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A b s t r a c t .  Ranked set sampling was introduced by McIntyre (1952, Aus- 
tralian Journal of Agricultural Research, 3, 385-390) as a cost-effective method 
of selecting data if observations are much more cheaply ranked than measured. 
He proposed its use for estimating the population mean when the distribution 
of the data was unknown. In this paper, we examine the advantage, if any, that  
this method of sampling has if the distribution is known, for a specific family 
of distributions. Specifically, we consider estimation of # and G for the family 
of random variables with cdf's of the form F(~-~a). We find that  the ranked 
set sample does provide more information about both # and G than a random 
sample of the same number of observations. We examine both maximum like- 
lihood and best linear unbiased estimation of # and G, as well as methods for 
modifying the ranked set sampling procedure to provide even better estimation. 

Key words and phrases: Order statistic, ranked set sample, maximum likeli- 
hood estimator, best linear unbiased estimator. 

1. Introduction 

Ranked  set sampl ing  was in t roduced and applied to the  p rob lem of es t imat ing  
mean  pas ture  yields by  McIn tyre  (1952). I ts  function was to improve the efficiency 
of the  sample  mean  as an es t imator  of the  popula t ion  mean  # in s i tuat ions in 
which the  character is t ic  of interest  was difficult or expensive to measure,  bu t  could 
be  cheaply ranked. There  has been recent interest  in ranked set sampl ing  for 
env i ronmenta l  appl icat ions (Johnson et al. (1993), Pat i l  and Taillie (1993), Pat i l  
et al. (1993a, 1993b, 1994), Gore et al. (1994)), for which measu remen t  of the 
variable of interest  for sample  units  m a y  require expensive testing, but  ranking of 
small  sets of samples  wi th  respect  to the character is t ic  can be done more  cheaply. 

The  ranked  set sampl ing  process consists of drawing m r a n d o m  samples,  each 
of size m,  f rom the popula t ion.  The  rn member s  of each sample  are ordered 

* This paper has been prepared with partial support from the United States Environmental 
Protection Agency under Cooperative Agreement Number CR821801-01-0. The contents have 
not been subjected to Agency review and therefore do not necessarily reflect the views or policies 
of the Agency and no official endorsement should be inferred. 
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among themselves by eye, or by some other inexpensive method. Then the smallest 
observation from the first sample is measured, as is the second smallest observation 
from the second sample. The process continues in this manner until the largest 
observation from the m-th sample is measured. This entire cycle is repeated n 
times until a total of nrn 2 observations have been drawn from the population but 
only nm have been measured. These nm measured observations are referred to 
as the ranked set sample (RSS). Since accurate eye ordering for large m would 
be difficult in most practical situations, an increase in sample size is typically 
implemented by increasing n rather than m. 

The attractive feature of a RSS is that it allows improved estimation of a 
variety of parameters, when judged against a random sample (RS) having the 
same number (nrn) of measured observations. Let X(~)i denote the r-th order 
statistic in the i-th cycle; then X(r)i, r = 1 , . . . ,  m; i = 1 , . . . ,  n denotes the RSS. 
Let Xi, i = 1 , . . . ,  nm denote the RS. Takahasi and Wakimoto (1968) showed that 
the relative precision of/2* to J~ always exceeds 1; i.e., 

(1.1) 
Var(X) 

i _< RP(y, X) - ~ ,  

where 2 = 1 Y]-i%1 Xi and 
n m  

n m 

( 1 . 2 )  /2* - 
i = 1  r = l  

Stokes (1980) showed that the sample variance does not enjoy the same advantage 
as an estimator of population variance for all values of m and n, but that 

1 < rose(s2) for nm sufficiently large, 
- ,~8e((~,)2) 

where 

n ~  

(1.3) (~ .~ )~  = ~ ( x j  - :~)~ 
j= l  

and 
n m 

(1.4) (nrn)(#*)2 = E E ( X ( r )  i - /2.)2.  
i : 1  r : l  

Stokes and Sager (1988) showed that estimation of the cumulative distribution 
function (cdf) can also be improved by ranked set sampling, since 

1 <__ Rp[F*(~), F(t)], 

for all t, where F and F* are the empirical cdf's of the RS and RSS, respectively. 
In each of these cases, the advantage of the RSS estimator over the RS estimator 
remains regardless of the distribution of the population. A further remarkable 
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result is that the advantage for RSS is maintained in each of these three cases 
even if the ranking process is imperfect (Dell and Clutter (1972), Stokes (1980), 
Stokes and Sager (1988)). 

There has also been some study of parametric versions of RSS estimators for 
parameters of specific distributions. For example, Sinha et al. (1994) examined 
estimation of parameters of normal and exponential distributions. The disadvan- 
rage of the parametric versions of RSS estimators is that they generally do not 
allow for imperfect ranking; that is, the parametric RSS estimators generally do 
not retain their unbiasedness when errors in ranking occur. Their potential ad- 
vantage, however, is that use of knowledge of the distribution along with ranked 
set sampling might provide improvement in estimation over RS estimators, as well 
as over the comparable nonparametric RSS estimator, if one exists. 

In this paper, the improvement that RSS will allow over RS is characterized 
for estimators of parameters of a class of random variables. The class of random 
variables studied is the location-scale family having cdf of the form F ( ~ - ) ,  with 
F known. This class includes as special cases the distributions studied by Sinha 
et al. (1994). In Section 2, we examine maximum likelihood estimation and in 
Section 3 best linear unbiased estimation of # and or. In Section 4, we discuss the 
advantages of modified ranked set sampling, in which not all order statistics are 
measured in turn, but more general selection schemes are allowed. A discussion 
of robustness to ranking errors and conclusions follows in Section 5. Throughout 
this paper, we assume that perfect ranking is possible for at least a small number 
of observations and is very inexpensive when compared with measurement. 

2. Maximum likelihood estimation 

One reason for examining maximum likelihood estimators (MLE's) from RSS 
is that they serve as a standard against which other estimators can be measured, 
since under fairly general regularity conditions an MLE is asymptotically efficient. 
Thus, by comparing the performance of nonparametric estimators to MLE's, we 
can assess the value of knowledge of the distribution. Similarly, by comparing the 
performance of MLE's to that of more easily calculated parametric estimators, we 
can determine if the extra effort in computation is warranted. 

Let X = (X1 , . . . ,  X~m) / be a RS from a distribution having cdf 

(2.1) F ( ~ )  

a n d p d f ± f ( x - ~ )  Let X* ., . .. ~ .  ~ j. = (X(01, . .  X(,~)I,.. ,X(1)~,. ,X(,~)~) / be a RSS 
from the same distribution. The loglikelihood function of the RS is 

L = -nmlncr  + ~-~ln f (Zj) ,  
j = l  

where Zj - x~-~ and the loglikelihood function of the RSS is 
O" 

n 7Y~ n 

L* = K -  nmlncr + ~ E l n f ( Z ( ~ ) i )  + E E  ( r -  1) lnF(Z(~)i) 
i : 1  r = l  i = 1  r = l  
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n m 

+ - r)ln[1 - 

i = 1  r = l  

x(~)~-u Throughout this paper, we will where K is a constant and Z(~)i - 
consider separately the two special cases of the location-scale family mentioned 
above: (1) single parameter unknown, (2) both p and ¢ unknown. 

2.1 One parameter families 
First suppose that o. in (2.1) is known, and we wish to estimate # by maximum 

likelihood (ML). The ML estimator from a RS, denoted by fZML, is the solution 
of the equation 

E f(Zj)  - O, 
j:l 

while the ML estimator of # from a RSS, denoted by #ML, is the solution of the 
equation 

(2.2) ~ f'(Z(~){) n ~ ~, f(Z(~)i) 

+ E ( m -  r) 1 -- F---~(~){) --0.  
i:1 r:l 

We examine Fisher Information for # under each sampling scheme. This will allow 
us to compare RP(~*MC , [tMC) and RP([~*, X). First note that  for distributions 
of type (2.1) with o. known, the Fisher Information from a RS is 

(2.3) I~m(#) = o" 2 f (Zj)  ' 

provided E[ °lnf] = 0. It is shown in the Appendix that the Fisher Information o~ 
for # from a RSS for distributions satisfying the usual regularity conditions is 

(2.4) I~,~(#) = o.~ f (Zj)  + o.2 E F(Z j~ I  ---F(Zj)) " 

A comparison of (2.3) and (2.4) shows that Into(P) < I~m(P), since the second 
term of (2.4) is non-negative. In fact, the magnitude of the second term shows 
that an efficient estimator of # from a RSS has a smaller variance by an order of 
m than an efficient estimator from a RS. In particular, for distributions satisfying 
the regularity conditions specified, we have the asymptotic relative precision 

lim RP(P*ML, [tML) -- I~m(#) 

f f2(ZJ) ] / E ~ f'(ZJ) [ 2 
= i + ( r n -  1)E ~ F ( Z j ) ( 1 -  F ( Z j ) ) f  / [ f ~ j )  J " 
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Example (a). Let Xj ~ N(p, 1), j = 1 , . . . , n m ,  denote a RS. Let X(~)i, 
r = 1 , . . . ,  m; i = 1 , . . . ,  n, denote a RSS from the same distribution. Then, of 
course, £ML = 2 ,  but /2~L is the solution of the equation 

m 

#ML + m r)g~ (r 1)~tr], 
r = l  

¢(z(~)d 
i n ¢(z(.){) and hr = 1 E i N 1  ¢(Z(.)/) where/2* is defined as in (1.2), gr : n ~--~-i=i 1 - q , ( z ( . ) { ) '  n " 

The fact tha t /2~L #/2* in this example shows that if the underlying distribution 
is known to be normal with a known, then estimation of the mean can be improved 
over the nonparametric approach suggested by Dell and Clutter. To examine the 
amount of improvement, we compare I~,~(p) = n m  and 

I n m ( p ) = n m + n m ( m - 1 ) E {  ¢2(ZJ) } 
~(Z j )~  ~ ( Z j ) )  ' 

where Zj ,-~ N(O, 1). The expectation above can be evaluated numerically (see, for 
example, Abramowitz and Stegun (1968), p. 890), and is .4805. Thus 

lim RP(ft*ML,ftML ) = 1 + ( m -  1)(.4805). 
n ~->  CX) 

Table l(a) compares Iimn_~RP(~t*ML,~tML ) and RP(/5*,X) (from Dell and 
Clutter (1972), Table 1) for some small m. It shows that large improvement 
over RS is available from either nonparametric or parametric estimation of # 
from a RSS. However, the added improvement from parametric estimation is 
quite small; e.g., for m = 5, the increase in precision for large n is only about 
(2.92 - 2.77)/2.77 ~ 5%. Thus most of the improvement to be had from RSS in 
estimation of p does not require knowledge of the sample's normality. 

Now suppose that # in (2.1) is known, and we wish to estimate a by maximum 
likelihood. The ML estimator of a from a RS, denoted by ~ML, is the solution of 
the equation 

nm Z j f t ( Z j )  

(2.5) + f(z ) - o ,  

j = l  

while the ML estimator of a from a RSS, denoted by °-ML, is the solution of the 
equation 

(2.6) 

n m 

+ Z - = o. 
1 - F(Z( )d 

i=1  r = l  
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Relative precision of RSS and  RS es t imators  for three  examples i. 

f r ~  

Relative precision 2 3 4 5 

(a) N( , ,  1) 

RP(f~*,2) 1.47 1.91 2.35 2.77 

lim RP(fL*ML,ftML ) 1.48 1.96 2.44 2.92 
n ~ o ~  

(b) N(O, ~2) 

l im RP(a*,s) 1.00 1.08 1.18 1.27 
n - - - + o o  

l im IRP(&*ML,&ML ) 1.14 1.27 1.41 1.81 
n - - - + o o  

(c) Exp(a )  

RP(f~*,2) 1.33 1.64 1.92 2.19 

lira RP(~*ML,&ML ) 1.40 1.81 2.21 2.62 
n--+ oo 

1Values of RP in cases (a) and  (c) are from Table 1 of Dell and  Clu t te r  (1972). 

To assess the value of knowledge of F, we again compute Fisher Information 
for a under each scheme. First, under RS, we have, for distributions satisfying 

12 } ~: [ f(z~) - * ' 

= -1 .  By a method similar to that used in the Appendix, we 

E[OlnL] V-58-J = O, 

(2.7) 

1~[ Zjf' (Zj) ] since ~ L  f ( & )  J 

can show 

• rim{ [ZJf'(ZJ)12 } 
(2.8) < m ( ~ ) = 7  EL f ( & )  J - 1  

~2 z F ( Z ~ i - - - Y ( Z j ) )  ' 

if f is such that limz~o~zf(z) = limz~_~zf(z) = l i m ~ z 2 f ( z )  = 
lim~_~_~ z2f(z). A comparison of (2.7) and (2.8) shows that I*~(cT) _> I~m(~). 
As before, for distributions satisfying the regularity conditions specified, we have 

lira RP( & *ML, (r M L  ) 
n ---+ O 0  

_ I ~ ( ~ )  

: l ÷ ( m - 1 ) E #  [ZJf(ZJ)]2 } / { E V Z J f ' ( Z J ) I  2 } 
[ F(Zj)(1- F(Zj)) L f(zj) J - 1  . 
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Example (b). Let Xj  ~ N(O, cr2), j = 1 , . . . , n m ,  denote a RS and X(~)i, 
r = 1 , . . . ,  m; i = 1 , . . . ,  n, denote a RSS from the same distribution. The MLE's 
[~ ~ i ~  X~] 1/2 and &aL, obtained iteratively from (2.6), can be compared through 
their Fisher information, I~,~ (a) = 2~m and 

= 7 + E 

The expectation above can be evaluated numerically and is .2705. Thus 

lim RP(aML , O-ML) =- 1 + - -  
7~,'----~ 0 0  

- l ) ( . 2 7 0 5 )  

If the distribution of Xy were unknown, a could be estimated from a RSS by ~*, 
defined in (1.4) and from a RS by s, defined in (1.3). Using the delta method, one 
can show that RP(~r*, s) ~ RP((~*) 2, s 2) for large n. The limiting value of the 
latter expression can be obtained from Stokes ((1980), p. 39). Table l(b) displays 
these relative precisions. From the table, we can observe that the gain from RSS 
over RS in estimation of cr is modest in either the parametric or nonparametric 
version, compared to its gain for estimating p. However, unlike the findings from 
Example (a), we see that the relative improvement from knowledge of the distri- 
bution is substantial. For example, for m = 5, the increase in precision from using 
the knowledge of normality is (1.81 - 1.27)/1.27 ~ 43%. 

Example (c). Consider a RS and RSS from the exponential distribution (de- 
noted Exp(cr)) having cdf F(x) = 1 - e -(x/~). As before, we compare the ML 
estimator from the RS (which is ~rMC = )?) with the ML estimator from the 
RSS (which must be obtained iteratively from (2.6)) by comparing In~(Cr) - ~'~ - - j 7  

and [~,~(~) = nm~2 L[1 + (m - 1) fo~ z%-2~1-~-~ dz], so that l i m ~ o o  RP(&*ML, FML) = 
1 + (m-- 1)(.4041). If the distribution were unknown, the parameter cr could be es- 
t imated from the RSS nonparametrically by/2", since cr denotes the mean of this 
distribution. Table l(c) compares the RSS and RS estimators by their relative 
precision. There is less benefit from RSS in estimation of the exponential mean 
as compared to the normal mean, but there is more benefit from knowledge of the 
distribution coupled with the use of RSS. For m = 5, the increase in precision 
from knowledge of the distribution is (2.62 - 2.19)/2.62 ~ 20%. 

2.2 Two-parameter families 
To compare ML estimators of # and a estimated simultaneously, the Fisher 

Information matrices I~,~(#, a) and I~,~(#, or) must be compared. The diagonal 
elements of these matrices are given by (2.3), (2.7) and (2.4), (2.8). Using a method 
similar to that of the Appendix, it can be shown that the off-diagonal elements 
a r e  

(2.9) 
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and 

(2 .10)  
nmEf rf,(zj)]2~ nm(m-1)E[ zJf (zJ) } 

[zJ L f(zj) J ] + LF(zJ [1  - F(zj)] ' 

for the RS and RSS estimators, respectively. If the random variable Zj is sym- 
metric, then the off-diagonal elements (2.9) and (2.10) are 0, so that ]r~,~(#, a)l < 
II.~*,~(#, a)l and (~ML, ~ L )  has an ellipse of concentration which lies completely 
within that of (ftML, 5-ML) for any sample size. However, it does not appear to be 
possible to determine that II~,~(#, a)l < II~*,~(P, a)l generally for non-symmetric 
distributions, unless m is sufficiently large. 

Example (d). Let Xj ~ N(#,~r2), j = 1 , . . . , n m ,  denote a RS and X(~)i, 
r -- 1 , . . .  ,m; i = 1 , . . . , n ,  denote a RSS from the same distribution. Because 
of the symmetry of the normal distribution, the efficiencies for /5~z L and ~ZL 
reported in Table 1 hold for this case as well, although the ML estimates themselves 
will differ from the ML estimates in the cases in which one parameter is known. 
This is true in general for symmetric distributions. 

3. Best Linear Unbiased Estimators (BLUE's) 

Sinha et al. (1994) have suggested BLUE's as parametric estimators from 
ranked set samples for some specific distributions. In this section, we describe a 
general method for obtaining RSS BLUE's of p and ~ from location-scale distri- 
butions of the form (2.1). The resulting estimators are simple to compute and 
might therefore be preferable to the ML estimators derived in Section 2 if it could 
be shown that they are nearly efficient. We examine several example distributions 
and find that for some, the BLUE's are nearly efficient, while for others, they 
perform badly. 

Recall that Z(T)i - x(~)~-,.~ Following the method of Lloyd (1952), we define 
a(T:m) = E[Z(f)i] and z~(r:m) = Var[Z(r){]. Then E[X(r)i] = # + Oz(~:r~)O- and 
Var[X(~)i] = cr z~(r.~). Thus when F is known, the vector of unknown parameters 
0 ~ = (#, a) can be estimated by 

6" 

OBL v = ( A' V - 1 A  )-I ( A ' V - 1 X  *) 

I' ... I'] 
where A' = a' ... a' ' 1 is an m x 1 vector of l's and a' = (a(1:~),..., 

C~(m:m)), V = Diag(y,..., u), where ~,' = (V0:m),... , U(m:m))' Further 

(3.2) Var(OBcv) = (r2(A ' V-1A)  -1. 

We again consider separately the one- and two-parameter families of form 
(2.1). First, when ~ is known, (3.1) yields 

^* m _~ 
(3 .3)  "BL  = E r : l [ ( ( r )  - 
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1 n where 2( . )  = ~ }-]i=1 X(~)i and (3.2) yields 

- -  1/u(~:.~) (3.4) Var(/2BLU) = n 

Second, when # is known, 

( 3 . 8 )  

and 

( 3 . 6 )  

- 1  

( I B L  U = 

- 1  

Var(8-~LU) = _ 

?% k r = l  

T h u s ,  £ t S L  U and 6*BL U are weighted averages of sample means of order statistics, 
each adjusted with a bias correction term which is a function of the known pa- 
rameter. Finally, if both # and a are unknown and the distribution is symmetric 
around #, then both estimators can be written more simply since their bias cor- 
rection terms are 0. Thus for symmetric distributions, knowledge of the unknown 
nuisance parameter is not required to compute £t*BL U or &*BLU, and Var(/2~LU) 
and Var(~)LV) are still given by (3.4) and (3.6), since the off-diagonal elements 
of A' V - 1 A  are 0. 

Now we reconsider the examples of Section 2. For each example, the efficiency 
of the BLU estimators for m = 2 , . . . ,  5 is shown in Table 2, where efficiency is 
defined as the ratio of the minimum achievable variance to that of the BLUE from 
the RSS. 

Table 2. Efficiency of BLU es t imators  from ranked set samples. 

m 

Dis t r ibu t ion  2 3 4 5 

(a) N(#,I) eff(£t*Bnu) .99 .99 .99 .98 
(b) N(0, a) eff(&*BLCr ) .21 .34 .44 .49 
(c) Exp(cr) eff(&~La) 1.00 .99 .99 .99 

Example (a)'. Let F = ¢, the standard normal cdf, and suppose that # is 
the parameter of interest. Note that knowledge of a is unnecessary in calculating 
f~*BLU, because of the symmetry of the normal distribution. This estimator, also 
suggested by Sinha et al. (1994), has efficiency 

eY('BL ) = - 1  = 
m[1 + (m - 1)(.4805)]' 
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where ~(~:~) is the variance of the standard normal order statistic. Table 2 shows 
that  the potential loss from using the BLU rather than the ML estimator in this 
case is negligible. As noted in Table 1, however, neither is a great improvement 
over/2*. 

Var((8-~)2)/4cr: for large n, so that  Var(5~) ~ k ' ~  
4n  " 

both the BLU and ML estimators of a by displaying 

Example (b)t Let F = ¢), and suppose that  a is the parameter of inter- 
est. Note that  knowledge of p is unnecessary in calculating ~*BLU because of the 
symmetry of the normal distribution. Then 

= [Var(crBLU)I;m(~)] = 
m[2 + (m -- 1)(2705)]' 

where a(~:,~) is the mean of the standard normal order statistic. Table 2 shows 
that the potential loss from using the BLU rather than the ML estimator in this 
case is extremely large. Because of the poor performance of ~*BLU, an alternative 
estimator of cr is desirable. Sinha et al. (1994) suggested an alternative estimator 
of a2 for this estimation problem. Its counterpart for estimation of cr is 

~,~ = c~ X(~)i - / ? , )2  
r = l  

where c,~ is a constant chosen to make ( ~ ) 2  unbiased for a2. They show that  

V a r ( ( ~ )  2) - k ~ 4 ,  where the constants k,~ are provided in their Table 7 for 
n 

m = 2 , . . . ,  5. This estimator is not linear like the others we have considered in 
this section, but its unbiasedness and variance properties do arise from moments 
of the normal order statistics. From the delta method, we know that  Var(5~) 

Table 3 compares cr,~* to 

and 

lim RP(5-*,6-*BLU)= lim Var(~Scg) 
n~o~ ~ Var(~*) 

= 4/ {k'~ ~=l[a~,:m)/Z'(~:'~)] } 

lim RP(a* ~r~L ) = lim Var(a~L) 
n--+~ ' n - ~  Var (a~n) 

= 4/{mk~[2 + (m - 1)(.2705)]}. 

The table shows that  ~* is a dramatic improvement over the BLU estimator, but 
is still far from efficient. 

Example (c)'. 
(1994), has 

Let F(x) = 1 - e -(x/~). Then 5~cu,  suggested in Sinha et al. 

eff(~*BL~) = m[1 + (m -- 1)(.4041)]' 
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Comparison of a* with BLU and ML estimators from ranked set samples. 

Relative precision 2 3 4 5 

~ .  ^ ,  
l i m  f tP(crm,  ~BLU) 2 . 6 1  2 . 0 2  1 . 5 1  1 . 5 4  

7%-+00 
~ .  ^ .  lira RP(cr~, CrML ) .54 .68 .66 .76 

n ~ o o  

where ct(r:m) and P(r:m) are the mean and variance of the standard exponential 
order statistic. Table 2 shows that  &}cu is nearly efficient, so that  6-*BL U would 
probably be preferred to a* since it is easier to compute and its small sample M L ,  
properties are known. 

4. BLUE's from Modified Ranked Set Samples (MRSS) 

Several authors, including Yanagawa and Shirahata (1976), Ridout and Cobby 
(1987), and Muttlak and McDonald (1990), have suggested modifications to the 
ranked set sampling procedure. In these procedures, not every order statistic 
is selected for measurement in each cycle. Instead, the sampler chooses which 
measurements would be most beneficial. In this section, we use that  idea to find 
improved BLU estimators of # and a for distributions of type (2.1), as Ogawa 
(1951) did for RS. A general method for determining how to modify the RSS is 
developed for large m. We consider this situation, even though it is impractical 
in most applications. The reason is that  the results provide theoretical insight 
not afforded by the numerical results for small m, about what characteristics of 
distributions allow them to benefit most from MRSS. Further, the large sample 
results are seen to work well even in small samples for the examples we have 
considered. 

We use the following theorem (Mosteller (1946)), which describes the asymp- 
totic distribution of selected quantiles. 

THEOREM 4.1. For k given real numbers 0 < /~1 < " '"  < "~k < 1, let the 
Aj-quantile of the population be xj; i.e., . f x~  g( t )dt  = Aj, j = 1 , . . . ,  k, where 9(x)  
is the pdf  of the population. Assume  that g(x)  is differentiable in the neighborhoods 
of x = xj  and that gj - g (x j )  ¢ 0 for  all j .  Then the joint  distribution of the k 
order statistics X(~I:N),...  ,X(nk:N) where nj  = [Ntj] + 1, j = 1 , . . . ,  k tends to a 
k-dimensional  normal distribution with means Xl , . . . ,  xk and variance-covariance 
matrix  with elements [~-xJ(1-x~) l as N ---+ oo. 

gj gt 

Suppose we modify the RSS procedure so that  in each of the n cycles of m 
samples, a set of independent order statistics X(r~:m),---,X( . . . .  ) is measured. 
The theorem above allows us to observe that  for the location-scale family of (2.1), 
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w h e n  rj  = [m/~j] -F 1, j = 1 , . . . ,  m ,  

(4.1) X(~j:,~) -+ N (#  + Gz~j, 
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as m --+ oo, where zA5 = F - l ( A j )  - Further, the random variables making up the 
MRSS are independent, so that their variance-covariance matrix is diagonal. 

A BLU estimator of # and/or a from the MRSS can be constructed following 
the method used in Section 3. The questions we address in this section are (1) 
how should r l , . . . ,  rm be selected, and (2) how does this procedure compare with 
others? We examine the answers to these questions both for small m and as 
7Tt ----+ OO. 

4.1 One-parameter families 
If o -  were known, the BLU estimator of # from the MRSS is 

(4.2) 
n m X Ei=I Ej=I[( (rj)i -- G(I(rj))/P(rj)i] 

f4= m 

G ') m - - 1  which has variance Var(~ , )  = ~ - [ E j = I ( 1 / ~ ( , 5 : , ~ ) ) ]  • This variance is minimized 
by choosing the same order statistic from each sample, i.e., the one which minimizes 
~(~j:,~), say rj = ru. In the special case in which X is symmetric, one could, with 
equivalent precision, select for measurement the (m - r~ + 1)-th order statistics 
in place of any number of ru order statistics, since they have equal precision. For 
such a MRSS, we have 

(7 2 
(4.3) Vat(f t , )  = ~-~m~%.:m). 

If m were large, (4.1) shows that the optimal order statistic is r~ = [mA~ + 1] 
where A~ minimizes 

( 4 . 4 )  h i ( A )  - A(1 - A) 
f2(zA) 

For such a MRSS, 

(4.5) m s Var(/7~,) 
~2 A~(I - A,) 
n 

a s  ?'#~ ----+ o o .  

Similarly, if # were known, the BLU estimator from a MRSS is 

(4.6) 
E i ~ l  Ej~--1 [a(~j :-~)(X(~j :.~)i - #)/L%j:~)] 
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which has variance Var(a~x) = o2 rv-,-~ , 2 , T t A ,  j=l~a(~j:,~)/y(~j:m))] -1. This variance is 

minimized by selecting from each sample the  order statistic which maximizes 
c~j:,~)/v(~j:,~), say ri = r¢. As in the previous case, when X is symmetr ic  one 

could select any combinat ion of r¢ and (m - re + 1) order statistics. Then 

0-2  
2 

(4.7) Var(a2x) = nmY(~:~)/ce(~:,¢). 

As before we see that  if m were large, r~ = [rnA~ + 1] where A~ minimizes 

a ( 1  - a) 
(4.8) h2 ( A ) - -~( zT)7~ . 

For such a MRSS, 

(4.9) rn 2 Var(&;,) 
er2 Ao(1 - ),~) 
/7, Z 2 

a s  TF~ ----+ ¢X3. 

To examine whether  the BLU est imator  from a MRSS competes  favorably 
with the best  possible est imator  from a RSS, we can compute  

(4.10) 

and 

(4.11) 

= [Var(#A)I   ( # ) ]  

i m v ( & X )  ^ ,  • - 1  = [Var(era)I . (er)] , 

where Var(/2~x ) and Var(&~x ) are defined in (4.3) and (4.7). It is of theoretical  
interest to examine the improvement available from MRSS for large m, even though 
in practice, one is unlikely to have samples available with extremely large m. From 
(2.4), (2.8), (4.5), and (4.9), one can show that 

(4.12) l i r n  i m p ( [ ~ ) -  A~(I_=~) E F ( Z j ) ( 1 -  F(Zj)) 

and 

(4.13) l i m o  imp(&x) - ~ ( 1 7 - ~ )  E F(Z~-(i --- F(Zj))  " 

As m increases, the improvement available from #a^* and er a ^ * converges to the ratio 
between the maximum and expected value of the random variables in brackets in 
(4.12) (for est imating #) and (4.13) (for est imating er). So modifying the RSS pro- 
cedure is most  beneficial for those distr ibutions for which these random variables 
have sharp modes. We now return to the three examples of the previous sections. 

Example (a) ' .  Let F = ~, and assume that  # is the parameter  of interest. 
Then hl(/~) in (4.4) is minimized by A~ = .5, so that  for large m, the sample 
median is the optimal order statistic to select for the MRSS. (Obviously this 
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same choice is opt imal  for any symmetr ic  unimodal  random variable.) Sinha et aI. 
(1994) proved in their  Lemma 1 tha t  the sample median is opt imal  for all m for 
this normal  est imation problem. Thus  for this example,  the large m results lead 
us to the correct  choice for small m as well. It is unnecessary tha t  cr be known in 
this example (or for any other  symmetr ic  distr ibution).  If m is odd, (4.2) shows 
tha t  /2~x's bias correction t e rm is 0. If m is even, we can, with equal precision, 
a l ternate  selection of the m / 2  and (m/2  + 1)-st order statistics in each of the m n  
samples, also yielding a bias correction t e rm of 0. Table 4(a) displays values of 
imp([~*zx ) (from (4.10)) for m = 2 , . . . ,  5. We see tha t  for m > 2,/2~x offers at least 
a 14% improvement  over the best possible from RSS. From (4.12) it can be shown 

tha t  imp(f~*a) ~ 1.32 as m ~ oc. 

Table 4. Improvement available from BLUE's in modified RSS for three examples. 

m 

Distribution 2 3 4 5 

(a) N(#, 1) 

(b) N(0, a) 

(c) Exp(a) 

r~ 1 or 2 2 3 or 4 3 
imp(f~*~) .99 1.14 1.14 1.19 

r~ 1o r2  1 o r3  1 o r 4  1 o r5  
imp(~*~) .21 .50 .77 .98 

r~ 2 3 4 5 
imp(5*~) 1.28 1.37 1.38 1.36 

Example (b)". Let F = (I), and assume tha t  a is the pa ramete r  of interest.  
Then  h2(A) in (4.8) is minimized by A~ = .942, so tha t  a can best be es t imated 
when m is large by choosing from each sample the order statistic r~ = ([.942m] + 1). 
For small m, r~ differs infrequently and by at most 1 from this value. (If p were 
unknown, one could achieve equal precision and make the bias correct ion t e rm 
0 by a l ternate  selection of the r~ and m - r~ + 1 order statistics.) Table 4(b) 
displays and imp(a ) (from (4.11)) for = 2 , . . ,  5. For these small 
even MRSS does not produce a BLU est imator  preferable to ~ L "  From (4.13), 
however, we see tha t  l im~__~ i r n p ( ~ )  = 2.18. So if one were able to accurately 
eyeorder  a large enough number  of observations, or at least accurate ly  identify the 
( 1  - .942)m = .058m most  ext reme observations from each sample, then  a great  
advantage in est imation of cr could be realized from MRSS. 

Example (c)". Let  F(x)  = 1 - e -x /~.  The  BLU est imator  (4.6) is suggested 
by Sinha et al. (1994) for this example, and they  identify r~ in their  Table 9 
for m = 2 , . . . ,  5. h2(A) in (4.8) is minimized by A~ = .797, so tha t  a can best 
be es t imated when m is large by choosing from each sample the order statist ic 
r~ = ([.797m] + 1). For small m, r~ differs infrequently and by at most  1 from 
this value. Table 4(c) displays r~ and imp(~*A) (from (4.11)) for rn = 2 , . . . ,  5, and 
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shows tha t  BLU est imation of # from a MRSS is beneficial here, even for small 
m. Equat ion (4.13) shows tha t  l im ,~_~  imp(~*~) = 1.61, so tha t  an even greater 
advantage could be realized if a sufficiently large number of observations could be 
accurately ranked. 

4.2 Two-parameter families 
Finally, suppose both # and cr are unknown. Unlike the one-parameter cases 

just  considered, it is impossible to est imate both  # and o- if the same order statistic 
is chosen from each sample, for then  A has rank 1. Therefore, at least two different 
order statistics must be included in the MRSS. Suppose we include exactly two 
different order statistics in our sample; tha t  is, suppose we measure ran~2 r < t h  and 
ran~2 rj-th order statistics, each from samples of size m, with ri > rj. Depending 
upon the objective of estimation, one might be most interested in minimizing 

0{2 0.2 0{2 0-2 
(~:.~) (~:m) + (~:~) (~5:m) Var( X) 

~ij 
0-2 0-2 (~:.~) + (~j:~) 

5ij 
Var(a~x) o( 

or the generalized variance 

O-2 O-2 (~:-~) (~j:-~) 
(4.14) I Var(O2x)l 

~ij 

where ~ij = (0{(~:,~) - 0{(~j:m)) 2- As before, (4.1) can be used to determine the 
optimal pair of order statistics when m is large. 

Now consider the special case in which X is symmetric.  It has already been 
noted tha t  for any symmetric  distribution, a MRSS choice of any combination of 
r ,  (or r~) and (m - r ,  + 1) (or (m - r~ + 1)) order statistics yield equally efficient 
BLU estimators. But  only when nm/2 of each are chosen from among the n m  
samples of size m are the bias-correction terms/2~x and/2~x equal to zero. So this 
is the optimal choice for the MRSS if only # (or o-) is to be est imated when X 
is symmetric,  but  both  parameters  are unknown. However, if both  parameters  
are of interest, one might choose to minimize I Var( 2x)l in (4.14). To do this 
for large m, one should select the pair of order statistics rot = ([m),0] + 1) and 
to2 = (m - to1 + 1), where A0 minimizes 

Then 

aS /Yt ----+ OO. 

A(1 - A) 

m2l Var(0~,)[ --~ 
o-2 A0(1 - A0) 

Example (d) ' .  Let F = • and assume both  # and o- are of interest. Then 
h3(A) is minimized by A0 = .872, so tha t  0 can best be est imated when m is large 
by choosing am~2 order statistics of rank r~ = ([.872m] + 1) and the remaining 
am~2 of rank (m - r~ + 1). 
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5. Conclusions 

RSS has previously proven advantageous for estimating mean, variance, and 
even the entire cdf of populations whose distributions are unknown. In this paper, 
we have investigated whether and how much additional improvement in estimation 
can be achieved for the location-scale family of distributions if one assumes that 
knowledge of the distribution is available. We have shown that improvement over 
RSS always yields improved estimation in large samples for both p and cr via 
maximum likelihood estimation. Further, we saw that for some distributions, 
BLU estimation is a close competitor to maximum likelihood, but for others is 
much poorer. Finally, we saw that modifying the RSS procedure does in some, 
but not all cases, produce considerably improved precision. 

The greatest practical usefulness of this investigation may be that it gives the 
researcher a method for determining when the quest for improved estimators can 
be halted. For example, when a parametric method is justified for normal (# to be 
estimated) or exponential data, BLUE's make nearly full use of the information 
in the data. Thus the additional effort of computing MLE's is unnecessary. The 
same cannot be said if interest lies in estimating cr for normal data. In that case, 
the additional computing effort may be worthwhile. In those cases in which MLE's 
are deemed worthwhile, their standard errors can be computed by making use of 
the estimated Fisher information (from (2.4), (2.8), and/or  (2.10)). 

The obstacle to use of any of these parametric RSS procedures is their lack of 
robustness to errors in the ranking process. If such errors occur, they can bias the 
estimators. To assess the seriousness of the bias, consider the ranking error model 
used by Stokes (1977). Suppose that the moments of the judgment order statistic 
X[r:m ] are 

(5.1) E(XE : I) = + 

and Var(X[r:m]) = ~r2(1-p2)+p2~2~(r:,~), where - 1  _< p _< 1. This model contains 
the two extremes of perfect ranking (p = 1) or perfectly worthless ranking (p = 0) 
as special cases. 

Without specifying a more complete model for ranking errors, one cannot 
assess their effect on/2~L and C~L. But it is easy to see their effect on the BLU 
estimators. Letting X ' i n  (3.1) denote the vector of judgment order statistics 

^ 

(X[ l : , j l , . . . ,  X[m:rn]~)' with means shown in (5.1), one can see that  E(O*BLU) = 
(p, p~r)'. Thus this estimator is still unbiased for p, but can be badly biased for 
estimation of or. The BLU estimators from modified ranked set samples fare worse. 
Even/2~x is biased for # under this model for ranking errors, except in the special 
case of symmetric distributions. So the sampler must be especially careful when 
using these parametric estimators (except possibly in BLU estimation of #) that 
m is chosen small enough that the ranking can be done without error. 

Show that 

, nmE[f'(Z]) ] 
(A.1) /~'~(#) -- o -2 [ f (Zj )  J 

Appendix 

+ n m ( m -  1) f2(Zj) .] 
E " 
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PROOF. For distributions satisfying the condition 
c~ * [ 0 2 In L* f ~  o~f(acga)dx, we know that  I~m(# ) = - E  ~-~--~. ]. 

tiate the right hand side of (2.2) to obtain 

~ f ' ~  f ( ~ ) d x  = 

Thus we can differen- 

(A.~) { I,~rn(#) -- ~ E + 
~ = ~  f(Z(~)~) [f(z(~)~) 

+ ~ ( r -  1)E f'(Z(r)i) + F f(z(r)i)~ 
~=~ F(Z(~.)a L ~ J  

+ ~ ( ~ -  ~)~ ~ -  r(z(~)~) + 1 : ~ ) ~ ) j  " 
r - - 1  

Letting h(z) - :'(z) f(z) 
(A.1) is 

f"(z) f(z) ' We see that  the first term of the right hand side of 

(A.a) ~ ~ /L  ~,~ (~: ~i ~,~,,~-~ ~ 
__~_; ~(::~) - ~ mh(z) f ( z )  F~-~(z)[1 F(z)]m-~dz 

~ r = l  

z { } = ~m h(~)~(~)e~= ~ [Y(z~)] ~ y,(z~) 
~ ~ ~ k f(Zy) J f (Zj)  " 

Now redefine h(z) = rf(z)12 f'(z) t~(-~l - F---~" Then the second term of the right hand side 
of (A.1) is 

(A.4) ~ ~ ~ (~_ ~,~,~,~ (~:~i,,~-~,,~_ ~,~,~-~ ~ : ~  ~ 

- ~ /  ~ ~ ~2 h(z) f(z)  (r -- l) Fr-l(z)[1 - F(z)]m-rdz 
~ ~ 

/~ - ~ ( ~ -  ~) h(~)f(z)r(~)a~ ~ 2  ~ 

- ~ L ~ ( z ~ )  j - f ' ( z ~ )  . 

Similarly, the third term of the right hand side of (A.1) can be shown to be 

(A.S) nm(m - 1) f2(Zj)  f ' ( Z j ) }  
.2 ~ { [1-  F(Zj)i + ' 

Combining terms (A.3) through (A.5) yields (A.1). 
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