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A method for frequency-limited balancing of the unsteady vortex-lattice equations is in-

troduced that results in compact models suitable for computational-intensive applications

in load analysis, aeroelastic optimisation, and control synthesis. The balancing algorithm

relies on a frequency-domain solution of the vortex-lattice equations that effectively elim-

inates the cost associated to the wake states. It is obtained from a Z-transform of the

underlying discrete-time equations, and requires no additional geometrical or kinematic

assumptions for the lifting surfaces. Parametric reduced-order modelling is demonstrated

through interpolation over (a) projection matrices, (b) state-space realisations and (c)

transfer functions, which trade accuracy, robustness and cost. Methods are finally exem-

plified in the dynamic stability of a T-tail configuration with varying incidence. Numerical

studies show that a very small number of balanced realisations is sufficient to accurately

capture the unconventional aeroelastic response of this system, which includes in-plane

kinematics and steady loads, over a wide range of operation conditions.
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U reference velocity

A aerodynamic influence coefficient matrix

b reference semi-chord

G state-space model transfer function

Iq identity matrix of size q × q

k reduced frequency

k̄ limit reduced frequency for frequency limited balancing

n discrete-time step index

p design parameters

t reduced time

T right projection matrix

W⊤ left projection matrix

Subscripts

a full aerodynamic model

b frequency-limited balanced model

r frequency-limited balanced truncated model

Symbols and Mathematical Operators

col[•] column-wise block-matrix concatenation

row[•] row-wise block-matrix concatenation

• z-transform of a discrete-time variable

•̃ quantities associated to an interpolated state-space model

I. Introduction

The unsteady vortex lattice method (UVLM) has established itself as a valuable analysis tool for low-

speed aeroelasticity of very flexible aircraft, horizontal-axis wind turbines, and flapping fliers [1–3]. Its

standard formulation is written in time domain and captures unsteady effects on the circulatory lift through

explicit modelling of the wake [4]. It generalises the doublet-lattice method [5] in the incompressible regime

by considering arbitrary kinematics of the lifting surfaces, capturing (inviscid) wake dynamics and steady

aerodynamic effects, and by computing induced drag [6]. Linearisation around an arbitrary reference finally

results in state-space descriptions suitable for control synthesis and design [7–9].

UVLM models of complex configurations typically require tens or even hundreds of thousands of states

to define a converged wake [10–12]. While continuous-time formulations exist that allow for sub-sampling

of the far wake, a flat-wake assumption has been so far implicitly required [13], which effectively restricts
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the applicability of that approach. Alternatively, fast multipole methods [14] have also been successfully

implemented for efficient evaluation of the aerodynamic influence coefficients in time-marching solutions, but

they are not directly applicable to the linearised formulations needed for stability and control analysis. In

such cases, standard methods for model-order reduction, such as internal balancing, can be directly employed.

Balanced reduced-order models (ROMs) can have comparable order to the input/output dimensionality of

the problem [8, 15–17]. They not only retain the modelling flexibility of the full-state model (e.g., to model

arbitrary kinematics), but also are highly accurate and, importantly, preserve stability [8, 17].

Direct methods for internal balancing come however with the high computational cost associated to the

evaluation of the system Gramians [18]. Efficient low-rank algorithms have been developed to overcome this,

but they typically assume a continuous-time formulation [19], which is not available for a general UVLM. In

discrete time, low-rank balancing relies either on projection techniques [20] or Smith’s iteration [21, 22], with

the latter been recently used by the authors to construct ROMs for the UVLM [17]. However, while this

approach guarantees stability and accuracy and is more efficient than direct balancing algorithms [23–25], it

still requires relatively large computational resources. Such approach is therefore impractical for situations

that consider multiple reference conditions around which linearised aerodynamics may be needed, such as

for application in design optimisation or control design [26–30]. In those problems, the dependency of the

aerodynamics on the underlying system design parameters and/or operative conditions needs to be captured,

which requires a large number of system realisations.

That problem is addressed in this work, which aims to construct an efficient framework for parametric

model reduction of the linearised unsteady vortex-lattice (LUVLM) equations around an arbitrary reference.

The starting-point is a discrete-time state-space description of the LUVLM in modal coordinates [17]. The

most general implementation is considered: it accounts for arbitrary kinematics of the lifting surfaces and

arbitrary inflow conditions, resolves all components of the aerodynamic forces [6], and considers arbitrary

wake shapes (that is, “rolled-up” wakes) at the reference condition. That formulation will be here extended

to frequency domain. No additional assumption is required for that purpose, as it arises naturally from

a z-transform to the discrete-time equations [31]. As it will be seen, the z-transform allows a closed-form

solution for the wake states, which results in an efficient algorithm for frequency-domain analysis. A similar

approach has been recently developed by Dimitriadis et al. [32] for flat surfaces, who has also employed it

to generate ROMs using rational-function approximations. Here, instead, the frequency-domain formulation

will be exploited to construct a tailored low-rank balancing algorithm for the LUVLM.

Balanced realisations of the LUVLM are obtained from direct numerical integration, in frequency domain,

of the observability and controllability Gramians [18, 33, 34]. In order to guarantee computational efficiency,

these are resolved in low-rank factorised expressions and with closed-form solutions for the wake variables.
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Overall, the approach has strong similarities with balanced proper orthogonal decomposition [35], though

the square-root method is here employed in place of an eigen-decomposition [36, 37]. Importantly, numerical

integration allows resolving the LUVLM equations directly at the low end of the reduced frequency spectrum,

where the potential-flow assumption holds, i.e. resulting in a frequency-limited balancing algorithm [37–41].

Frequency-limited balanced truncation (FLBT) not only provides substantial computational savings, but

also results in faster convergence rates than internally-balanced truncated ROMs [37], which unnecessary

resolve the aerodynamics over the full Nyquist range [17].

A framework for parametric reduced-order modelling is finally achieved by integrating FLBT with ROM

interpolation methods [42]. This extends the portability of the methodology to enable design optimisation

or real-time aeroelastic control [27, 29, 43]. Several strategies are investigated. First, interpolation amongst

projection matrices is considered [28] and a novel solution based on FLBT is proposed. While this is very

accurate, it has only minor computational savings due to the need to re-assemble the full system matrices.

Next, methodologies for direct ROM interpolation, which typically assume reduced models in orthonormal

bases [43–45], are here adapted to FLBT. These allow real-time execution at the expense of accuracy, due to

the need of projecting the ROMs over a common set of generalised coordinates — with unavoidable loss of

information. Finally, a new strategy based on the transfer-function interpolation method is also developed

[42, 46]. By exploiting the properties of FLBT, it directly produces realisations of the interpolated ROM,

hence preventing the growth of the interpolated ROM number of states with the interpolation order.

The rest of this paper is structured as follows. The LUVLM time- and frequency-domain descriptions are

introduced in Sec. II, where aeroelastic integration is also briefly discussed. The frequency-domain solution is

then used to obtain a FLBT of the system in Sec. III and interpolation methods are subsequently considered in

Sec. IV. Numerical investigations will finally assess the accuracy and robustness of both the FLBT (Sec. V.A)

and the interpolation strategies (Sec. V.B). In both cases, ROMs are employed to analyse the aeroelastic

stability of a T-tail configuration at different attitudes. The dynamic aeroelastic characteristics of this

system are highly dependent on the steady aerodynamic loads acting on the tail at the linearisation point

[9]. Furthermore, the model also needs to capture the in-plane kinematics associated to the fore-aft motion of

the tail plane. Numerical studies will show that these features, which are naturally captured by the full-state

LUVLM equations, are retained throughout both the model-order reduction and interpolation processes.

II. Linear UVLM description in generalised coordinates

Incompressible potential-flow aerodynamics will be modelled by a discrete-time state-space UVLM formu-

lation. It linearises the governing equations about an arbitrary reference, thus capturing the effect of steady

deflections of the lifting surfaces, non-zero aerodynamic forces at the linearisation point, as well as arbitrary
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wake shapes and background in-flow conditions. It also considers arbitrary kinematics of the lifting surfaces

to include, e.g., in-plane displacements, and assumes the wake to be frozen in the subsequent perturbation

dynamics. The description is based on linearisation of the three-dimensional form of the Joukowski theorem

[6], which resolves all components of the aerodynamic forces, including (unsteady) induced drag, and is

scaled with the dynamic pressure, such that solutions depend on the reference geometry and steady loading,

but not on the airspeed. We assume here that structural inputs (perturbation of displacements and velocity

of the lifting surfaces) and aerodynamic outputs are both given in generalised coordinates. Non-stationary

background flows can be easily added as inputs [17], but they are not included here to simplify the descrip-

tion. Sec. II.A introduces the governing equations. Only features relevant to this work are outlined and

the reader is referred to Ref. [17] for further details. In Sec. II.B a frequency-domain solution is introduced,

including an algorithm for fast computation.

II.A. Time-domain description

Normalised UVLM equations are used. A reference forward flight speed, U , and a reference semi-chord, b,

are used to scale, respectively, velocities and displacements. This results in the usual scaling of time b/U

used in aeroelastic applications. Finally, the resulting aerodynamic forces are normalised with the reference

dynamic pressure and the semi-chord, as 1
2ρU

2b2. An arbitrary number of (interfering) lifting surfaces,

and their wakes, are considered, although for simplicity the description here is restricted to a single one,

discretised with K and Kw quadrilateral vortex rings in wing and wake, respectively. We indicate with S

the total number of panels in the spanwise direction, while R and Rw are the bound and wake panels in

chordwise direction, such that K = RS and Kw = RwS.

In the linearised model [17], the (incremental) circulation strengths of each panel in the bound and wake

lattices are normalised with respect to bU and collected into the vectors Γ ∈ R
K and Γw ∈ R

Kw . In

particular, if r and s are indices along the chordwise and spanwise directions, we define j = J(r, s), the

mapping used to organise Γ and Γw. Furthermore, a frozen, but not necessarily flat, wake geometry is

assumed. The kinematics of the lifting surface is arbitrary and described in terms of the perturbations to

the displacements and translational velocities at the corner points of the lattice. They are obtained from a

set of generalised coordinates and their velocities, η ∈ R
Nη and η′ ∈ R

Nη , respectively, where (•)′ indicates

a time derivative in the normalised time, t. Nη is the number of generalized coordinates used to describe

the kinematics, which is typically much smaller than the number of corner points in the discretisation of

the lifting surfaces. The system inputs are thus u⊤
a =

[
η⊤,η′⊤

]
∈ R

Nu with Nu = 2Nη, while ya ∈ R
Ny

with Ny = Nη will define the outputs as the normalised generalised aerodynamic forces. The linearized
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non-penetration boundary condition at the bound lattice is [17]

AΓ+Aw Γw = Bua (1)

where the aerodynamic influence coefficients matrices, A ∈ R
K×K and Aw ∈ R

K×Kw , which define the

induced velocities generated by bound and wake vortex rings, are obtained from the Biot-Savart law [4].

Matrix B ∈ R
K×2Nη gives the (incremental) displacement and velocities on the lattice due to the structural

dynamics. In order to predict the unsteady component of the aerodynamic force, the rate of change of the

bound vorticity is also required. Here, a second-order finite-difference scheme is used

∆tΓ′n+1 = βi Γ
n+i , i = −1, 0, 1 (2)

with βi are β1 = 3/2, β0 = −2 and β−1 = 1/2 and n the current time step. This scheme was shown in Ref.

[17] to result in smaller overall system size for a given tolerance than a first-order scheme. Unsteadiness in

the fluid response is introduced by propagating the circulation strength from the trailing-edge into the wake

using a first-order, explicit, time-stepping scheme [4], i.e. shifting the wake circulation downstream by one

chordwise element at each time step. This results into Kw lag operators

Γn+1
w(r,s) = Γn

(R,s) , r = 1 and (3a)

Γn+1
w(r,s) = Γn

w(r−1,s) , 1 < r ≤ Rw, (3b)

which are decoupled in the index s. This scheme links the normalised time step to the streamwise length of

the wake panels [10]. In matrix form, Eq. (3) results into Γn+1
w = CΓ Γn+CΓw

Γn
w, where CΓ ∈ N

Kw×K and

CΓw
∈ N

Kw×Kw are highly sparse matrices.

Equations (1)-(3) describe the LUVLM in terms of the state xa = col
[
Γn, Γn

w, ∆tΓ′n, Γn−1
]
∈ R

Nx ,

where col[•] indicates a column-wise concatenation and Nx = 3K + Kw. The description above naturally

allows for the staggered solution commonly found in UVLM implementations [4, 10]. Namely the wake

circulation at time step n + 1 is found first through Eq. (3), while subsequent enforcement of Eq. (1) and

(2) provides Γn+1 and ∆Γn+1. The LUVLM equations can also be cast in discrete-time state-space form as

xn+1
a = Aa xn

a +Bau
n+1
a (4)
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where

Aa =




P Pw 0 0

CΓ CΓw
0 0

β1 P + β0 IK β1 Pw 0 β−1 IK

IK 0 0 0




and Ba =




A
−1

B

0

β1A
−1

B

0




(5)

with

P = −A
−1

AwCΓ and Pw = −A
−1

AwCΓw
. (6)

This form allows convenient manipulation of the LUVLM equations in feedback interconnection with struc-

tural models or to employ black-box ROM strategies [16, 17, 47]. However, it is also less efficient for

time-marching solutions, as evaluation of ∆Γ′ requires large matrix-vector multiplications. In Sec. II.B and

III this consideration will be extended to frequency-domain analysis and model-order reduction to build

efficient algorithms that exploit the underlying structure of the discretised system.

Perturbation of the aerodynamic forces on the lifting surfaces is finally obtained using the Joukowski

method [6]. Those are finally projected on the generalised forces, ya, associated to the generalised coordinates

η used to describe the structural dynamics. This results into the output equation [17]

ya = Ca xa +Da ua (7)

where the output matrix will be written as Ca =

[
Cab Caw Ca∆ 0

]
, with quasi-steady contributions

in Cab,Caw and Da arising from applying Joukowski theorem to each of the segments of the lattice. These

capture induced-drag and leading-edge suction effects. The unsteady components, in Ca∆ and Da, are

calculated applying Bernoulli’s equation across the surface.

For consistency with the previous normalisation, the structural dynamics is also written in reduced time

t. We assume a linear structure about a non-zero equilibrium, with dynamics given as

M
d2η

dt2
+

b2

U2

(
K + 1

2ρU
2b2Ka

)
η =

b2

U2
ya (8)

where M and K are generalised mass and stiffness matrices, and Ka is a stiffening term arising from

linearisation about non-zero reference, that is, a follower-force effect of the steady aerodynamics. Note finally

that in Eq. (8) the dimensional Nyquist frequency goes as ωN ≈ U/b, that is, aeroelastic coupling implies

a maximum chordwise size in the LUVLM lattice discretisation (which defines the normalised time-step) to

capture a required vibration spectrum. This condition is also present in DLM-based aeroelasticity.
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II.B. Frequency-domain description

State equations (1), (3) and (2), can be conveniently transformed through the z-transform as

AΓ+Aw Γw = Bua (9a)

z Γw = CΓ Γ+ CΓw
Γw (9b)

z∆Γ
′
=

1∑

i=−1

βi z
i Γ (9c)

where the symbol (•̄) indicates the z-transform of a discrete-time variable. From Eq. (9) a description in

frequency domain is generated by simply setting z = ejk∆t, where k is a reduced frequency associated to the

scaling factor U/b. In order to solve system (9), we could first compute Γw from (9b), but this leads to the

inversion of a large Kw ×Kw complex matrix, (zIKw − CΓw
)−1. Instead, a closed-form solution is found in

a similar manner to Eq. (3). For that, consider that at each row s of the wake the solution only depends on

the trailing-edge circulation, Γ̄J(R,s), as

Γ̄wJ(r,s) = z−r Γ̄J(R,s) , r ≤ Rw. (10)

Eq. (10) is expressed in matrix form as Γw = Cw(z)Γ where Cw(z) ∈ C
Kw×K is a very sparse matrix.

Substitution into (9a), finally leads to

Γ =
[
A+Aw Cw(z)

]−1
Bua (11)

which only requires a K×K matrix inversion to compute the bound circulation. Through Eq. (9c) and (10)

this allows retrieving the aerodynamic state z-transform as

xa = col
[
Γ, Γw, ∆Γ

′
, z−1Γ

]
. (12)

With reference to the balancing algorithm that will be discussed in Sec. III, it is important to notice that

an equivalent expression for Γ can also be retrieved starting from the state-space form in Eq. (4) as

Γ = z
[
z IK −P −Pw Cw(z)

]−1
A

−1
Bua = zK−1(z)A−1

Bua. (13)

Eq. (13) has comparable computational cost than Eq. (11), as A
−1

B is precomputed during the assembly

of Ba in Eq. (4). Matrix K
−1(z) ∈ C

K×K will later appear in the integration of the Gramians associated to

the system defined above. From Eq. (12) the generalised force response is simply obtained as ya = Caxa.
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Setting ua = I2Nη
in Eq. (13) results in algorithm 1 for evaluation of the LUVLM frequency response.

Compared to methods based on the direct manipulation of the (large) Aa matrix in Eq. (4), this approach

is computational and memory efficient. Firstly, at each reduced frequency, k, only a small K ×K inversion

is required. Secondly, only the influence coefficient matrices A and Aw are allocated and manipulated.

Finally, Eq. (9c) can be dropped if the derivatives are written as (jk∆t)Γ.

Algorithm 1 Fast UVLM frequency response

1: define an array of solution frequencies, k.
2: for k in k

3: z = ejk∆t.
4: build Cw(z), Eq. (10) .
5: solve Eq. (11) or (13) for the bound circulation, Γ(z), with ua = I2Nη

.
6: build the state response, xa(z), through Eq. (9c), (10) and (12).
7: retrieve generalised forces response ya(z) = Caxa(z).

III. Frequency-limited balancing

The formulation of Sec. II.B sets the basis for frequency-limited balancing of the LUVLM. For generic

dynamic systems, this is often done by seeking low-rank solutions to a set of Lyapunov equations [34, 37,

39, 40]. However, the mathematical structure of the LUVLM facilitates a computational-efficient direct

integration of the system Gramians, as it has been done in other contexts (e.g., balanced proper orthogonal

decomposition) [33–35]. The frequency-limited Gramians associated to the discrete-time state-space model

of Eq. (4) and (7) are defined as

Wc =
1

2kN

∫ k̄c

−k̄c

H(k)BaB
⊤
a H⋆(k) dk =

1

2kN

∫ k̄c

−k̄c

Φc(k)Φ
⋆
c(k) dk (14a)

Wo =
1

2kN

∫ k̄o

−k̄o

H⋆(k)C⊤
a Ca H(k) dk =

1

2kN

∫ k̄o

−k̄o

Φo(k)Φ
⋆
o(k) dk (14b)

where: kN = π/∆t is the reduced Nyquist frequency; 0 < k̄c ≤ kN and 0 < k̄o ≤ kN define the controllability

and observability frequencies of interest, respectively; H(k) =
(
ejk∆tINx −Aa

)−1
and H⋆ is its complex

conjugate. Note that if k̄c = k̄o = kN , that is the Gramians are resolved over the full Nyquist range, then

internal balancing is retrieved. Integrals in Eq. (14) are approximated by the finite sums

Wc,o ≈
1

2kN

Kc,o∑

i=1

κi

[
Φc,o(ki)Φ

⋆
c,o(ki) +Φc,o(−ki)Φ

⋆
c,o(−ki)

]
(15)

where κi are quadrature weights associated to Kc,o frequency points ki ∈ [0, k̄c,o] — the subindex •c,o is

used throughout this section to indicate expressions that apply to both the controllability and observability

gramians. Both trapezoidal, over uniformly spaced sampling frequencies, and Gauss-Lobotto quadratures
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are considered. Due to the symmetry of transfer functions, Φc,o(k) = Φ⋆
c,o(−k), each term of the summation

in Eq. (15) is real. Hence, Eq. (15) can be equivalently expressed as [18]

Wc,o ≈ Zc,oZ
⊤
c,o with Zc,o = row

[√
κi

kN

[
ℜ{Φc,o(ki)} ,ℑ{Φc,o(ki)}

]]
(16)

where row[•] defines a row-wise concatenation. Eq. (16) approximates the full-state LUVLM Gramians

through factors Zc ∈ ℜNx×(2NuKc) and Zo ∈ ℜNx×(2NyKo). In practice, only a few points are necessary to

approximate Eq. (15), that is, Kc,Ko ≪ Nx, which results in Zc,o being low rank. A projection over the

frequency-limited balanced states, x = Txb, is finally obtained through the square-root method [48], as

T = ZcV Σ−1/2 ∈ ℜNx×Nb and W⊤ = Σ−1/2U⊤Z⊤
o ∈ ℜNb×Nx (17)

where Nb = 2min (NuKc, NyKo) defines the number of balanced states, W⊤T = INb, and U , Σ = diag(σ)

and V derive from the thin SVD Z⊤
o Zc = UΣV ⊤. The resulting state-space limited-frequency balanced

model, Gb, has system matrices Ab = W⊤AaT , Bb = W⊤Ba, Cb = AaT , and Db = Da. Reduced-order

models are obtained by truncation of Gb and the resulting FLBT ROMs of dimension Nr will be referred

to as Gr. FLBT achieves much faster convergence rates than internal balancing in the low-frequency range

and therefore residualisation, which would require the inversion of a Nb −Nr matrix, can often be avoided.

While the FLBT does not provide a bounding criterion, the accuracy of the ROM can be directly assessed

against the full system Ga via frequency-response comparisons at a minimal computational cost.

Contrary to internal balancing, approximation of the Gramians on a partial spectrum does not guarantee

stability preservation [38]. While stability-preservation algorithms in FBLT ROMs are available [37, 39–41],

they are based on manipulation of the Lyapunov equations associated to Wc,o, and hence not applicable

to our problem. An alternative solution has been found here building upon the methods for frequency-

weighted balancing (FWB) [49]. FWB gives balanced realisations from serial connection of Ga with two

finite-dimensional filters, one in input and one in output. Therefore, limited-frequency balacing is equivalent

to FWB with ideal (infinite-dimensional) filters [18], while Eq. (14) is numerically equivalent to FWB with

highly-resolved low-pass filters with cut-off frequencies k̄c (in input) and k̄o (in output). Importantly, FWB

can be shown to preserve stability if one of the filters is removed [39, 49]. Therefore, with the purpose of

improving the stability properties after reduction, the controllability Gramian, Eq. (14a), is integrated here

in the full Nyquist range. As it will be discussed next, this choice is purely algorithmic, since manipulating

the observability Grammian is more costly.

The complex factor Φc(z) = xa(z) is efficiently computed using algorithm 1. In particular, its parti-

tion associated to the bound circulation is computed as per Eq. (13) through the small-matrix inversion
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K
−1(z). Next, Φo(z) is obtained from solving Φ⋆

o(z) = Ca(zINx −Aa)
−1 through block matrix operations.

Introducing the partition Φ⋆
o = row[φ⋆

b, φ
⋆
w, φ⋆

∆
, φ⋆

v], this results in the sequential solution process

φ⋆
∆

= z−1 Ca∆ (18a)

φ⋆
v = β−1 z

−1 φ⋆
∆

(18b)

φ⋆
b = R⋆(z)K−1(z) (18c)

φ⋆
w = S⋆(z) (z IKw − CΓw

)
−1

(18d)

where R⋆ ∈ C
Nη×K and S⋆ ∈ C

Nη×Kw are defined as

R⋆(z) = φ⋆
∆

[(
z−1β−1 + β0

)
IK + β1

(
P +PwCw(z)

)]
+CawCw(z) +Cab (19a)

S⋆(z) = (φ⋆
b + β1 φ

⋆
∆
) Pw +Caw (19b)

From a physical point of view, Eq. (18) isolates the generalized forces response due to perturbations on

individual state variables. Importantly, inversion of the large matrix in Eq. (18d) can be avoided. Recalling

the J(r, s) mapping that links the chord and spanwise indices of a panel in the wake, r and s respectively, to

an element in Γw (Sec. II.A), and being i the index associated to the ith output force, Eq. (18d) is rewritten

as

z φ⋆
w(i,J(r,s)) = S⋆

(i,J(r,s)) + φ⋆
w(i,J(r+1,s)) , r < Rw (20a)

z φ⋆
w(i,J(r,s)) = S⋆

(i,J(r,s)) , r = Rw. (20b)

As in Eq. (3) and (10), these equations are decoupled in the spanwise index, s, and can be solved recursively

starting from the last row of the wake r = Rw. This results in the low-rank frequency-limited balancing

algorithm 2. Firstly, a maximum frequency k̄ is chosen to set the integration bounds in Eq. (14) as ko = k̄ and

kc = kN . Note that in aeroelasticity it is k̄ = O(1) (and therefore k̄ ≪ kN ). This defines low (0 ≤ k ≤ k̄) and

high-frequency (k̄ < k ≤ kN ) regions. Quadrature schemes with Klow and Khigh points are chosen for both

regions, such that Ko = Klow and Kc = Klow + Khigh in Eq. (15). In the low-frequency range, k ≤ k̄, both

Gramians are calculated at the same integration points such that a single matrix inversion, K−1 in Eq. (13),

is required per frequency. It is finally worth remarking that, in order to correctly obtain a realisation without
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lag, the state-space equations (4) and (7) are recast as

hn+1
a = Aa hn

a +AaBa un
a (21a)

ya = Ca ha + (CaBa +Da) ua (21b)

with ha = xa − Baua before projection. Contrary to other low-rank ROM methods, algorithm 2 does

Algorithm 2 Low-rank frequency-limited balancing

1: set k̄.
2: set quadrature scheme and order (Klow) in [0, k̄].
3: set quadrature scheme and order (Khigh) in [k̄, kN ].
4: retrieve frequency array, k ∈ ℜKlow+Khigh .
5: for k in k

6: calculate K
−1 =

[
ejk∆t IK −P −Pw Cw(ejk∆t)

]−1
.

7: solve for Φc(k) as per algorithm 1.
8: if k ≤ k̄
9: solve for Φo(k) using Eq. (18).

10: produce Gramians factors Zc,o as per Eq. (16).
11: calculate T , W⊤ through Eq. (17).
12: project state-space model defined by either Eq. (21) or Eq. (4) and (7).

not require manipulating the full Aa matrix in Eq. (4). Instead, only the aerodynamic influence coefficient

matrices, A and Aw, need to be assembled, thus minimising memory requirements. As with Algorithm 1,

only thin matrix multiplications are required and the only matrix inversions (K−1) are of dimension K (the

number of bound panels). Furthermore, since each frequency evaluation is independent, the algorithm is

easily parallelised. Finally, as Φc,o(k) in unsteady aerodynamics are typically smooth functions, very few

integration points yield accurate and stable realisations.

IV. ROM interpolation

The FLBT presented in Sec. III for the LUVLM requires low computational and memory resources, but

assembling the full system for reduction can still be rather costly. For situations with a large design space or

flight envelope, substantial gains in computational performance can be achieved through ROM interpolation.

The full-state LUVLM is thus defined over a parameter space, p, such that Ga = Ga(p). This, in turn, sets

a dependency on p of the balanced models, as Gb(p) = Gb

(
Ga(p),T (p),W⊤(p)

)
, and their truncations,

Gr(p). We assume that LUVLM realisations are available at a number of tabulated points, p(i), from which

ROMs at an interpolation point p̃ are sought. Tabulated and interpolated quantities are referred to as (•)(i)

and (•̃) respectively, while γi indicate the interpolation weights. The discussion is general and does not

depend neither on the dimensionality of p nor the interpolation method adopted.

We first consider (Sec. IV.A) the problem of interpolating amongst the projection matrices T (p) and
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W⊤(p). In this case, interpolated ROMs are retrieved upon reassembly of the full LUVLM description

Ga(p̃) and projection over the interpolated matrices (T̃ , W̃⊤). Since this class of solutions is not suitable

for real-time applications it will be referred to as offline. Faster interpolation strategies, but with less robust-

ness (regarding stability preservation) and accuracy, (i.e., online methods) are also sought. Interpolation

between discrete-time ROMs, Gr(i), are first discussed in Sec. IV.B. Most applications in the literature focus

on continuous-time systems and assume orthonormal basis, e.g. as deriving from proper orthogonal decom-

position [42–45]. None of these conditions apply to this work, and we have adapted those solution to ROMs

deriving from FLBT. Finally, a new approach that interpolates on the transfer functions of the balanced

models, is introduced in Sec. IV.C. It increases robustness but at the expense of interpolated ROMs with a

larger number of states.

IV.A. Offline strategy: interpolation amongst Gramians factors

ROMs at the interpolation point p̃ can be obtained upon reassembly of the full LUVLM description Ga(p̃)

and projection through the interpolated matrices (T̃ , W̃⊤). Specifically, we seek realisations of the form

G̃b = Gb(Ga(p̃), T̃ , W̃⊤) with (T̃ , W̃⊤) obtained from tabulated data at sample points p(i). It is well known

that element-wise interpolation amongst basis (T(i),W
⊤

(i)) is rarely accurate and does not preserve stability

[28, 43, 50]. The problem is often tackled introducing the notion of Grassmann manifold, G(Nb, Nx), which

defines the set of allNb-dimensional subspaces of RNx [51]. As each basis T(i) defines a point Y(i) ∈ G(Nb, Nx),

interpolation is carried over a space tangent to the Grassmann manifold at a reference point Y(0) — e.g.

associated to a parameter vector p0 in the neighbourhood of p̃ [28, 42]. Logarithmic and exponential mapping

procedures to and from that tangent space are used, but they require orthonormality in the underlying basis

[28, 42, 45], which does not occur in Eq. (17).

We propose instead direct interpolation of the transfer functions Φc,o(i)(k), Eq. (14), at each reduced

frequency, k. Each element (m,n) of these arrays, in fact, always represents the mth state response to the

nth input/output at frequency k. As a result, if the Gramians factors Zc(i) and Zo(i) in Eq. (16) are obtained

from quadrature at the same sampling frequencies k, element-wise interpolation becomes meaningful and

the interpolated Gramians at p̃ are

Z̃c,o =

Nγ∑

γi=1

γi Zc,o(i). (22)

The projection matrices (T̃ , W̃⊤) at p̃ can be retrieved through the small-size SVD

Z̃o

⊤

Z̃c =

Nγ∑

i,j=1

(γiγj)Zo
⊤

(i)Zc(j) = ŨΣ̃Ṽ ⊤ (23)
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and Eq. (17) as T̃ = Z̃cṼ Σ̃−1/2 and W̃⊤ = Σ̃−1/2Ũ⊤Z̃o

⊤

. While all Nb balanced states are retained,

the projection basis can still be truncated and, importantly, by construction the orthonormality relation

W̃⊤T̃ = INb is preserved. Note finally that Eq. (22) simplifies considerably the interpolation process,

as it does not require mapping of T(i) and W⊤

(i). Instead, at each point of the design space p(i), the

Gramians factors Zc,o(i), which are only marginally larger than T(i) and W⊤

(i), need to be stored. The only

requirements are that interpolation is carried amongst balanced systems of the same dimension, Nb, and

that the Gramians at each parameter point p(i) are evaluated at the same reduced frequencies. Thanks to

the very fast convergence properties of algorithm 2, we will show in the numerical studies in Sec. V.B.1 that

none of these requirements is particularly restrictive.

IV.B. Online strategy: Interpolation on reduced-order models

Next, interpolation amongst balanced truncated models, Gr(i), of equal order, Nr, is considered. Similarly

to Sec. IV.A, element-wise interpolation in the ROM matrices is not a reasonable choice and ROMs are

first projected over a congruent set, Ŵ⊤ and T̂ [42]. Introducing (•̂) to refer to variables expressed in the

resulting generalised coordinates, a transformation Q(i) ∈ R
Nr×Nr such that xr(i) = Q(i)x̂r is introduced

such that the subspace spanned by T(i)Q(i) is as close as possible to the one given by T̂ [42, 43]. Similarly,

a transformation P⊤

(i) ∈ R
Nr×Nr such that P⊤

(i)W
⊤

(i) ≈ Ŵ⊤ is also required since Q(i) is in general not

invertible [51]. Using P⊤

(i) and Q(i), Gr(i) can be projected as

Âr(i) = P⊤

(i)Ar(i)Q(i) , B̂r(i) = P⊤

(i)Br(i) and Ĉr(i) = Br(i)Q(i) (24)

The choice of reference basis has a big impact on the process accuracy [42] and two options are considered

in this work. The first one is to define the reference basis as those associated to the closest sampled design

point to p̃, namely p̂ : ‖p̂− p̃‖ = min
(∥∥p(i) − p̃

∥∥) [43]. This inherently assumes that, if p̂ and p̃ are close

enough, the basis at p̂ contain all the fundamental modes describing the aerodynamics at p̃. Importantly, in

this case the projection matrices can be precomputed offline, which makes the interpolation computationally

cheap and appealing for online applications. The second option is to consider again the interpolated basis

T̃ and W̃⊤ derived in Sec. IV.A, with the aim of improving the accuracy of the process. This solution has

a larger computational cost, but would still be suitable in the context of loads and design analyses.

Next, the projection of the tabulated ROMs as per Eq. (24) is addressed. Regarding the right projection

matrices, T(i), the problem of finding Q(i) such that T(i)Q(i) ≈ T̂ can be recast as the minimization of the

matrix residual R = T(i)Q(i) − T̂ according to some norm [42]. Since the literature typically considers the

case in which the basis T(i) is an orthonormal set [43, 44, 52], three alternative approaches suitable for FLBT

are investigated here. A first solution is to solve the residual after projection on the subspace defined by the
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reference left projection matrix Ŵ⊤. Exploiting that W⊤T = INr
, this leads to Q(i) = (Ŵ⊤T(i))

−1 and

P⊤

(i) = Q−1
(i) = Ŵ⊤T(i). Note that this solution corresponds to projecting exactly the state equation onto

the balanced modes Ŵ⊤ if Nr = Nx. As it will be shown in Sec. V.B.2, this approach lacks robustness when

either the distance between p̂ and p(i) or Nr are large, resulting in ill-conditioned (Ŵ⊤T(i)).

A more robust process is achieved by projecting the residual onto the local left projection matrix W⊤

(i),

which simply leads to Q(i) = W⊤

(i)T̂ . In a similar way, solution of W(i)P(i) = Ŵ upon projection over T⊤

(i)

gives P⊤

(i) = Ŵ⊤T(i). As a result, ROM modes that are not shared by the bases may be lost, with loss of

accuracy. However, as no matrix inversion is required, the process is computationally robust even when the

basis T(i) and W⊤

(i) are known in a coarse sampling.

Finally, projection through the weak Modal Assurance Criterion [42, 43, 52] is also investigated . This

approach requires that the T(i) matrix of each ROM is first orthonormalised through an SVD as

T(i) = L(i)M(i)N
⊤

(i) = L(i)H(i) (25)

where L(i) ∈ R
Nx×Nr is orthonormal and H(i) = M(i)N

⊤

(i) ∈ R
Nx×Nx . Importantly, as a result of the SVD

properties, H(i) admits inverse H−1
(i) = N(i)M

−1
(i) , i.e. T(i) and L(i) span the same Nr-dimensional subspace

of RNx [51]. Employing the change of variables H(i)xr(i) = vr(i), the generic ROM Gr(i) can be written as

vr
n+1
(i) =

(
H(i)Ar(i)H

−1
(i)

)
vr

n
(i) +

(
H(i)Br(i)

)
un
a and ya =

(
Cr(i)H

−1
(i)

)
vr

n
(i) +Da(i)u

n
a, (26)

which corresponds to a reduction of Ga(i) through the basis H(i)W
⊤

(i) and L(i). The residual minimization

problem used so far is now recast in terms of the orthonormal basis L(i) and L̂ arising from the decomposition

of T̂ through Eq. (25). This leads to the orthogonal Procrustes problem

min
R(i)

∥∥∥L(i)R(i) − L̂
∥∥∥
F

s.t. R⊤

(i)R(i) = INr
(27)

where ‖ • ‖F indicated the Frobenius norm and the constraint R⊤

(i)R(i) = INr
guarantees regularity in the

transformation [42, 43, 53]. Note that an analogous solution is not sought for the left projection terms

of Eq. (26), H(i)W
⊤

(i), as these are not generally orthonormal. With reference to Eq. (24), substituting

vr(i) = R(i)v̂r in Eq. (26) allows to identify the projection matrices

Q(i) = H−1
(i) R(i) and P⊤

(i) = R⊤

(i)H(i) (28)

associated to the change of coordinates xr(i) to v̂r, where interpolation is performed. Upon projection of

the ROMs on common generalised coordinates, G̃r is obtained by element-wise interpolation of the matrices
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Ar(i), Br(i), Cr(i) and Da(i). Since Gr(i) are given in discrete time, the state matrices Ar(i) do not possess

special regularities and may have zero eigenvalues, as the full-state matrix in Eq. (4) does. Therefore,

interpolation on restricted manifolds, as commonly employed for continuous-time systems [43, 44, 52], is not

possible, and stability of the interpolated ROM can not be guaranteed, although it has been observed in

practice in our numerical investigations. Note finally that direct ROM interpolation depends on the choice

of generalised coordinates and on the projection method, and, as a result, may produce poor models with

interpolation in a coarse grid. However, as it will be shown numerically in Sec. V.B.2 an optimal number of

reduced states can be (cheaply) found from an estimate of the frequency response at the interpolation point,

p̃.

IV.C. Transfer function interpolation for frequency-limited balanced models

Transfer-function interpolation has some similarities to the Gramian factors interpolation discussed in

Sec. IV.A. Whereas the latter is based on the assumption that Φ̃c,o =
∑

i γiΦc,o(i), here the transfer

function of the interpolated model is expressed as

G̃(k) =

Nγ∑

i=1

γi G(i)(k). (29)

A realisation of Eq. (29) is provided by the set [42]

Ã = diag(A(i)), B̃ = col
[
B(i)

]
, C̃ = row

[
γi C(i)

]
, D̃ =

Nγ∑

i=1

γi D(i) and x̃ = col
[
x(i)

]
(30)

where row[•] col[•] indicate, as before, row and column-wise concatenations. This realisation preserves sta-

bility and does not require special manipulation of the tabulated ROMs, such as projection over a congruent

basis. In fact, the tabulated models G(i) may be of different dimensions. The number of states of the

interpolated system defined by Eq. (30) is however larger than the order of the underlying ROMs. While

this is not always a strong penalty — e.g., for time-domain aeroelasticity, the computational overhead can be

minimized by independently coupling each G(i)(k) with a structural description and using the superposition

principle — we overcome this by directly retrieving a frequency-limited balanced realisation of the interpol-

ated state-space model, G̃. For that purpose, we assume that (a) the tabulated models are all balanced but

not truncated, i.e. G(i) = Gb(i), and (b) they have been obtained by integration of the Gramians over the

same frequency grid. The latter condition, in particular, implies that all Gb(i) have equal number of states,

Nb. Under these hypotheses, Eq. (14a) results in the interpolated input-to-state transfer function

Φ̃c(z) =
(
zI(NγNb) − Ã

)−1

B̃ = col
[(
zINb

−Ab(i)

)−1
Bb(i)

]
. (31)
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Each term of Φ̃c represents the state response of the ith balanced state vector xb(i) which, recalling Eq. (17),

can be written as xb(i) = W⊤

(i)xa(i). Therefore, Φ̃c can be expressed in terms of the full-system frequency

response as Φ̃c(z) = col
[
W⊤

(i)Φc(i)(z)
]
, which, from Eq. (16) and the SVD of (17), allows finding the

square-root factor of the controllability and observability Gramians of G̃ as

Z̃c

⊤

= col
[
W⊤

(i)Zc(i)

]
= col

[
Σ

1/2
(i) V

⊤

(i)

]
and (32a)

Z̃o

⊤

= row
[
γi Z

⊤
o (i)T(i)

]
= row

[
U(i)Σ

1/2
(i)

]
. (32b)

Finally, using Eq. (32), projection matrices for the interpolated state-space model G̃ are obtained from the

SVD

Z̃o

⊤

Z̃c =

Nγ∑

i=1

γi U(i)Σ(i)V
⊤

(i) = ŨΣ̃Ṽ ⊤ (33)

as

T̃ = col
[
Σ

1/2
(i) V

⊤

(i) Ṽ Σ̃−1/2
]

and W̃⊤ = row
[
γi Σ̃

−1/2Ũ⊤ U(i)Σ
1/2
(i)

]
. (34)

Importantly, T̃ and W̃⊤ in Eq. (34) never need to be assembled. Projection of G̃ in Eq. (30) through T̃

and W̃⊤ allows writing its frequency-limited balanced realisation, G̃b, in the Nb-dimensional state x̃b as

Ãb =

Nγ∑

i=1

γi P
⊤

(i) Ab(i) Q(i)

B̃b =

Nγ∑

i=1

γi P
⊤

(i) Bb(i)

C̃b =

Nγ∑

i=1

γi Cb(i) Q(i)

D̃b =

Nγ∑

i=1

γi Db(i)

(35)

with

Q(i) =
(
Σ1/2

(i)V
⊤

(i)

) (
Ṽ Σ̃−1/2

)
and P⊤

(i) =
(
Σ̃−1/2Ũ⊤

) (
U(i)Σ

1/2
(i)

)
. (36)

There are clear similarities between Eq. (35)-(36) and the direct ROM interpolation in Sec. IV.B, since

the tabulated state-space models are also projected here over a common set of generalised coordinates before

element-wise interpolation. However, this new interpolation is amongst frequency-limited balanced, non-

truncated, discrete linear time-invariant systems. Note that due to the fast convergence properties of FLBT

this is not an important penalty, as very accurate representation can be obtained with just a few integration

points, Klow and Khigh in algorithm 2. Moreover, truncation can still be employed to further reduce the size

of G̃b. Another difference between the methods is that the projection terms Q(i) and P⊤

(i) always depend

on the interpolation point through the SVD in Eq. (33). Contrarily to the methods described in Sec. IV.B,

which require manipulating the (larger) Nx×Nr basis T(i) and W(i), here only the small matrices U(i)Σ
1/2

(i)

and Σ1/2
(i)V

⊤
(i) are required. Overall, the online cost of the method is dominated by the small SVD in
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Eq. (33). Despite Klow and Khigh being typically small numbers, the approach may still be too costly for

real-time evaluation, in which case either the unbalanced transfer function interpolation in Eq. (30) or the

direct interpolation of Sec. IV.B may be more suitable. However, as it will be shown in Sec. V.B.3, it

provides a generic and computationally-robust low-cost solution to the interpolation problem. Finally, it is

worth remarking that Eq. (36) does not automatically extend to other balancing methods and/or projection

over arbitrary bases.

V. Numerical studies

The previous methods will be exercised on the aeroelastic stability of the T-tail configuration introduced

by Murua et al. [9]. Both vertical and horizontal tailplanes (VTP and HTP, respectively) have prismatic

shape, with the stiffness and inertial properties of Tab. 1. Their structural dynamics is described through

beams models. Aeroelastic coupling is obtained upon projection of the structural equations in modal co-

ordinates as per Eq. (8). The stability of the T-tail is dominated by the coupling between the VTP first

bending and torsional modes (Fig. 1). It also strongly depends on the steady aerodynamic loads on the

HTP. Therefore, this test case offers a rich physical context to exercise the ROM interpolation strategies

introduced in Sec. IV.

This configuration will be used, first (Sec. V.A), to exercise the FLBT approach introduced in Sec. III,

and later (Sec. V.B) to benchmark the interpolation techniques proposed in Sec. IV, using the angle of attack

as the system parameter. A convergence study indicated that projection of the aerodynamic inputs/outputs

over the first eight structural modes is required to accurately capture the flutter features, and all results in

this section use that structural description.

component chord span elastic axis inertial axis mass sectional torsional bending

(c) (from L.E.) (from L.E.) (per unit length) inertia stiffness stiffness

VTP
2m

6m
0.25 c 0.35 c 35 kgm−1 8 kgm

107 Nm2 107 Nm2

HTP 8m 108 Nm2 108 Nm2

Table 1: T-tail properties.

V.A. Frequency limited balancing

Firstly, we assess the convergence and stability features of FLBT with respect to the number of integration

points in Eq. (15). To this purpose, a converged UVLM model of the T-tail at zero incidence is considered.

The VTP and HTP aerodynamic lattices are discretized with 24 panels in both the chord and spanwise

directions. A 25-chord-long wake is added, resulting in a LUVLM state-space model of dimension 32 256.

FLBT is used to generate reduced-order realisations in the reduced frequencies range [0, k̄], where k̄ = 0.5.
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(a) Mode 1 (VTP bending, 2.86Hz) (b) Mode 2 (VTP torsion, 5.21Hz)

Figure 1: Projection of the first two structural modes over the UVLM lattice.

Throughout the rest of this work, the accuracy of the ROMs so generated is measured according to the

metric

Erel[Gr,Ga] =
maxi,j

(
supk∈[0,k̄] [Gr(k)−Ga(k)]ij

)

maxi,j

(
supk∈[0,k̄] [Ga(k)]ij

) . (37)

which quantifies the frequency response error of the ROM, Gr, with respect to the full LUVLM description,

Ga, in the frequency range of interest. Note that Ga is cheaply evaluated using algorithm 1.

The number of integration points, Klow, used in the low-frequency range, [0, k̄], determines the overall

accuracy of the balanced system. To show this, algorithm 2 is employed to obtained six realisations of

the LUVLM using Klow = 2, 4 and 8 points respectively. For each case, both trapezoidal rule and Gauss-

Lobotto quadrature are employed. Integration of the controllability Gramian in the high frequencies is

always performed using Khigh = 16 equally-spaced points and Gaussian quadrature. Fig. 2a, reports the

accuracy, Erel[Gr,Ga], of each truncation of the balanced systems so obtained. As the number of integration

points is increased, and regardless of the integration scheme employed, ROMs provide higher accuracy, up

to Erel < 10−7 when Klow = 8. While the size of the balanced model also increases as more integration

points are employed, as little as two integration points are sufficient to provide realisations with Erel < 10−2.

Most importantly, neither the number of integration points nor the quadrature scheme significantly affects

the convergence with respect to the ROM order. This is further underlined in Fig. 2b. Here the convergence

rate of FLBT with Klow = 12 is compared against internal balancing with residualisation [17]. As FLBT

approximates the original state-space model only in the low-frequency range, a much faster convergence rate

than internal balancing rate is achieved on those frequencies. Also, ROMs are obtained by simple truncation

rather than through a costly residualisation process.

As it was discussed in Sec. III, integration of the Gramians in k ∈ [0, k̄] does not guarantee the stability

of the balanced model, but stability can obtained by integrating the controllability Gramian over the full

Nyquist range. For a numerical demonstration of this, we consider a problem with a fixed number of

integration points in the low-frequency range, Klow = 8, and a variable number of sample points in the
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Figure 2: Impact of the integration of the Gramians over the low-frequency range [0, k̄] on FLBT accuracy.

high-frequency contribution of the controllability Gramian, Khigh = 0, 2 and 8. The convergence rate with

respect to the order of the resulting FLBT ROMs is examined in Fig. 3a. While integration of the Gramians

in the high-frequency region does not impact the (low-frequency) accuracy of the ROMs, it is necessary

to ensure stability. In this regard, Fig. 3b shows the spectral radius, ρ(Ar), of the ROMs considered

in Fig. 3a. When Khigh = 0, balanced-truncation results in unstable state-space models [ρ(Ar) > 1] if,

approximately, less than 50 states are retained. Stable and highly accurate (Erel < 10−6) ROMs can still

be obtained with more states, but one does not have the trade-off between order and accuracy typical of

conventional balancing methods. Adding integration points over [k̄, kN ], however, drastically increases the

region of stability of FLBT. Furthermore, Gaussian quadrature provides better convergence properties than

trapezoidal rule. As shown in Fig. 3b, stable balanced truncations of order Nr ∈ [1, 90] are achieved with

as little as two integration points in [k̄, kN ]. In summary, highly accurate and stable realisations, whose

truncations preserve stability, can be obtained with little computational overhead.
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Figure 3: Impact of the integration of the controllability Gramians over the frequencies range [k̄, kN ] on
accuracy and stability of FLBT.

The computational performance of our FLBT algorithm is summarised in Tab. 2. The CPU time of
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the balancing process, in particular, is here scaled with respect to the time required to balance a reference

23 552-states LUVLM — about 5 s on a four 2.3GHz CPUs workstation. As the computational cost of FLBT

scales with the number of bound panels, K, this model-order reduction is two orders of magnitude faster

than our previously developed low-rank square-root method (LRSRM) for internal balancing [17]. While

algorithm 2 requires O(K3) operations, these are automatically parallelized in our high-level implementation,

which achieves almost quadratic scaling with K. Most importantly, algorithm 2 scales very efficiently with

the wake size. As it can be seen in Tab. 2, increasing the wake size by a factor of 5 (which results in ≈105

states), only increases the model-reduction time by a factor of 3.56. Finally, the scalability with the number

of integration points used to solve Eq. (14) is exemplified. Doubling the refinement in the low-frequency

region, Klow, roughly doubles the accuracy of the balanced model, but has only a 63% computational penalty.

Increasing the number of integration points in the high-frequency region, Khigh, is less expensive, since only

the controllability Gramian is solved for.

All results thus far have been on the unsteady aerodynamic model. FLBT is employed next to analyse

the dynamic stability of the T-tail at angles of attack α between −10 and 20 deg and sea-level conditions. At

each attitude α, a normalised realisation limited to the reduced frequencies k ≤ k̄ = 0.5 is produced using

Klow = 12 and Khigh = 16. This is coupled with a modal description of the T-tail structural dynamics in

non-dimensional time, Eq. (8). Stability is finally determined for speeds between 50 and 350m s−1. This

is achieved through an iterative procedure which identifies an upper and lower bound for the flutter speed

based on spectral radius of the system. A relative tolerance 10−8 is used to terminate the process. Finally, it

is worth remarking that the lower speed bound of 50m s−1 is chosen to guarantee an accurate representation

of structural frequencies up to 15Hz.

Two LUVLM models of different refinement are employed, as indicated in Tab. 3. Fig. 4 shows that

flutter speed and reduced frequency obtained using a relatively course lattice, similar to the one employed

by Murua et al. [9], compare well both against reference data and against the stability features as predicted

using internal balancing [17]. Non-dimensionalization of the LUVLM equations and FLBT, however, has

Case
Discretization Integration points Performance

bound, K wake, Kw/K states Klow Khigh CPU time Erel[Gb,Ga]

reference 1024 20 23 552 4 4 4.7 s 2.3× 10−5

LRSRM [17] 1024 20 23 552 4 4 841.5× 6.7× 10−9

scaling with K 2048 20 47 104 4 4 4.69× 2.6× 10−5

scaling with Kw/K 1024 100 105 472 4 4 3.56× 1.2× 10−4

scaling with Klow 1024 20 23 552 8 4 1.63× 8.1× 10−11

scaling with Khigh 1024 20 23 552 4 8 1.41× 2.5× 10−5

Table 2: Computational performance of the FLBT algorithm.
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allowed us to carry on the stability analysis using a highly refined 36 865-states LUVLM, since only one

system realisation is required for each angle of incidence. This refined model predicts a smoother trend for

the flutter speed. Flutter speed and reduced frequency reach, respectively, a maximum and a minimum

around α = 5deg. This highlights a change of the VTP torsional-bending flutter mode. To verify this, the

flutter mode at −8 deg and −1.5 deg have been compared. At these attitudes, the flutter speed is similar

(250.3m s−1 vs. 249.8m s−1 respectively). However, while at −8 deg the magnitude of the VTP torsional

displacement mode equals 34% that of the VTP bending, at −1.5 deg this becomes as large as 83.6%. It

is finally worth remarking that for some attitudes flutter occurs at transonic speed. Those results become

therefore indicative of stability margins, as the potential flow assumption is no longer valid.

Refinement
chord-wise panels span-wise panels

States
bound wake VTP HTP

low 22 220 28 14 11 440

high 32 480 32 32 36 865

Table 3: Detail of UVLM discretizations used for the T-tail stability analysis.

Murua et al. LRSRM (low refinement) LFBT (low refinement) LFBT (high refinement)

−10 −5 0 5 10 15 20

angle of attack [deg]

50

100

150

200

250

300

350

fl
u
tt
er

sp
ee
d
[m

s−
1
]

(a) flutter speed

−10 −5 0 5 10 15 20

angle of attack [deg]

0.0

0.1

0.2

0.3

0.4

re
d
u
ce
d
fl
u
tt
er

fr
eq
u
en
cy

(b) reduced flutter frequency

Figure 4: T-tail flutter stability features as a function of the angle of attack.

V.B. Studies on parametric reduced-order modelling

The LUVLM is now parametrized with respect to T-tail angle of attack, α. Tabulated data are assumed

to be available at a discrete set of equally-spaced attitudes a = [αi]. Third-order splines will be used to

interpolate amongst quantities. Unless otherwise stated, we seek to construct FLBT ROMs of the T-tail

aerodynamics at an attitude α̃ =5deg.
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V.B.1. Offline interpolation

The interpolation strategy of Sec. IV.A is considered first. It is assumed that the Gramians factors are

available over uniform grids centred in α̃

a(∆α) = [α̃+ (n− 1.5)∆α] , with n = 0 . . . 3 (38)

where spacings ∆α = 0.2, 2, and 10 deg are considered. These have been computed through Eq. (15) using

Klow = 12 and Khigh = 16 integration points. FLBT ROMs ranging from 1 to 90 states are finally generated

through Eq. (22) and (23) upon re-assembly of the full-states matrices, Aa, Ba, Ca and Da.

The frequency-response errors Erel[G̃r,Ga] of the interpolated ROMs are compared in Fig. 5a with those

obtained through direct application of FLBT. Interpolated models retain a high level of accuracy, with

Erel[G̃b,Ga] ≈ 10−4 even when data are provided on the coarser (∆α =10deg) grid. Importantly, while

the maximum accuracy achievable depends on the spacing between tabulated data (i.e. on the interpolation

error), the interpolated ROMs, G̃r, retain the same rate of convergence as those produced through FLBT

at α̃ =5deg. Furthermore, the stability features of FLBT discussed in Sec. V.A are also preserved. Finally,

the fast converge rate of FLBT is also shown when interpolated ROMs are employed to predict the T-tail

flutter speed, as shown in Fig. 5b.
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Figure 5: Convergence of interpolation over FLBT Gramians factors of T-tail at 5 deg angle of attack.

A further insight on this study is provided by Fig. 6. This shows the phase responses of the aerodynamic

influence coefficients corresponding to the first three modes of the T-tail for different incidence angles. The

structural modes are the VTP bending and torsional modes shown in Fig. 1, respectively mode 1 and 2 in

Fig. 6, plus the second VTP bending mode (mode 3, natural frequency 11.21Hz). As the LUVLM description

treats modal displacements and velocities as different inputs, the response of the pth modal force, Np, is
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expressed in terms of the qth modal displacement input, ηq as

Np = [Gp,q(k) + jk Gp,r(k)] ηq (39)

where r is the index associated to the qth modal velocity input, η′q(k). In Fig. 6 these quantities are evaluated

using the full LUVLM at the incidence angles associated to a coarse interpolation a(∆α = 10deg) [Eq. (38)]

and at α̃ = 5deg. At this attitude the phase response has also been computed using a 27-states interpolated

ROM, with Erel ≈ 10−4 as per Fig. 5a. Fig. 6 underlines that the aerodynamic features of the T-tail change

considerably within the incidence angles range considered. Nonetheless, and despite the differences in relative

magnitude amongst modal responses, interpolation tracks very accurately the reference, full-states, response

at α̃ = 5deg.
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Figure 6: Phase response in the reduced frequency range k ∈ [0, 0.5] of the first three modes at tabulated
and interpolation points. Markers indicate a frequency spacing ∆k = 10−1.

Overall, direct interpolation of the Gramians factors in Eq. (16) does not only facilitates the interpolation

process — there is no need to project the basis T and W⊤ on a common space before interpolation [28] —

but also guarantees accuracy and stability. However, given the efficiency of algorithm 2 ( Tab. 2), the
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computational savings with respect to direct model-order reduction is limited, as re-assembly of the full

LUVLM matrices is still required.

V.B.2. Direct ROM interpolation

We consider first the case in which tabulated ROMs are provided on a fine grid a(∆α = 1deg) as per

Eq. (38), centered around α̃ = 5deg as before. Tabulated ROMs are truncated to 15-states (such that

Erel[Gr(i),Ga(i)] < 10−2) and are projected over the closest basis (α =4.5 deg) using the three methods

discussed in Sec. IV.B. Fig. 7a compares the frequency response rate of convergence of all truncations of the

ROMs so obtained against direct model-order reduction (FLBT). In all cases, ROM interpolation provides the

same accuracy of FLBT when all states are included. However, while the strong and weak MAC preserve the

same convergence rate of FLBT, the weak projection in the Procrustes problem solution requires including all

reduced states. As the size of the tabulated ROMs is increased to 34 states (Erel < 10−4), Fig. 7b, the latter

method also loses accuracy. Balancing methods, instead, still retrieve the same fidelity of direct interpolation.

However, their convergence rate departs from the reference one. This highlights a first important feature

of direct ROM interpolation, namely, that the projection methods in Sec. IV.B approximate well the first

(most important) reduced-states (Fig. 7a). However, even when the tabulated ROMs are close to each other,

higher states will generally be less and less correlated, as they describe different aerodynamic features. This

information may be lost upon projection, which sets a bound to their accuracy (see Fig. 7b).
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Figure 7: Convergence rate of ROM at 5 deg obtained through direct interpolation. Tabulated ROMs of
different accuracy (Erel) on a grid with spacing ∆α =1deg are considered.

This unfavourable phenomenon is amplified as the spacing between tabulated data increases. To show

this, the study in Fig. 7 is repeated using tabulated data on a course grid a(∆α = 10deg), Eq. (38). As

seen in Fig. 8, interpolation upon weak projection and Procrustes solution never produces accurate results.

In fact, this methods results in very larger errors when increasing the ROMs order. This further highlights
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that the leading factor to detriment the process accuracy is the projection, rather than the interpolation

itself. Strong and weak projection exploiting the orthogonality of the balancing basis, instead, achieve greater

accuracy. Even in this case, however, the projection method loses robustness when larger basis are considered.

Interpolation between small size ROMs (Erel < 10−2) follows closely the convergence rate of direct model-

reduction and achieves satisfactory accuracy (Erel < 2× 10−2 in both cases). Interpolation amongst 34 states

(Erel < 10−2) ROMs, instead, never achieves Erel below 8× 10−3, against Erel ≈ 10−4 of FLBT. Importantly,

the convergence rate is not monotonic and the most accurate realizations are obtained when not all reduced

states are included. The strong MAC, for example, achieves minimal error, Erel ≈ 2× 10−2, when only 25

of the 32 reduced-states are retained. Overall, this study highlights that when tabulated data are provided

on a course grid, the size of the tabulate ROMs should be carefully selected during the offline phase, so as

to verify that direct ROM interpolation is robustness.
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Figure 8: Convergence rate of ROM at 5 deg obtained through direct interpolation. Tabulated ROMs of
different accuracy (Erel) on a grid with spacing ∆α =10deg are considered.

Weak and strong projection MAC for BT basis are further analysed in Fig. 9. Here, the accuracy of

the interpolated ROMs α̃ =5deg is shown as a function of the spacing, ∆α, used to define the tabulated

data grid, a(∆α) — Eq. (38). Interpolation is carried through ROMs of different size, and considers both

projection over the closest basis, as well as over the interpolated projection basis provided by Eq. (22) and

(23). Moreover, to overcome the fact that the ROMs rate of convergence does not always decrease with

their order (Fig. 7b and 8b), the number of reduced-states retained upon interpolation is here chosen so as

to minimize the norm Erel[G̃r, γi Gr(i)], where γi Gr(i) estimates of the frequency response at α̃ through

transfer function interpolation, Eq. (29). In all cases, the error expectedly increases with the grid spacing

∆α, due to both interpolation and projection error. The strong MAC allows producing more accurate ROMs

than weak MAC. However, as shown by interpolation amongst 20 order ROMs, this can fail catastrophically

when the reduced states are not well correlated. Weak projection, instead, shows robustness throughout
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the whole ∆α and ROM order range. Finally, projection over the interpolated basis allows in most cases to

marginally reduce the interpolation error, but at a higher computational cost.
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Figure 9: Direct interpolation accuracy as a function of the grid spacing, ∆α, around 5 deg.

In conclusion, direct ROM interpolation with weak MAC projection over the closest basis is the faster

and more reliable method, with minimal loss of accuracy with respect to an interpolated basis (Fig. 9).

However, due to the discrete-time nature of the UVLM, interpolation is carried on over the manifold of real

matrices. In order to bypass this limitation, therefore, transfer function interpolation is investigated next.

V.B.3. Transfer function (TF) interpolation amongst balanced models

As introduced in Sec. IV.C, TF interpolation bypasses the need to project the tabulated state-space models

upon a common basis and offers an appealing alternative to increase robustness and accuracy. Interpolated

ROMs can be obtained at virtually no cost through the realization in Eq. (29), although the size of the inter-

polated ROM grows with the interpolation order. Alternatively, a frequency-limited balanced expression of

Eq. (29) can be derived directly (FLB-TF), which results in interpolation amongst balanced, non-truncated,

models and also requires an SVD, Eq. (33). Those trade-offs are assessed here.

TF interpolation amongst FLBT ROMs, Eq. (29), and the (non-truncated) FLB-TF, Eq. (35), are first

compared. Interpolation is carried out again at α̃ = 5deg and from 96-state frequency-limited balanced

models (obtained through quadrature with Klow = 6 and Khigh = 12) defined over a fine grid, a(∆α =

1deg). Fig. 10 compares the transfer-function error with the FLBT ROM at α̃ = 5deg (FLBT) of (a) TF

interpolation amongst FLBT ROMs of the same order and (b) ROMs obtained by FLB-TF interpolation

and truncation. Note that in Fig. 10 the horizontal axis refers to the order of the interpolated ROM. TF

interpolation amongst ROMs shows high accuracy (up to Erel ≈ 6× 10−5) but, as a result of Eq. (29),

also a slow convergence rate. FLB-TF, however, allows retrieving the same fast convergence rate of direct

FLBT. Overall, Fig. 10 shows that both approaches for TF interpolation have similar fidelity. The choice

between one method or the other, therefore, depend on one desired to minimize the interpolated ROM size
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or computational cost.
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Figure 10: Balanced vs unbalanced TF interpolation convergence rate on a a(∆α = 1deg) grid.

The accuracy of FLB-TF interpolation is analysed in more detail next in Fig. 11. Relatively large

frequency-limited balanced models with 96 states (Klow = 6,Khigh = 12) are produced over uniform grids

of different spacing a(∆α) around the interpolation point α̃ =5deg as per Eq. (38). As shown in Fig. 11a,

FLB-TF provides great accuracy even with large ∆α. With reference to the offline interpolation (Fig. 5a),

this is only an order of magnitude less accurate. However, no re-assembly of the state-space model at α̃ is

required, but rather an SVD of size (96 × 576) needs to be solved in Eq. (33). Fig. 11a also includes the

error in ROMs of order 30 and 40 obtained by further truncation of the FLB-TF interpolated state-space

model. With reference to Fig. 9, FLB-TF interpolation achieves higher or equal accuracy than direct ROM

interpolation. However, this process is robust and there is no need to down-select the optimal ROM order.

As ∆α is increased, the error introduced by the interpolation scheme becomes dominant, and all curves in

Fig. 11a collapse over each other. This suggests that, once the accuracy of the sought ROMs is fixed, the

size of the tabulated FLB models can be reduced, so as to minimize the online computational cost.

This concept is further exemplified in Fig. 11b for interpolation over a a(∆α = 10deg) grid. Here, FLB-

TF interpolation is also performed amongst smaller size FLB models obtained upon Gramians integration

over a (Klow,Khigh) = (3, 2). The convergence rate of the truncated, FLB-TF interpolated, ROMs is

compared to that of FLBT. As the a grid is course, the maximum accuracy of the interpolated ROMs is in

all cases bounded by the interpolation error at Erel ≈ 2× 10−3. Therefore, Erel < 10−2 accurate ROMs can

be achieved through interpolation of small-size, 48-states, FLB models, at the cost of a 48× 160 SVD.

Overall, TF interpolation provides more robustness than direct ROM interpolation with minimal penalty

on the online computational time required to interpolate.

V.B.4. Application to aeroelastic analysis

ROM interpolation is here finally employed for the parametric flutter analysis already presented in Sec. V.A

(Fig. 4). To this aim, FLB realizations of the T-tail aerodynamics are produced at equally-spaced incidence
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Figure 11: Relative error and convergence rate of UVLM ROMs obtained through TF interpolation at 5 deg.

angles between −10 and 20 deg, with sampling steps ∆α = 5 and 10 deg. That means that for the coarser

grid, only four realisations of the LUVLM are used. Only the two best performing strategies (direct ROM

interpolation with weak MAC projection and FLB-TF intertpolation) are considered. The interpolated

models are finally coupled with the structural description in the normalized time and the flutter features are

evaluated with a tolerance 10−8 as explained in Sec. V.A.

Fig. 12 shows the flutter speed relative error of FLB-TF interpolation with respect to a high-fidelity direct

model-order reduction with (Klow,Khigh) = (6, 12) at each α. At first, the case in which the interpolated 96-

states models are not further truncated is discussed. In this situation, the flutter speed error is dominated

by the interpolation accuracy. With this respect, it is worth noticing that, as this tends to zero at the

tabulated points, a lower bound has been set to the y axis of Fig. 12. Interpolation on the course grid

with sampling ∆α =10deg, leads to a maximum relative error of 6% at α ≈ −5 deg. In particular, this is

considerably larger than what would be expected from the frequency response analysis at the same point,

where the interpolated model features Erel[G̃b,Ga] < 5× 10−3. The loss of accuracy is due to the slow

rate at which the flutter eigenvalue moves towards the instability region as the flow speed, U , is increased.

Therefore, for design applications the sampling period needs to be carefully monitored so as to ensure that

the interpolated ROMs have precision several order of magnitude higher than the desired accuracy in the

flutter analysis. This is demonstrated by the ∆α = 5deg curves in Fig. 12: FLB-TF interpolation is highly

accurate (Erel[G̃b,Ga] < 8× 10−4) throughout the full α range, while flutter errors are just below 3%. As

already discussed in Sec. V.B.3, when the interpolation accuracy is set by the sampling period, ∆α, smaller

size FLB models can be used with no loss of accuracy. Furthermore, as interpolated ROMs preserve the

same fast rate of convergence of FLBT, truncation can be employed to further reduce the size of the ROMs.

This is demonstrated here for flutter analysis. To this purpose, ROMs have been produced by interpolation

on the ∆α = 5deg grid amongst 48-states FLB models and further truncation to 20 states. As shown in
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Fig. 12, no relevant loss of accuracy is observed. However, as per Sec. V.B.3, the final ROM size and the

interpolation cost are now considerably lower.
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Figure 12: Error in the flutter speed computed via TF interpolation between balanced state-space models.

VI. Conclusions

This work has investigated methods for parametric model reduction of the linearised unsteady-vortex

lattice equations. First, it has introduced a highly-efficient solution to the frequency-domain equations,

which naturally arises from a z-transform of its discrete-time state-space realisation and thus retains the

full modelling flexibility of the underlying formulation. Closed-form solutions for the (frozen) wake states

have resulted in algorithms that are highly efficient in both computational and memory requirements for

both frequency-response analysis and balanced-truncation on limited frequencies. In particular, the excellent

numerical performance of that approach allows for FLBT to be obtained through direct numerical integra-

tion of frequency-based low-rank expressions for the Gramians of the LUVLM. Stability-preserving ROMs

have been derived by integrating (on a very coarse grid about the maximum frequency of interest) the

controllability Gramian to the Nyquist frequency. An investigation into techniques for ROM interpolation

has finally extended the methods to general parametrizations of the LUVLM. Three classes of interpolation

strategies, associated to different trade-off levels between accuracy, robustness and computational cost, have

been here considered, therefore providing a wide spectrum of methods for applications in loads analysis,

design optimisation and model-based control.

Numerical studies have considered the aeroelastic stability of a T-tail configuration with varying incidence

angle. Our FLBT algorithm has been shown to scale linearly with the number of wake states. This has

resulted in realisations of large UVLM lattices, with tens of thousands of states, for which ROMs are

generated in a few seconds and with minimal memory overhead. The resulting ROMs are highly-accurate,

preserve stability, and present faster convergence rates with the number of states than those obtained by

(internally) balanced residualisation.
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Finally, studies on parametric ROMs have focused on the trade-off between number of sampling points

and interpolation accuracy. ROMs obtained through interpolation of the Gramians factors and re-assembly

of the full-states system matrices have been shown to be extremely accurate. However, interpolating ROMs

in this manner provides minimal computational saving due to the cost of re-assembling large LUVLM state-

space models. Direct interpolation amongst balanced truncated ROMs has resulted in a computationally fast

process suitable for real-time applications. However, it was also less accurate due to the need of projecting

the ROMs over a common basis before interpolation, with unavoidable loss of information. The robustness

of the approach has also been shown to depend strongly on the projection method employed, which therefore

requires carefully assessment of the quality of the sampled data for online interpolations in real-time applic-

ations. Nonetheless, using a weak projection method, direct ROM interpolation has successfully predicted

the T-tail flutter speed over a wide range of angles with 3% accuracy and using a relatively course grid of

sampled data.

The transfer-function interpolation approach has been finally shown to provide an equally accurate, but

more robust and easy to use, alternative to direct interpolation. Real-time application of this technique

is possible but limited to time marching solution due to the growth in size of the interpolated ROM. For

application in design optimisation, instead, a novel solution, which directly produces a FLB realisation of the

TF interpolated model, has also been proposed. This provides equal accuracy with minimal computational

overhead.
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