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Abstract

The cost of a query plan depends on many pa-
rameters, such as predicate selectivities and
available memory, whose values may not be
known at optimization time. Parametric
query optimization (PQO) optimizes a query
into a number of candidate plans, each opti-
mal for some region of the parameter space.

We first propose a solution for the PQO prob-
lem for the case when the cost functions are
linear in the given parameters. This solution
is minimally intrusive in the sense that an ex-
isting query optimizer can be used with minor
modifications: the solution invokes the con-
ventional query optimizer multiple times, with
different parameter values.

We then propose a solution for the PQO prob-
lem for the case when the cost functions are
piecewise-linear in the given parameters. The
solution is based on modification of an exist-
ing query optimizer. This solution is quite
general, since arbitrary cost functions can be
approximated to piecewise linear form. Both
the solutions work for an arbitrary number of
parameters.

1 Introduction

The cost of a query plan depends on various database
and system parameters. The database parameters in-
clude selectivity of the predicates and sizes of the rela-
tions. The system parameters include available mem-
ory, disk bandwidth and latency. The exact values of
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these parameters may not be known at compile time.
For example, in the case of embedded SQL queries con-
taining unbound variables, the values of the variables
are known only at run time. In general, the avail-
able memory is not known until runtime. Optimizing
a query into a single plan may result in a substan-
tially sub-optimal plan if the actual values are different
from those assumed at optimization time [GW89]. To
overcome this problem, parametric query optimization
(PQO) optimizes a query into a number of candidate
plans, each optimal for some region of the parameter
space [CG94, INSS97, INSS92, GK94, Gan98]. At run
time, when the actual parameter values are known, the
appropriate plan can be chosen.

The contributions of this paper lie in providing two
novel solutions for the parametric query optimization
problem:

• We provide a novel parametric query optimiza-
tion algorithm for the case when the plan cost
functions are linear in the parameters. The algo-
rithm works for an arbitrary number of parame-
ters and is minimally-intrusive in the sense that
it does not modify the conventional query opti-
mizer, and merely uses it as a subroutine (invok-
ing it with different parameter values). To the
best of our knowledge, no exact solution published
so far works for an arbitrary number of parame-
ters; however, there is a related work [Gan01],
currently unpublished, that handles an arbitrary
number of parameters; we describe the connec-
tions in Section 6. Our solution is simple and
efficient, unlike earlier solutions to the PQO prob-
lem.

• In general, the cost function of an operation may
be non-linear and discontinuous in the parameters
involved. The cost function of a plan, which is the
sum total of the cost functions of the operations
involved, will then also be non-linear and discon-
tinuous. It is, in general, difficult and costly to
deal with such nonlinear functions and this is par-
ticularly true when the functions involve many pa-
rameters. However, nonlinear cost functions can



be approximated by piecewise linear cost func-
tions.

We propose an approach for parametric query op-
timization with piecewise linear cost functions,
based on extending existing optimization algo-
rithms to use cost functions in place of costs.
We show how to extend the System-R query op-
timization algorithm [SAC+79] to perform para-
metric query optimization with piecewise linear
cost functions. We have also extended the Vol-
cano query optimization algorithm [GM93] in a
similar fashion. The solution works for an arbi-
trary number of parameters.

The rest of the paper is organized as follows. Sec-
tion 2 formally defines the parametric query opti-
mization problem and provides background material
on polytopes. Section 3 describes non-intrusive al-
gorithms for PQO with linear cost functions. Sec-
tion 4 presents definitions related to piecewise linear
cost functions. Section 5 describes (intrusive) algo-
rithms for PQO with piecewise linear cost functions.
Related work is described in Section 6. We conclude
the paper in Section 7.

2 Definitions

In this section we formally define the parametric query
optimization problem and provide some background
material on polytopes.

2.1 Problem Definition

The parametric query optimization (PQO) problem is
defined as follows [Gan98]: Let s1, s2, . . . , sn denote n
parameters, where each si quantifies some cost param-
eter. Let the cost of a plan p be a function of these n
parameters and let it be denoted by Cp(s1, s2, . . . , sn).
For every legal value of the parameters, there is some
plan that is optimal for that value. Given a query and
n parameters, the maximum parametric set of plans
(MPSP ) is the set of plans, each member of which is
optimal for some point in the n-dimensional parameter
space. The MPSP may be defined as:

MPSP = {p | p is optimal for some point in the
parameter space}

For every legal value of the parameters there is a
plan in the MPSP that is optimal for that value and
vice-versa. The region of optimality for a plan p is
denoted by r(p) and is the set defined as

r(p) = {(s1, s2, . . . , sn) | p is optimal at
(s1, s2, . . . , sn)}

A parametric optimal set of plans (POSP ) is a min-
imal subset of MPSP that includes at least one opti-
mal plan for each point in the parameter space. The
parametric query optimization (PQO) problem is to
find a POSP and the region of optimality for each
plan in the POSP .
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Figure 1: (a) a polytope and (b) a lower convex poly-
tope in 2-dimensions

2.2 Polytopes

In the proposed solutions, we need to represent and
manipulate parameter space partitions. For paramet-
ric query optimization with linear cost functions, the
regions of optimality are convex; if the parameter
space of interest is a convex polytope, the regions of
optimality are also convex polytopes. In this section
we define what are polytopes and describe a special
type of polytope, lower convex polytope.

A convex polytope in ℜd is a nonempty region that
can be obtained by intersecting a finite set of closed
halfspaces. Each halfspace is defined as the solution
set of a linear inequality of the form a1x1 + a2x2 +
· · · + adxd ≥ a0, where each aj is a constant, the xj ’s
denote the coordinates in ℜd, and a1, a2, . . . an are not
all zero. The boundary of this halfspace is the hyper-
plane defined by a1x1 + a2x2 + · · · + adxd = a0. We
denote the bounding hyperplane of a halfspace Mi by
∂Mi.

Let P = ∩iMi be any convex polytope in ℜd, where
each Mi is a halfspace. A halfspace Mi is called re-
dundant if it can be thrown away without affecting
P . This means that the intersection of the remain-
ing halfspaces is also P . Otherwise, the halfspace is
called non-redundant. The hyperplanes bounding the
non-redundant halfspaces are said to be the bounding
hyperplanes of P . A facet of P is defined to be the in-
tersection of P with one of its bounding hyperplanes.
Each facet of P is a (d − 1)-dimensional convex poly-
tope. In general, an i-face of P is the (non-empty) in-
tersection of P with d− i of its bounding hyperplanes;
a facet is a thus a (d − 1)-face. For example, in three
dimensions, a side (facet) of the polytope is a 2-face,
an edge of the polytope is a 1-face, and a vertex is a
0-face.

Figure 1(a) shows a polygon abcdef in ℜ2 (a poly-
tope in ℜ2 is a polygon.) It is defined by the halfspaces
h1, h2, . . . , h7. On which side of the bounding hyper-
plane the corresponding halfspace lies is shown by an
arrow. Note that the halfspace h7 is redundant.



Let the set of halfspaces defining P be M . Lower
convex polytopes are a special class of convex polytopes
where all halfspaces in M extend to infinity in the
negative xd direction. Then each element in M can be
viewed as a hyperplane that implicitly stands for the
halfspace bounded by it and extending in negative xd

direction. We say that P is the lower convex polytope
formed by such hyperplanes in M . Figure 1(b) shows
a lower convex polygon.

3 Parametric Query Optimization for
Linear Cost Functions

In this section we propose minimally-intrusive solu-
tions for linear cost functions. First we review some
basic properties of the linear cost functions; we give
a brief outline of a naive recursive decomposition al-
gorithm and then we present our main algorithm, the
cost polytope algorithm.

Conventional query optimizers return an optimal
plan along with its cost. For parametric query opti-
mization, the cost of a plan is a function of the pa-
rameters, and the cost function of a plan is required
to compare it with other plans. We can extend the
statistics/cost-estimation component of the optimizer
to make it return the cost function of a given plan; one
way to do so is to do conventional cost estimation on
the given plan at n+1 (non-degenerate1) points in the
parameter space, where n is the number of parameters,
and thereby infer its cost function. The optimizer it-
self is not modified in any way, and continues to use
the original statistics/cost-estimation code.

In general we are not interested in the whole param-
eter space ℜn as only a part of it would constitute le-
gal combinations of the parameter values. We assume
that the parameter space of interest is a closed convex
polytope, which we call the parameter space polytope,
and it is provided to the optimizer. Typically, the pa-
rameter space polytope is a hyper-rectangle defined by
a range of legal values specified for each parameter.

3.1 Properties of Linear Cost Functions

We state the following properties regarding linear cost
functions from [Gan98]:

• If two points in the parameter space have the same
optimal plan then the plan is optimal along the
line segment connecting the two points.

• Each plan in a POSP has only one region of op-
timality and the region is a convex polytope.

• If all the vertices of a polytope in the parameter
space have the same optimal plan then the plan
is optimal within that polytope.

1The points are not contained in a common hyperplane.

Thus the partitioning of the parameter space is con-
vex and the solution will divide the parameter space
into convex polytopes.

Note that for linear cost functions, the decompo-
sition of the parameter space induced by any POSP
is the same and the POSP is unique if no two plans
have the same cost function. Details may be found in
the full version of the paper, [HS02]. Without loss of
generality, we assume that the POSP is unique.

3.2 The Recursive Decomposition Algorithm

This solution is based on the observation that if all
the vertices of a polytope in the parameter space have
the same optimal plan, then the plan is optimal within
that polytope. We recursively decompose the param-
eter space into convex polytopes.

We find the optimal plans at the vertices of each
polytope, starting with the parameter space polytope,
using a conventional query optimizer. If two of the ver-
tices of a polytope have two different optimal plans (or
more precisely, optimal plans with different cost func-
tions), then we partition the polytope into two poly-
topes: the dividing hyperplane is derived by equating
the cost functions of the plans. As a result, one plan
is better in one of the polytopes, and the other plan
is better in the other. We then recursively apply the
above test to each of the two polytopes. A polytope
region is not decomposed further when all its vertices
have the same optimal plan.2 The detailed algorithm
may be found in [HS02].

This solution has two shortcomings: It may form
more that one region for a plan and may need to merge
them in a post-pass; And the number of calls made to
the conventional optimizer may be more than neces-
sary.

In fact, we can combine the decompose and merge
phases by noticing that the optimality region for an
optimal plan at a point may surround the point3. So
instead of partitioning each polytope adjacent to the
point independently, we can partition all of them si-
multaneously by carving out a single polytope around
the point and subtracting it from each adjacent parti-
tion. Our next algorithm is an outcome of this obser-
vation.

3.3 The Cost Polytope Algorithm

The cost polytope algorithm works in the ℜn+1 space
with n dimensions representing n parameters and one
dimension representing cost. The cost function of each

2We can devise an approximate version of the algorithm,
which does not partition the polytope if the cost of the opti-
mal plan at one vertex is within a small percentage of the cost
of the optimal plan at each of the remaining vertices.

3This may not be the case, though, if more than one plan is
optimal at the point; in that case, the point lies on the boundary
of the optimality regions of the plans.
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Figure 2: Cost Polytope Algorithm: One parameter example

plan in the plan space can be represented by a hyper-
plane in ℜn+1. We work on these hyperplanes to con-
struct a lower convex polytope that represents the op-
timal cost among all plans at each point in the param-
eter space. Each facet of this polytope corresponds to
a plan in the parametric optimal set of plans (POSP )
and one can obtain its optimality region by projecting
the facet on the parameter space (ℜn).

We use a running example with one parameter,
shown in Figure 2, throughout the section.

3.3.1 Parametric Optimal Cost Function

The parametric optimal cost function (POCF ) over
the parameter space is defined as follows. For a point
v in the parameter space:

POCF (v) = cost of a plan p that is optimal at v.
It follows that, for any plan p in the POSP , at

any point v in its region of optimality, the value of
POCF (v) = Cp(v), the cost of p at v. Thus within
the region of optimality of a plan, the POCF follows
the cost function of the plan.

Consider an example with one parameter shown
in Figure 2(a). The horizontal axis represents the
parameter space and the vertical axis represents the
cost. The line segment pt1 − pt2 is the parameter
space polytope. Let the plan space contain eight plans
pl1, pl2, . . . , pl8 with cost functions as shown in Fig-
ure 2(a). We have POSP = {pl1, pl2, pl4, pl5}. Figure
2(f) shows the POCF , and the region of optimality
of each plan in the POSP .

3.3.2 Cost Hyperplane, Cost Halfspace and

Cost Polytope

Consider ℜn+1 space with n dimensions representing
n parameters and the n + 1th dimension representing
the cost. Let the cost of a plan p be c1s1 + c2s2 + · · ·+
cnsn + cn+1. We can think of the cost function as a
hyperplane in ℜn+1 whose equation is given by

sn+1 = c1s1 + c2s2 + · · · + cnsn + cn+1

where sn+1 denotes the cost of the plan. We call such
a hyperplane a cost hyperplane. We assume that no
plan has a degenerate cost hyperplane with infinite
slope4. Figure 2(a) shows cost hyperplanes for the
plans pl1, pl2, . . . , pl8 in the parameter range pt1−pt2.

We define the lower halfspace (extending to cost =
sn+1 = −∞) of the cost hyperplane as:

sn+1 ≤ c1s1 + c2s2 + · · · + cnsn + cn+1

We call such a halfspace a cost halfspace.
We represent each plan p in the plan space by its

cost hyperplane in ℜn+1 space. The Cost Polytope
is defined as the lower convex polytope obtained by
intersection of the cost halfspaces of all the plans in
the plan space.

Figure 2(f) shows the cost polytope for the cost
hyperplanes defined in Figure 2(a). We can see that its
boundary is the POCF for the plans pl1, pl2, . . . , pl8
in the parameter range pt1 − pt2.

4Such a cost function would be completely unrealistic since
it would divide the parameter space into two halves with each
point in one half having cost positive infinity and each point in
the other half having cost negative infinity.



Theorem 3.1 The boundary of the cost polytope de-
fines the POCF . 2

For the proof see [HS02]. Note that the cost hy-
perplanes corresponding to the plans in the POSP are
the bounding hyperplanes of the cost polytope and the
rest of the hyperplanes are redundant. Thus, the
cost hyperplanes corresponding to the plans not in the
POSP cannot form any facet of the cost polytope.5

Whereas, the cost hyperplane corresponding to each
plan in the POSP forms one facet of the cost poly-
tope, and the projection of the facet on the parameter
space (the hyperplane sn+1 = 0; i.e. cost = 0) gives
the region of optimality for the plan.

3.3.3 Cost Polytope Construction

We discuss the cost polytope construction algorithm
in this section. A naive algorithm would be to inter-
sect all the halfspaces that are in the input set. In the
case of cost polytopes, enumerating all the halfspaces
amounts to enumerating all the plans in the plan space
and getting their cost functions. The plan space can
be very large; and only a handful of plans constitute
the POSP [Gan00]. Such a naive algorithm would
be prohibitively expensive. But we have an additional
tool: Given a point v in the parameter space, we can
use the conventional optimizer to obtain a cost hyper-
plane that bounds or touches the cost polytope at the
point whose projection is v. We use this property to
avoid enumerating all the cost hyperplanes.

Our algorithm uses an online polytope construction
algorithm such as that in [Mul94], as a subroutine. A
polytope construction algorithm is given a set of half-
spaces and the algorithm intersects the halfspaces to
construct the desired polytope. In the case of an online
algorithm, the halfspaces are given one at a time, and
at each stage the algorithm maintains an intermediate
polytope.

Figure 3 shows pseudo code for the Cost Polytope
algorithm. We first optimize any one vertex, say v, of
the parameter space polytope to get a optimal plan at
it, from which we derive the corresponding cost halfs-
pace in ℜn+1. We transfer the equations of all bound-
ing hyperplanes of the parameter space polytope to
ℜn+1 space and intersect them with the cost halfspace
obtained above, to get the initial cost polytope.

We then put all vertices, except v, of the initial
cost polytope in a queue. We pick one vertex at a
time from this queue and optimize it, i.e. invoke the
conventional optimizer on the parameter coordinate
values of the vertex. Consider an intermediate cost
polytope and one of its vertices, say v. We optimize
vertex v to get an optimal plan p (at vertex v) and

5The cost hyperplane of a plan not in the POSP may touch
the polytope at a vertex or along an i-face, for 0 < i < n (e.g.,
an edge, for n > 1), but cannot form a facet (i.e., a n-face) in
ℜn+1.

PSpacePTope = parameter space polytope

/* See Section 3.1; the polytope is in ℜn */

PSPTHalfspaces =

Halfspaces defining PSpacePTope in ℜn

Let v = (v1, v2, . . . vn) be any vertex of PSpacePTope

p = ConventionalOptimizer(v)

/* p is one of the optimal plans at v */

VerticesOptimized = {v}
vn+1 = cost of p at v

Let v′ = (v1, v2, . . . vn, vn+1)

Let hsp be the cost halfspace of plan p in ℜn+1

CostPolytope = intersection of all PSPTHalfspaces

and hsp in ℜn+1 /* Initial cost polytope */

Queue = {vertices of CostPolytope } \ v′

While Queue 6= ∅ do

v′ = Queue.RemoveFirstEntry()

Let the coordinates of v′ be (v1, v2, . . . vn, vn+1)

Let v = (v1, v2, . . . vn)

/* projection of v′ on parameter space */

p = ConventionalOptimizer(v)

/* p is one of the optimal plans at v */

VerticesOptimized = VerticesOptimized ∪ {v}
Let hsp be the cost halfspace of plan p

If (cost of p at v) < vn+1

/* v′ is in conflict with hsp */

CostPolytope = CostPolytope ∩ hsp

Remove from Queue vertices no longer

in CostPolytope

For each new vertex w′ = (w1, . . . wn, wn+1)

added to CostPolytope

if w = (w1, . . . wn) 6∈ VerticesOptimized

add w′ to Queue

Figure 3: The Cost Polytope Algorithm

its cost hyperplane. Note that, as plan p is optimal
at vertex v, the cost hyperplane of plan p must either
touch or intersect the cost polytope at vertex v. In the
later case, we intersect the cost hyperplane with the
current cost polytope to get a new cost polytope. The
intersection operation may delete some of the vertices
from the polytope and may add some new vertices. If
a vertex which is deleted from the polytope is present
in the queue, the vertex is removed from the queue.
All the new vertices of the polytope are added to the
queue.

When the queue become empty, we terminate the
algorithm. When this condition is reached, the cost
hyperplane of an optimal plan of each vertex is either
a facet of the cost polytope or is touching the cost
polytope. The plans corresponding to the facets of the
cost polytope form the POSP . The cost hyperplanes
for all other plans are redundant.

An online algorithm for polytope construction is



presented in [Mul94]. The algorithm allows a sequence
of half spaces to be intersected, resulting in a (possi-
bly) new polytope after each intersection. The algo-
rithm in [Mul94] uses conflict and history structures
to identify a conflicting vertex6 for a hyperplane to
be added. In our algorithm, each hyperplane added
is guaranteed to conflict with at least one vertex: the
vertex whose optimization resulted in the hyperplane.
Thus, we can optimize the online polytope construc-
tion algorithm for our application by eliminating the
conflict and history structures; see [HS02] for details.

Theorem 3.2 The cost polytope algorithm correctly
computes the cost polytope.

Proof: Theorem 3.5 (presented later) shows that the
algorithm terminates. When the algorithm termi-
nates, it returns a polytope with the property that
none of its vertices is in conflict with any cost hyper-
plane. Thus, the polytope is exactly the intersection
of all the cost hyperplanes [Mul94]. 2

The proof can be understood in another way in
terms of POSP and regions of optimality. There is
a one-to-one correspondence between the vertices of
the cost polytope and the vertices that define the par-
titioning of the parameter space polytope; there is also
a one-to-one correspondence between the facets of the
cost polytope and the plans in the POSP . Since an
optimal plan is found for each vertex and its halfspace
is intersected with the polytope, the plan correspond-
ing to a facet is optimal at each of its vertices. Since
the cost function is linear, the plan is optimal at all
parameter space points in the projection of the facet.

Avoiding re-optimizing points: In Figure 2,
point pt3 in the parameter space appears twice: in
Figure 2(d) it is optimized and vanishes from the de-
composition (i.e., is no longer a vertex of the decom-
position), and in Figure 2(f) it is one of the vertices
defining the final decomposition. Thus it has reap-
peared after vanishing. The algorithm needs to re-
member which points are optimized to avoid making
redundant calls to the conventional optimizer; the set
VerticesOptimized is used for this purpose.

3.3.4 Complexity in terms of number of calls

to the conventional optimizer

We measure the complexity in terms of number of calls
to the optimizer as in [Gan98]. In the following the-
orems, f denotes the number of plans in the POSP ,
which is also the number of facets of the cost polytope;
F denotes the total number of i-faces, across all i, of
the final cost polytope; and v denotes the number of
vertices that define the decomposition of the parame-
ter space, including the vertices of the parameter space
polytope.

6Consider intersecting a halfspace S with a polytope P . A
vertex v of the polytope is said to be conflicting with the halfs-
pace if it lies in the complement of the halfspace; i.e. v ∈ S.

Lemma 3.3 A total of v calls to the optimizer are
necessary and sufficient to check if a given set of plans,
with a parameter space decomposition defining a region
of optimality for each plan, is the POSP .

Proof Sketch: If a plan is optimal at all the ver-
tices of a polytope in the parameter space decomposi-
tion then the plan is optimal within that polytope and
hence the parameter space decomposition is optimal.
The number of calls to the optimizer sufficient to as-
certain this is v – one per vertex. But if we do not
optimize a vertex, we do not know if the above condi-
tion is satisfied by the regions surrounding the vertex.
Thus, the necessary number of calls to the optimizer
is v. 2

For the detailed proof see [HS02]. The theorem be-
low follows directly from Lemma 3.3.

Theorem 3.4 The lower bound on the number of calls
to be made to the optimizer to solve the parametric
query optimization problem for linear cost functions
in a non-intrusive manner is v. 2
Theorem 3.5 The cost polytope algorithm makes at
most F calls to the optimizer.

Proof: Any intermediate cost polytope is a superset
of the final cost polytope and, as the algorithm pro-
gresses, the polytope shrinks as it is intersected with
new hyperplanes. Hence, any intermediate face is a
superset of a face of the final cost polytope and a face
of the polytope can only shrink as the algorithm pro-
gresses7. Thus, no vertex of an intermediate cost poly-
tope is in the interior of any face of the final cost poly-
tope. Each point that is optimized is a vertex of an
intermediate or the final cost polytope.

Consider a vertex of an intermediate cost polytope
v′ that is optimized. Let point v be the point on the
final cost polytope whose projection on the parameter
space is the same as that of v′. Now, v has to be
either a vertex of the final polytope, or has to be in
the interior of exactly one of the i-faces of the final
polytope for some i(> 0). In the latter case, let this
face be h and we say that vertex v′ maps to face h. We
claim that no two optimized points map to the same
face of the final cost polytope. If not, since points
are optimized in some order, let w′ be an intermediate
polytope vertex that is optimized after v′, and w be
the point in the interior of face h whose projection on
the parameter space is the same as that of w′. But
since we have already intersected with the hyperplane
corresponding to face h, w = w′, But then w′ was
a vertex of an intermediate polytope, which means it
cannot be in the interior of face h. Thus each point
optimized either maps to a different i-face or is a vertex

7A face of the polytope may reduce in dimension but it never
disappears; it may become a 0-face i.e. it shrinks to a vertex of
the polytope.



of the final polytope, and no point is optimized more
than once, leading to the upper bound of F calls. 2

In the worst case, the total number of faces of a
polytope is O(n⌊d/2⌋), and the number of vertices is
O(nC⌊d/2⌋), where n is the number of halfspaces defin-
ing the polytope and d is the number of dimensions.
Thus, the optimizer can make significantly more calls
than the lower bound. The worst case occurs only
when for each i-face of the final cost polytope we have
a cost hyperplane such that its intersection with the
cost polytope is the i-face itself; see [HS02] for de-
tails. If the coefficient vectors8 of the cost functions are
distributed uniformly in a unit sphere then the prob-
ability that a cost hyperplane not defining the final
cost polytope touches it is zero; see[HS02] for details.
Thus, the expected value of F is f . In high dimen-
sional non-degenerate cases, the number of vertices of
a polytope are generally exponential in the number of
facets [Zie94], and we have f ≪ v. Thus, the num-
ber of calls made to the conventional optimizer is ex-
pected to be close to the lower bound under the above
assumption.

3.3.5 Optimization given all optimal plans at

a given point

We assumed that the conventional optimizer returns
one of the optimal plans at a given point in the pa-
rameter space, along with its cost hyperplane. In con-
trast, [Gan98] and [Gan01] make the stronger assump-
tion that the optimizer returns all optimal plans at a
given point, which is harder to implement, since the
optimizer code would have to be modified, and a large
number of plans may be returned in degenerate cases.

Given an optimizer that returns all the plans, we
can pick any one of the plans returned and algorithm
remains the same. However, we can then save on the
number of calls to the optimizer by intersecting the
intermediate cost polytope with all the returned hy-
perplanes. For example, in the example in Figure 2
optimization of point pt3 returns three plans and hence
three cost functions. If we intersect all of them with
the intermediate cost polygon we need not call the op-
timizer at points pt4 and pt5.

Let V ′ be the set of vertices of the parameter space
polytope. If the optimizer returns all the optimal
plans at a given point, the number of calls made to
the optimizer would be at most (v+f ′) where f ′(< f)
is the number of plans (in the POSP ) whose regions
of optimality are adjacent to none of the vertices in
set V ′. Since f < v, the number of calls is at most
two times v, and is thus very close to the lower bound.
This upper bound is valid only if we optimize all the
vertices in set V ′ before optimizing any other point, as
is done in the Cost Polytope algorithm. (An example
illustrating this point can be found in [HS02].) The

8The coefficient vector of a cost function c1s1 + c2s2 + · · ·+
cnsn + cn+1 is (c1, c2,+ · · · cn+1).

reduction in the upper bound on the number of calls is
based on two observations: (a) when we optimize the
vertices of the parameter space polytope, we detect
all the facets of the cost polytope that are touching
the boundary vertices and, thus, no separate calls are
needed to detect such facets. (b) we detect all the
faces and facets of the final cost polytope that touch
the vertex of the final cost polytope corresponding to
the point optimized and, thus, a call at a vertex that
is not a vertex of the final cost polytope detects at
least one facet of the final cost polytope. For details,
see [HS02].

4 Piecewise Linear Cost Functions
(PLCF)

Real world cost functions are often not linear. The
properties of the linear cost functions enumerated in
Section 3.1 do not hold for non-linear cost functions,
and hence the solution proposed for linear cost func-
tions are not applicable. We now describe how to han-
dle piecewise linear cost functions (PLCFs): a func-
tion is piecewise linear if the parameter space can be
partitioned into convex polytopes such that within
each partition, the function is linear in the parame-
ters. Piecewise linear cost functions can be used to
approximate any non-linear cost function, and thus a
solution for the piecewise linear case is very general
and of practical importance.

In the rest of this section we give some definitions
related to parameter space partitioning and piecewise
linear cost functions. In Section 5 we outline how to
perform parametric query optimization with piecewise
linear cost functions.
Partitioning Scheme: A partitioning scheme parti-
tions the parameter space into disjoint partitions. We
assume that for each operation, the cost function is
piecewise linear, that is, the parameter space can be
divided into partitions such that the cost function is
linear in each partition. We also assume that the pa-
rameter space polytope and the partitions are closed
convex polytopes.

Figures 4(a) and 4(b) show piecewise linear cost
functions with one parameter and partitioning of the
parameter space induced by them. In one dimensional
space polytopes are just line segments. The cost func-
tion in 4(a) creates 4 partitions of the parameter space,
namely ra1, ra2, ra3 and ra4 whereas the cost function
in 4(b) creates 3 partitions of the parameter space,
namely rb1, rb2 and rb3. Both cost functions are linear
within each of their partitions. (Parts (c) and (d) of
Figure 4 are discussed later.)

Figures 5(a) and 5(b) show partitioning schemes de-
fined on a two dimensional parameter space. Both pa-
rameters range over [0, 1]. The partitioning scheme
in 5(a) creates 3 partitions of the parameter space,
namely ra1, ra2 and ra3. The partitioning scheme
in 5(b) creates 3 partitions of the parameter space,
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namely rb1, rb2 and rb3.

5 Optimization for Piecewise Linear
Cost Functions

In this section we present an overview of the extensions
to a conventional optimization algorithm to turn it into
a parametric query optimizer for piecewise linear cost
functions.

In a conventional optimizer we have a single value
as the cost for an operation or a plan and a single
optimal plan for a query/sub-query expression. But in
parametric query optimization, we need to handle cost
functions in place of costs, and keep track of multiple
plans, along with their regions of optimality, for each
query/subexpression. To handle these differences, a
conventional query optimizer can be extended in the
following ways:

• The cost of an operation: The cost of an operation
is now a piecewise linear function of the param-
eters. The parameter space can be divided into
partitions and within each partition the cost of
the operation is a linear function of the parame-
ters. See Section 5.3 for details.

• Evaluating the cost of a plan P : Given the cost
function of the root operation O, say Co, and that
of the sub-plan P ′ = P \ O, say Cp′ , consider a
point in the parameter space. The cost of the plan
at this point will be an addition of the cost of P ′

and that of O at this point. The cost depends
upon the polytopes in the cost functions Co and
Cp′ in which the point fall.

To get the cost function Cp of the plan P , we need
to refine the two partitioning schemes of the pa-
rameter space (one from the cost function Co and
the other from the cost function Cp′) such that
both functions are linear in each of the partitions
of the refined partitioning scheme. Each partition
in the refined partitioning scheme is an intersec-
tion of partitions from the two input partitioning
schemes, and the cost function Cp in the partition
is the addition of the linear cost functions from
the two intersecting partitions. The algorithm for
to refine partitioning schemes is outlined in Sec-
tion 5.1.1, while Section 5.1.2 outlines how to add
piecewise linear cost functions.

• Comparing alternative operation or plans, say
P1 and P2, for evaluating a particular expres-
sion: Here, again, we refine the two partitioning
schemes of parameter space (one from P1 and one
from P2), and compare the linear cost functions in
each refined partition. Details of a function Min-
Merge which does this are presented in Section
5.1.3.

5.1 Operations on Partitioning Scheme and

PLCF

In this section we define some operations on the parti-
tioning schemes of the parameter space and piecewise
linear cost functions.

5.1.1 Operation Refine on partitioning

schemes

The function Refine(PSa, PSb) takes as input two par-
titioning schemes PSa and PSb, computes the pair-
wise intersection of the partitions (polytopes) in the



input schemes, and discards the null intersections. The
non-null intersections define a new partitioning scheme
of the parameter space, which the function returns.
A PLCF defined on either of the input partitioning
schemes will be linear in each partition of the refined
partitioning scheme.

Figure 4(c) shows the result of refinement of parti-
tioning schemes of a one dimensional parameter space
defined in Figures 4(a) and 4(b). A partition raibj

in
Figure 4(c) results from an intersection of a partition
rai

from Figure 4(a) and a partition rbj
from Figure

4(b). As an example, we see that the partition ra1b1

is created by intersecting partition ra1
and rb1 . The

partition ra2b3 does not exist as the partitions ra2
and

rb3 do not intersect. Figures 5(a)-(c) show partition-
ing schemes in 2 dimensions. The partitioning scheme
in Figure 5(c) is the result of refinement of the parti-
tioning schemes in Figure 5 (a) and (b). The output
partitioning scheme can be thought of as the super-
imposition of the two input partitioning schemes.

5.1.2 Operation Add on PLCF

Logically, the value of the output cost function at each
point in the parameter space is obtained by adding two
input cost functions at that point.

Computationally, we take the refinement of the par-
titioning schemes defined by the input cost functions
to create the partitioning scheme for the output cost
function. In each output partition each input cost
function is linear and in each such partition we add
the two input cost functions to define the output cost
function in that partition.

5.1.3 Operation MinMerge on PLCF

Logically, the value of the output cost function at a
point in the parameter space is the minimum of the
values of the two input cost functions at the point.
So, we compare the input cost functions at each point
in the parameter space and pick the minimum of them
to create the output cost function.

Computationally, the function MinMerge does the
following:

1. Take the refinement of the partitioning schemes
defined by the input cost functions to create the
partitioning scheme for the output cost function.

2. Within each partition of the refined partitioning
scheme, the input cost functions are linear. Do
the following for each partition:

(a) Consider the hyperplane defined by equating
the two (linear) input cost functions, say f1

and f2; this hyperplane divides the parame-
ter space into two halves; f1 is less than or
equal to f2 in one half, and f2 is less than or
equal to f1 in the other.

(b) If the hyperplane does not intersect the out-
put partition then the partition lies on one
side of the hyperplane and hence one of the
two input cost function, say f1, is better than
the other throughout the partition; the par-
tition is not refined further, and f1 is its out-
put cost function.

(c) Else the hyperplane is used to split the par-
tition into two parts, thus refining the par-
tition. Function f1 is better in one of the
parts, for which it is the output cost func-
tion, and f2 is better in the other part, for
which it is the output cost function.9

Figures 4(a) - (d) show an example with one param-
eter. Figure 4(c) shows the result of refining the two
partitioning schemes defined in Figure 4(a) and Figure
4(b). Figure 4(d) shows the result of the MinMerge
operation on the cost functions defined in Figure 4(a)
and Figure 4(b). In output partitions ra1b2 and ra2b2

the input cost function CFb is less than the input cost
function CFa and the output cost function is equal to
CFb in these partitions. In partition ra4b3 the input
cost function CFa is less that the input cost function
CFb and the output cost function is equal to CFa in
this partition. However in partitions ra1b1 and ra3b2

neither of the input cost functions is less than the
other throughout and hence we need to split these par-
titions further. The separating point (a hyperplane
in 1-dimension is a point) in each of the partitions is
given by equating the two input cost functions in the
partition.

5.2 Extensions to System R Algorithm

We now outline how to extend the System R optimiza-
tion algorithm to handle cost functions in place of cost
values. Figure 6 shows the pseudocode of (a recursive
formulation of) the System R optimization algorithm.

Figure 7 shows the pseudo code for the extended
algorithm. Note the key differences: cost function ad-
dition replaces addition of cost values, and the Min-
Merge operation replaces the selection of the minimum
cost plan. In the cost value case, only one of the alter-
native plans for a subset of relations is chosen. In the
cost function case, different plans may be optimal at
different points; all of these are retained by MinMerge.

5.3 Approximating cost functions to piecewise

linear form

In general, the cost of an operation in a query plan is a
function of statistics such as its input sizes. In the case
of PQO, the statistics may be estimated as a function
of the optimization parameters. Thus, we can express
the cost function of the operation as a function of the

9This partitioning technique can be thought of as a special-
ization of the recursive decomposition algorithm (Section 3.2)
to the case where only two cost functions need to be combined.



Input: SPJ query q on a set of

relations Q = {R1, . . . , Rn}
Output: Optimal plan PQ for the query q

/* For S ⊆ Q, CostS denotes cost of PS */

for i = 1 to n do

PRi
= Access plan of Ri

for i = 2 to n do

for all S ⊆ Q s.t. ‖S‖ = i do

PS = dummy plan with infinite cost

for all Rj , Sj s.t. S = {Rj} ∪ Sj

op = join operation on Sj and Rj

p = Sj ⊲⊳ Rj

Costp = Costop + CostRj
+ CostSj

if Costp < CostPS
then PS = p

Figure 6: System R Algorithm

parameters, and then approximate it in the fashion
outlined below.

For non-linear functions, the general approximation
approach is as follows: We find the equi-cost contours
in the parameter space and divide the parameter space
into bands such that an equi-cost contour separates
two adjacent bands. The cost function within a band
is the linear interpolation of the cost along the two
boundary contours and the width of a band is such
that within the band the linear cost function can ap-
proximate the actual cost function to a desired degree.
Given the non-linear nature of the cost functions, such
bands would typically be non-convex. We further di-
vide each band into regions, and approximate each
region by a convex polytope such that the polytope
approximates the corresponding region closely.

Figure 8(a) shows some equi-cost lines for a two
parameter case where the cost is proportional to the
product of the parameter values and Figure 8(b) shows
a partitioning scheme for this case. Consider a nested-
loops join operation on two relations, each with a
parametrized selection; the cost of the join is propor-
tional to the product of the sizes of the inputs, and
is thus a function of the product of the parameters,
which would be handled by this approximation.

We can create specific approximation procedures,
based on the above approach, for simple non-linear
functions such as product of parameters. Cost func-
tions obtained by adding such non-linear functions
can be approximated by approximating each part, and
then combining the approximations using refinement
of the partitions.

Operator cost functions may not only be non-linear,
but may also be discontinuous in the given parameters.
For typical cost functions (e.g. the merge-sort oper-
ation when its input becomes bigger than memory)
the contours of the discontinuities involved are similar
to the equi-cost contours and the approach outlined
above can be applied for approximating the cost func-

Input: SPJ query q on a set of

relations Q = {R1, . . . , Rn}
Output: Optimal CostFnQ for the query q

/* The optimal cost function contains a partitioning

scheme on the parameter space with each partition

having an optimal plan attached to it */

for i = 1 to n do

CostFnRi
= Access cost function of Ri

for i = 2 to n do

for all S ⊆ Q s.t. ‖S‖ = i do

CostFnS = dummy cost function with

infinite cost

for all Rj , Sj s.t. S = {Rj} ∪ Sj

op = join operation on Sj and Rj

p = Sj ⊲⊳ Rj

CostFnp = CostFnAdd(CostFnop,

CostFnRj
, CostFnSj

)

CostFnS = MinMerge(CostFnS, CostFnp)

Figure 7: Extended System R Algorithm
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tions involving discontinuities as well.

5.4 Discussion

We have extended the Volcano query optimization al-
gorithm to handle parametric query optimization. The
extensions are similar to the extensions of the System
R algorithm, except for some extra care to be taken
when using cost-based pruning. Details are available
in [HS02].

We have implemented the extensions by modifying
an existing Volcano-based query optimizer developed
at IIT Bombay. We are using Polylib, a public domain
polytope manipulation library to implement polyhe-
dron operations [Pol]. We have tested the extensions
for queries with two parameters. One of the prob-
lems we faced is that the library requires calculation
using exact rationals, leading to unbounded integer
sizes, which it handles using the GNU MP arbitrary
precision integer package, and this results in a signifi-
cant overhead. We are exploring alternative polytope



manipulation techniques that do not require arbitrary
precision arithmetic, to reduce the overhead. We plan
to conduct a performance evaluation subsequently.

Linear vs. piecewise linear techniques

The cost polytope algorithm for the linear case can be
applied in the piecewise linear case by pre-partitioning
the parameter space in a way that every cost func-
tion is linear in every partition. However, doing so
would result in a grossly over-refined space. Instead,
what our algorithm for the piecewise linear case have
achieved is to refine the space for each operation and
plan separately: thus the space is refined only as much
as is needed for that operation or plan.

The algorithm considers only two cost functions at
a time and while adding or comparing the cost func-
tions, the partitioning scheme is refined only as much
as is needed – within each partition of the refinement
both the cost functions are linear. We could apply the
recursive decomposition technique for merging linear
cost functions within each refined partition. However,
we need to consider only two cost functions at a time,
unlike the recursive decomposition (and the cost poly-
tope) algorithm which considers (in effect) all possible
plans; merging two cost functions at a time is consid-
erably simpler. Although real world cost functions are
often not linear, our work on linear cost functions is
still of theoretical interest, and may have applications
in restricted domains. Our work on piecewise linear
cost functions is of practical significance.

6 Related work

[GW89] makes a case for parametric query optimiza-
tion, and proposes dynamic query plans that include
a choose-plan operator, which chooses a plan, at run-
time, from among multiple available plans depending
upon the values of certain run-time parameters.

[CG94] presents a technique wherein the cost of a
plan p is modeled as an interval [l, u], where l and u
are the highest and the lowest cost of the plan p over
the parameter space, and plans whose lower bound is
greater than the upper bound of some plan are pruned
out. [Gan98] and [Rao99] show that the expected
number of plans generated by this algorithm could be
much larger than the expected size of the parametric
optimal set. [Rao99] presents sampling techniques
based on selecting points from the parameter space
at random and optimizing them using a conventional
optimizer. The set of plans returned will be a subset
of the parametric optimal set of plans. [Rao99] also
presents a hybrid algorithm combining the sampling
techniques with the partial order technique.

[INSS92, INSS97] present a randomized approach
for parametric query optimization with memory as a
parameter. The technique proposed is heuristic based
and does not guarantee generation of all parametric

optimal plans or any bound on the sub-optimality of
the plans.

[GK94] considers a one parameter parametric query
optimization problem involving a two site distributed
database system with relative load factor as the pa-
rameter. This is a specific instance of parametric query
optimization with linear cost functions in one parame-
ter. [Gan98] extends the work of [GK94] and proposes
a solution for parametric query optimization with lin-
ear (or “affine”) cost functions in two parameters. The
solution involves a complicated mechanism of travers-
ing the parameter space along the boundary of the
polyhedral decomposition and finding neighboring re-
gions. The complexity involved restricts it to 2 pa-
rameters. [Bet99] reports experimental results of this
technique for the one parameter case for linear and star
queries. [Pra99] reports an experimental evaluation
of the algorithm for “affine extensible” cost functions
proposed in [Gan98].

In a currently unpublished followup work [Gan01],
Ganguly has extended the algorithm to more than two
parameters. Ganguly’s algorithm calls itself recur-
sively on the faces of the parameter space polytope,
moving from lower dimensional faces to higher dimen-
sional faces, and finds optimal plans and the decompo-
sition of the faces induced by these plans. At the end of
the recursive phase, it takes the plans optimal along
the boundary of the parameter space polytope, and
constructs the decomposition induced by these plans.
This decomposition creates some vertices in the inte-
rior of the parameter space polytope; these vertices
are optimized one by one. If optimization of a vertex
returns a new plan, the optimal region for it is carved
out from the existing decomposition. This procedure
is continued till all the vertices are optimized.

The basic difference in the two algorithms is that
Ganguly’s algorithm works in ℜn, whereas our algo-
rithm works in ℜn+1, which results in considerable
simplification of the procedures. Specifically, in Gan-
guly’s algorithm, the procedure for carving out the
optimal region for a new plan (given the existing de-
composition) begins with the parameter space poly-
tope and chips out the optimal region of each plan in
the existing decomposition. This procedure is invoked
for each new plan added and may prove to be expen-
sive. In contrast since we work in higher dimensional
space, we only require a single hyperplane intersection.
We also completely avoid the complexity of the initial
decomposition phase of Ganguly’s algorithm.

If the conventional optimizer returns all plans, the
number of calls to the optimizer is roughly the same
for both algorithms. However, our algorithm can be
used even if the optimizer returns only one plan, un-
like Ganguly’s algorithm. [Gan01] discusses several
extensions, including a special case of nonlinear cost
functions, which we do not consider.

Our algorithm for the piecewise linear case is novel



to the best of our knowledge. The memory cog-
nizant optimization algorithm which we developed ear-
lier [HSS00] can be viewed as a special case of our
current algorithm, for the case of a single parameter,
namely memory. [HSS00] shows how to divide the
available memory optimally amongst the operations
running in a pipeline, given the cost versus memory
allocation function for each operation and extends the
conventional optimizer to build a memory cognizant
optimizer; the extended optimizer takes into account
the division of memory amongst operations and gen-
erates an optimal, memory-aware execution plan.

7 Conclusion

In this paper, we first proposed a parametric query op-
timization algorithm for linear cost functions which is
non-intrusive in that it uses a conventional query op-
timizer without modifying it. Unlike approaches pub-
lished earlier, it is simple, yet general enough to han-
dle an arbitrary number of parameters. We proved a
lower bound on the number of invocations of the con-
ventional optimizer, and showed that under certain as-
sumptions, the number of invocations made is close to
the lower bound.

We then proposed a solution for the PQO problem
for the more general case when the cost functions are
piecewise linear. The solution is based on modification
of an existing query optimizer. The solution works for
an arbitrary number of parameters, and is very general
since nonlinear cost functions can be approximated to
piecewise linear form.

We have implemented our PQO algorithm for piece-
wise linear cost functions, and tested it for queries
with two parameters. Future work includes imple-
menting or using polyhedron handling code that min-
imizes overheads, and characterizing the performance
of our algorithms.
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