qg,h(z) = exp{(hz2)/2}(1 + hz2). (11)

Proposition 2.1 If the compositions f ◦q and F ◦q map the parametric curves
of fq(Z)(q(z)) and Fq(Z)(q(z)) where q(z) = q(x, y) as

f ◦ q : q(z) → �2 := fq(Z)(q(z)) = fq(Z)(q(x, y)) = fq(Z)(q(z),
fZ(z)

q′(z)
) (12)

F ◦ q : q(z) → �2 := Fq(Z)(q(z)) = Fq(Z)(q(x, y)) = Fq(Z)(q(z), FZ(z)) (13)

then fq(Z)(q(z), fZ(z)/q′(z)) and Fq(Z)(q(z), FZ(z)) in (12) and (13) are the pdf
and cdf associated with the quantile function q(Z).
Proof. It is first shown that fq(Z)(q(z), fZ(z)/q′(z)) in (12) has the following
properties:

Property 2.1
∫ +∞
−∞ fq(Z)(q(z), fZ(z)/q′(z))dz = 1, and

Property 2.2 fq(Z)(q(z), fZ(z)/q′(z)) ≥ 0 , −∞ < z < +∞.

To prove Property 2.1, let y = f(x) be a function where
∫ +∞
−∞ f(x)dx =∫ +∞

−∞ ydx. Thus, given that x = q(z) and y = fZ(z)/q′(z) in fq(Z)(q(x, y))
in equation (12) we have

∫ +∞

−∞
fq(Z)(q(z), fZ(z)/q′(z))dz =

∫ +∞

−∞
ydx =

∫ +∞

−∞
(fZ(z)/q′(z))dq(z)

=

∫ +∞

−∞
(fZ(z)/q′(z))q′(z)dz

=

∫ +∞

−∞
fZ(z)dz = 1

which integrates to one because fZ(z) is the unit normal pdf. To prove Prop-
erty 2.2, it is given by definition that fZ(z) ≥ 0 and q′(z) > 0. Hence,
fq(Z)(q(z), fZ(z)/q′(z)) ≥ 0 because fZ(z)/q′(z) will be nonnegative in the
space of z for all z ∈ (−∞, +∞) and where limz→±∞ fq(Z)(q(z), fZ(z)/q′(z))
= 0 because limz→±∞ fZ(z)/q′g,h(z) = 0 , limz→±∞ fZ(z)/q′g,0(z) = 0, and
limz→±∞ fZ(z)/q′0,h(z) = 0. �

A corollary to Proposition 2.1 is stated as follows
Corollary 2.1 The derivative of the cdf Fq(Z)(q(z), FZ(z)) in (13) is the pdf
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fq(Z)(q(z), fZ(z)/q′(z)) in (12).
Proof. It follows from x = q(z) and y = FZ(z) in Fq(Z)(q(x, y)) in (13)
that dx = q′(z)dz and dy = fZ(z)dz. Hence, using the parametric form of the
derivative we have y = dy/dx = fZ(z)/q′(z) in (12). Whence, F ′

q(Z)(q(z), FZ(z)) =

F ′
q(Z)(q(x, dy/dx)) = fq(Z)(q(x, y)) = fq(Z)(q(z), fZ(z)/q′(z)). Thus, fq(Z)(q(z),

fZ(z)/q′(z)) in (12) and Fq(Z)(q(z), FZ(z)) in (13) are the pdf and cdf associ-
ated with the empirical form of the quantile function q(Z). �

In terms of measures of central tendency, the mode associated with (12)
is located at fq(Z)(q(z̃), fZ(z̃)/q′(z̃)) , where z = z̃ is the critical number that
solves dy/dz = d(fZ(z)/q′(z))/dz = 0 and globally maximizes y = fZ(z̃)/q′(z̃)
at x = q(z̃). We note that the pdf in (12) will have a global maximum because
the standard normal density in (1) has a global maximum and the transfor-
mation q(z) is a strictly increasing monotonic function by definition.

The median associated with fq(Z)(q(z), fZ(z)/q′(z)) in (12) is located at
q(z = 0) = 0. This can be shown by letting x0.50 = q(z) and y0.50 = 0.50 =
FZ(z) = Pr(Z ≤ z) denote the coordinates in the cdf in (13) that are asso-
ciated with the 50th percentile. In general, we must have z = 0 such that
y0.50 = 0.50 = FZ(0) = Pr(Z ≤ 0) holds in (13) for the standard normal dis-
tribution. As such, the limit of the quantile function q(z) locates the median
at limz→0 q(z) = 0.

The mean and the 100γ percent symmetric TM can be obtained from using
(12), the proof of Property 2.1, and from the definition of a TM as

E[q(z)] =

∫ +∞

−∞
q(z)fZ(z)dz (14)

TM = (1 − 2γ)−1

∫ F−1
Z (1−γ)

F−1
Z (γ)

q(z)fZ(z)dz (15)

where 0 ≤ h < 1 in q(z) for E[q(z)] to exist in (14) and where γ ∈ (0, 0.50) in
(15). As γ → 0 the TM will converge to the mean. Conversely, as γ → 0.50
then the TM will converge to the median q(z = 0) = 0.
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3 Moments, skew, kurtosis, and calculating

values of g and h

Using equation (14) more generally, the moments for g-and-h distributions can
be determined from

E[q(z)k] =

∫ +∞

−∞
q(z)kfZ(z)dz (16)

where 0 ≤ h < 1/k for the k-th moment to exist. Given that the first four
moments are defined, the measures of skew α1 and kurtosis α2 can subsequently
be obtained from [9]

α1 = (E[q(z)3] − 3E[q(z)2]E[q(z)] + 2(E[q(z)])3)/(E[q(z)2] − (E[q(z)])2)
3
2

(17)

α2 = (E[q(z)4] − 4E[q(z)3]E[q(z)] − 3(E[q(z)2])2 + 12E[q(z)2] ×
(E[q(z)])2 − 6(E[q(z)])4)/(E[q(z)2] − (E[q(z)])2)2. (18)

Using (16), (17), and (18), the formulae for the first four moments, skew, and
kurtosis for g-and-h distributions are

E[qg,h(z)] = (exp{g2/(2 − 2h)} − 1)/(g(1 − h)
1
2 ) (19)

E[qg,h(z)2] = (1 − 2 exp{g2/(2 − 4h)} +

exp{2g2/(1 − 2h)})/(g2(1 − 2h)
1
2 ) (20)

E[qg,h(z)3] = (3 exp{g2/(2 − 6h)} + exp{9g2/(2 − 6h)} −
3 exp{2g2/(1 − 3h)} − 1)/(g3(1 − 3h)

1
2 ) (21)

E[qg,h(z)4] = (exp{8g2/(1 − 4h)}(1 + 6 exp{6g2/(4h − 1)} +

exp{8g2/(4h − 1)} − 4 exp{7g2/(8h − 2)} −
4 exp{15g2/(8h − 2)}))/(g4(1 − 4h)

1
2 ) (22)

α1(g, h) = [(3 exp{g2/(2 − 6h)} + exp{9g2/(2 − 6h)} −
3 exp{2g2/(1 − 3h)} − 1)/(1 − 3h)

1
2 − 3(1 − 2 exp{g2/

(2 − 4h)} + exp{2g2/(1 − 2h)})(exp{g2/(2 − 2h)} − 1)/

((1 − 2h)
1
2 (1 − h)

1
2 ) + 2(exp{g2/(2 − 2h)} − 1)3/(1 − h)

3
2 ]/

[g3(((1 − 2 exp{g2/(2 − 4h)} + exp{2g2/(1 − 2h)})/
(1 − 2h)

1
2 + (exp{g2/(2 − 2h)} − 1)2/(h − 1))/g2)

3
2 ] (23)
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α2(g, h) = [exp{8g2/(1 − 4h)}(1 + 6 exp{6g2/(4h − 1)} +

exp{8g2/(4h − 1)} − 4 exp{7g2/(8h − 2)} −
4 exp{15g2/(8h − 2)})/(1 − 4h)

1
2 − 4(3 exp{g2/(2 − 6h)} +

exp{9g2/(2 − 6h)} − 3 exp{2g2/(1 − 3h)} − 1)(exp{g2/

(2 − 2h)} − 1)/((1 − 3h)
1
2 (1 − h)

1
2 ) − 6(exp{g2/(2 − 2h)} −

1)4/(h − 1)2 − 12(1 − 2 exp{g2/(4h − 2)} + exp{2g2/

(2h − 1)})(exp{g2/(2 − 2h)} − 1)2/((1 − 2h)
1
2 (h − 1)) +

3(1 − 2 exp{g2/(4h − 2)} + exp{2g2/(2h − 1)})2/

(2h − 1)]/[(1 − 2 exp{g2/(4h − 2)} + exp{2g2/(2h − 1)})/
(2h − 1)

1
2 + (exp{g2/(2 − 2h)} − 1)2/(h − 1)]2. (24)

Subsequently using (19) through (24), the moments, skew and kurtosis for g
distributions reduce to

E[qg,0(z)] = (exp{g2/2} − 1)/g (25)

E[qg,0(z)2] = (1 − 2 exp{g2/2} + exp{2g2})/g2 (26)

E[qg,0(z)3] = (3 exp{g2/2} + exp{9g2/2} − 3 exp{2g2} − 1)/g3 (27)

E[qg,0(z)4] = (1 − 4 exp{g2/2} + 6 exp{2g2} − 4 exp{9g2/2} + exp{8g2})/g4

(28)

α1(g) = (3 exp{2g2} + exp{3g2} − 4)
1
2 (29)

α2(g) = 3 exp{2g2} + 2 exp{3g2} + exp{4g2} − 6. (30)

Analogously, the moments, skew, and kurtosis for the subclass of h distribu-
tions are

E[q0,h(z)] = 0 (31)

E[q0,h(z)2] = 1/(1 − 2h)
3
2 (32)

E[q0,h(z)3] = 0 (33)
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E[q0,h(z)4] = 3/(1 − 4h)
5
2 (34)

α1(h) = 0 (35)

α2(h) = 3(1 − 2h)3(1/(1 − 4h)
5
2 + 1/(2h − 1)3). (36)

To demonstrate the use of the methodology above, presented in Figure 1
are asymmetric and symmetric pdfs and cdfs from the g-and-h family. The
values and graphs in Figure 1 were obtained using various Mathematica [22]
functions. More specifically, the values of g and h for the asymmetric pdfs
were determined by setting equations (23) and (24) to the values of α1(g, h)
and α2(g, h) given in Figure 1, e.g. α1(g, h) = 1 and α2(g, h) = 3, and then
simultaneously solved by invoking the function FindRoot. Similarly, for the
symmetric distribution, (36) was set equal to α2(h) = 10 and then solved for
h.

The graphs of the pdfs and cdfs were obtained using (12) and (13) and the
graphing function ParametricPlot. The heights of the pdfs were obtained by
computing the value of z̃ that maximizes y = fZ(z̃)/q′(z̃) in (12) using the
function FindMaximum and the modes were then determined by evaluating
x = q(z̃) given z̃. The critical values that yielded the probabilities of obtaining
values of q(z) in the upper 5% of the tail regions were determined by solving
σq(z) +μ− δ = 0 for z, where δ is the critical value, using FindRoot and then
evaluating the unit normal cdf in (13) using the Erf function.

To demonstrate empirically that the solved values of g and h yield the
specified values of skew and kurtosis, single samples of size n = 2, 000, 000 were
drawn using the empirical forms of the g-and-h and the h quantile functions for
each distribution. The sample statistics computed on the data associated with
the three distributions depicted in Figure 1 were (a) α̂1 = 1.01 and α̂2 = 3.04,
(b) α̂1 = 4.02 and α̂2 = 39.95, and (c) α̂1 = 0.02 and α̂2 = 9.93 which are all
close to their respective parameter.

4 Fitting g-and-h distributions to data

Presented in Figure 2 are g-and-h pdfs superimposed on histograms of circum-
ference measures (in centimeters) taken from the neck, chest, hip, and ankle
of n = 252 adult males (http://lib.stat.cmu.edu/datasets/bodyfat. Inspection
of Figure 2 indicates that the g-and-h pdfs provide good approximations to
the empirical data. We note that to fit the g-and-h distributions to the data,
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μ = 0.135
σ = 1.145
α1(g, h) = 1
α2(g, h) = 3

g = 0.244596
h = 0.053356 Height=0.409

Mode = -0.205
Pr{q(Z) ≤ q(z) = 2.177} = 0.95

μ = 0.474
σ = 1.674
α1(g, h) = 4
α2(g, h) = 40

g = 0.787142
h = 0.016356 Height=0.534

Mode = -0.562
Pr{q(Z) ≤ q(z) = 3.442} = 0.95

μ = 0
σ = 1.346
α1(h) = 0
α2(h) = 10

g = 0
h = 0.163554 Height=0.399

Mode = 0.0
Pr{q(Z) ≤ q(z) = 2.052} = 0.95

Figure 1: Examples of g and h parameters and their associated pdfs and cdfs.
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the following linear transformation had to be imposed on q(z) : Aq(z) + B
where A = s/σ , B = m−Aμ, and where the values of the means (m, μ) and
standard deviations (s, σ) for the data and g-and-h pdfs are given in Figure
2, respectively.

One way of determining how well a g-and-h pdf models a set of data is to
compute a chi-square goodness of fit statistic. For example, listed in Table 1 are
the cumulative percentages and class intervals based on the g-and-h pdf for the
chest data in Panel B of Figure 2. The asymptotic value of p = 0.153 indicates
that the g-and-h pdf provides a good fit to the data. We note that the degrees
of freedom for this test were computed as [6] df = 5 = 10 (class intervals)−4
(parameter estimates)−1 (sample size). Further, the g-and-h TMs given in
Table 2 also indicate a good fit as the TMs are all within the 95% bootstrap
confidence intervals based on the data. These confidence intervals are based
on 25,000 bootstrap samples.

Cumulative % g-and-h class intervals Observed Freq Expected Freq

5 < 88.70 12 12.60
10 88.70 − 90.89 13 12.60
15 90.98 − 92.47 13 12.60
30 92.47 − 95.98 35 37.80
50 95.98 − 99.96 56 50.40
70 99.96 − 104.40 49 50.40
85 104.40 − 109.28 39 37.80
90 109.28 − 111.83 9 12.60
95 111.83 − 115.90 13 12.60
100 > 115.90 13 12.60

χ2 = 2.015 Pr{χ2
5 ≤ 2.015} = 0.153 n = 252

Table 1: Observed and expected frequencies and chi-square test based on the
g-and-h approximation to the chest data in Panel B of Figure 2.
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DATA PDF

m = 37.992 μ = 0.065
s = 2.426 σ = 1.172
α1 = 0.549 g = 0.113318
α2 = 2.642 h = 0.088872

A. Neck

m = 100.824 μ = 0.108
s = 8.414 σ = 1.052
α1 = 0.677 g = 0.209937
α2 = 2.642 h = 0.010783

B. Chest

m = 99.905 μ = 0.172
s = 7.150 σ = 1.248
α1 = 1.488 g = 0.293304
α2 = 7.300 h = 0.085829

C. Hip

m = 23.102 μ = 0.292
s = 1.692 σ = 1.321
α1 = 2.242 g = 0.512894
α2 = 11.686 h = 0.038701

D. Ankle

Figure 2: Examples of g-and-h pdfs’ approximations to empirical pdfs using
measures of circumference (in centimeters) taken from n = 252 men. The
g-and-h pdfs were scaled using Aq(z) + B, where A = s/σ and B = m − Aμ.
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Empirical Distribution 20% TM g-and-h TM

Neck 37.929 (37.756, 38.100) 37.899
Chest 100.128 (99.541, 100.753) 99.825
Hip 99.328 (98.908, 99.780) 99.020

Ankle 22.914 (22.798, 23.007) 22.800

Table 2: Examples of g-and-h trimmed means (TMs) based on the data in
Figure 2. Each TM is based on a sample size of n = 152 and has a 95%
bootstrap confidence interval enclosed in parentheses.

5 Comments

The ability to compute the values of g and h for prespecified values of skew
and kurtosis will often times obviate the need to use the method described
in Hoaglin et al. [8] such as the case for the approximation of the χ2

df=6

distribution. More specifically, the values of g and h for this example can be
easily obtained using the method described above in Section 3. That is, setting
α1(g, h) = (8/df)

1
2 and α2(g, h) = 12/df , for df = 6, in (23) and (24) and then

solving yields g = 0.404565 and h = −0.031731. This direct approach is much
more efficient than having to take the numerous steps described in [8] which
also yield estimates that have less precision i.e. g = 0.406 and h = −0.033.
Further, we note that the values of skew and kurtosis for this distribution will
not yield a valid g-and-h pdf because h is negative.

It is also worthy to point out that the inequality given in [8] for determining
where monotonicity fails for g-and-h distributions is not correct. Specifically,
for the g = 0.406 and h = −0.033 distribution, Hoaglin et al. [8] submit that
this g-and-h distribution loses its monotoncity at z2 > −1/h or |z| > 5.505
which would be correct if the distribution was a symmetric h distribution i.e.
if g = 0. Rather, the correct values of z are determined by equating (9), not
(11), to be equal to zero. As such, using the values of g = 0.404565 and h =
−0.031731 from above and solving we get the (correct) values of z = −3.692
and z = 12.822 and thus q(z = −3.692) = −1.544 and q(z = 12.822) = 32.406
are the points where monotonicity fails.
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