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SUMMARY

We propose parametric regression analysis of cumulative incidence function with competing risks data.
A simple form of Gompertz distribution is used for the improper baseline subdistribution of the event of
interest. Maximum likelihood inferences on regression parameters and associated cumulative incidence
function are developed for parametric models, including a flexible generalized odds rate model. Estima-
tion of the long-term proportion of patients with cause-specific events is straightforward in the parametric
setting. Simple goodness-of-fit tests are discussed for evaluating a fixed odds rate assumption. The para-
metric regression methods are compared with an existing semiparametric regression analysis on a breast
cancer data set where the cumulative incidence of recurrence is of interest. The results demonstrate that
the likelihood-based parametric analyses for the cumulative incidence function are a practically useful
alternative to the semiparametric analyses.

Keywords: Breast cancer; Clinical trial; Competing risks; Cumulative incidence; Cure model; Improper distribution;
Regression; Transformation model.

1. INTRODUCTION

Competing risks data are encountered frequently in medical research. In breast cancer trials, like Protocol
B-19 (Fisher and others, 1989) at the National Surgical Adjuvant Breast and Bowel Project (NSABP),
a patient may experience multiple events, such as local or regional recurrence, distant metastasis, second
primary cancer other than breast, and death. Investigators may be interested in the time and the type of the
first event, leading to a competing risks structure. For example, radiation oncologists (Taghian and others,
2004) may focus on local or regional recurrences alone as a first event to evaluate radiation therapy after
surgery. The cumulative incidence function (Kalbfleisch and Prentice, 1980) quantifies the cumulative
probability of cause-specific failure in the presence of competing events without assumptions about the
dependence among the events (Korn and Dorey, 1992; Pepe and Mori, 1993; Gaynor and others, 1993).
When analyzing cause-specific failure patterns, investigators may be interested in the effects of covari-
ates on the event-specific failure probabilities. Such analyses may involve testing the effects of treatment
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adjusted for important prognostic factors, in addition to testing the effects of the prognostic factors. For
patient management, it is helpful to characterize the proportion of events over time for causes of interest
conditionally on covariates, including treatment. Gray (1988) proposed a nonparametric inference proce-
dure to compare the cumulative incidence curves among two groups, with alternative tests discussed in
Pepe (1991). Fine and Gray (1999) and Fine (2001) adapted the proportional hazards model (Cox, 1972,
1975) to the cumulative incidence function and proposed inferences for the effects of treatment and other
continuous prognostic factors. In breast cancer trials at NSABP, one may wish to quantify the effect of ra-
diation therapy adjusted for known risk factors, such as age, tumor size, number of positive lymph nodes,
and estrogen receptor level. Regression models are critical when adjusting for such variables, which are
usually collected as either count or continuous measurements.

Unlike with traditional survival endpoints, the proportion of recurrences in breast cancer tends to
increase for a period of time and then plateau (Karrison and others, 1999). Those patients who do not
experience recurrences can be viewed as a cured population (Boag, 1949) and inferences about the recur-
rence “distribution” can be conceptualized in a cure model framework. The asymptote of the cumulative
distribution function of recurrences is less than 1, that is, the “distribution” is improper. A key issue in
regression modeling of recurrences is the effect of covariates on the leveling off point of the cumulative
distribution function.

The most widely used analyses of competing risks data in practical applications, like the breast cancer
data, are nonparametric and semiparametric. A major advantage of these approaches is that there is no
need to assume an underlying distributional form for the cumulative incidence function, which is difficult
in the competing risks setting, owing to the impropriety of this function. Of course, such flexibility arises
at the cost of efficiency loss relative to parametric models, especially with small sample sizes (Miller,
1983; Jeong and Oakes, 2003). The trade-off for additional parametric assumptions is the potential bias
associated with model misspecification (Meier and others, 2004). On the other hand, the parametric mod-
els permit extrapolation of long-term event probabilities, which are of inherent interest and which cannot
generally be identified from nonparametric and semiparametric models. Moreover, parametric regression
models are amenable to formal maximum likelihood (and Bayesian) inferences, unlike the semiparametric
analyses of Fine and Gray (1999) and Fine (2001).

Jeong and Fine (2006) proposed a direct parameterization of the cumulative incidence function without
covariates. Empirical studies using NSABP breast cancer data showed that a simple form of the improper
Gompertz distribution (Gompertz, 1825) provided better fits than more complex parametric mixture mod-
els (Larson and Dinse, 1985), as measured by the agreement of the fits with nonparametric estimates
of the cumulative incidence functions. The direct parameterization is more parsimonious and has a more
straightforward interpretation than do indirect parameterizations, where the cause-specific hazard function
(Bryant and Dignam, 2004) and/or the overall survival function (Benichou and Gail, 1990) are modeled
with proper distributions. This is particularly true if long-term event probabilities are of interest, which
cannot be inferred directly from the component models in the indirect parameterization.

In this paper, we extend Jeong and Fine (2006) to the regression setting. Maximum likelihood infer-
ences are developed in which parametric models for the cumulative incidence functions for all causes
are fit simultaneously. Inferences are based on standard asymptotic results for the maximum likelihood
estimators. Our general parametric framework encompasses models which are parametric specializations
of the models in Fine and Gray (1999) and Fine (2001). In the analysis of the Protocol B-19 data set, we
employ generalized odds rate regression models (Dabrowska and Doksum, 1998), with Gompertz base-
line distributions, including both proportional hazards and proportional odds models as special cases. The
proposed parametric procedure permits goodness-of-fit tests for the proportional hazards and proportional
odds assumptions, assuming that the parametric model for the base distribution is correctly specified.

In Section 2, we introduce the competing risks data and the associated notation. In Section 3, gen-
eral parametric regression models are formulated for the cumulative incidence function. The Gompertz
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distribution is presented and its suitability as a model for the baseline distribution is discussed. In Sec-
tion 4, maximum likelihood estimation is presented. In Section 5, the variances of the estimated regression
parameters and cumulative incidence probabilities are derived. In Section 6, the parametric procedure is
compared with the semiparametric Fine—Gray (1999) model on NSABP Protocol B-19.

2. CUMULATIVE INCIDENCE FUNCTION—ONE SAMPLE CASE

The basic identifiable quantities from competing risk data (T, K) are the cause-specific hazard and cu-
mulative incidence functions, where T is time to the first event and K € (1, ..., nk) is the event type,
where n is the number of event types. The cause-specific hazard function for an event K = k at time
tis Ak(t) = limaoPrt < T <t+ A, K =K|T >1t)/A. Forsmall A,

Prit <T <t+A,K =kK)
A

As noted in Jeong and Fine (2006), the left-hand side in (2.1) approximates the probability density function
for the kth cause-specific event as A approaches 0. This implies that the cumulative incidence function
for the kth cause-specific event is

~ Pr(T > )ik (). 2.1)

t
F(t) = /0 S(U)dAL(U), 2.2)

where S(t) = Pr(T > t) and Ax(t) = fot Ak (u)du is the cumulative hazard function for the kth cause-
specific event. In (2.1), the cause-specific hazard function Ak (t) on the right-hand side makes the proba-
bility density function for cause-specific events of type k improper whenever A < >°, Ak. Therefore, the
cumulative incidence function in (2.2) may also be improper.

In practice, T is typically subject to additional independent right censoring. To nonparametrically esti-
mate the cumulative incidence function, the overall survival function S(-) may be replaced by the Kaplan—
Meier estimator (Kaplan and Meier, 1958) and the cause-specific cumulative hazard function Ag(-) may
be replaced by a Nelson—Aalen estimator (Nelson, 1972; Aalen, 1978). Bryant and Digham (2004) re-
cently proposed a semiparametric inference procedure by parameterizing only the cause-specific hazard
function in the integral (2.2), with S(-) being estimated nonparametrically. They noticed an efficiency gain
over the nonparametric estimator of F¢. Benichou and Gail (1990) considered fully parametric inference
on the cumulative incidence function by parameterizing the cause-specific hazard function and the overall
survival function. Larson and Dinse (1985) considered parametric inference for a mixture model repre-
sentation of the joint distribution of (T, K). Jeong and Fine (2006) proposed direct parametric modeling
of Fx (), and suggested the Gompertz distribution, which is tailored to the unique features of Fy(-). They
showed that the direct parametric approach may provide a better fit than either the cause-specific hazard
or the mixture model approaches when there is a plateau in the tail of the cumulative incidence function.

3. REGRESSION MODELS

For direct regression modeling of the cumulative incidence function, it is convenient to consider a trans-
formation model structure (Fine and Gray, 1999; Fine, 2001). For events of type k,

w{Ft: ) =u®+Z"B, k=1,...,nk, (3.1)

where uk(t) is an invertible and monotonically increasing function, g isa P x 1 parameter vector, and
Z is a time-independent P x 1 covariate vector. For two individuals with covariate vectors Z; and Z5, the
conditional cumulative incidence functions satisfy a vertical shift model

ak{Fx(t; Z2)) — gk {Fx(t; Z1)) = (Z2 — Z1) " B (3.2)
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Specifying gk () to be the logit function gives a proportional odds model for cause k events, with the
regression parameters in g, corresponding to time-independent log odds ratios per unit increases in the
covariates.

Fine and Gray (1999) considered the proportional hazards model to directly infer the effects of co-
variates on the cumulative incidence of type k events. Their model was originally posited in terms of the
subdistribution hazard function (Gray, 1988) specifying that

2Nt Z2) = ko) exp(ZT By), 3.3)

where AS(t;Z) = limasoPr{t < T < t+ A, K =KIT > tU(T < tnK # k);Z}/A. The
subdistribution hazard function /lf'(-) is the hazard function for the improper random variable T* =
I(K=K)xT+{1—1(K =Kk)} x oo, where I () is an indicator function. The model (3.3) corresponds to
the transformation model (3.1) where g (v) = log{— log(1 —v)}. Equivalently, the cumulative probability
of a type k event is given by

Fi(t; Z) = 1 — exp{—exp(ZT B)uk(t)}, (3.4)

where uk(t) = log, {fot Ako(s)ds}. For semiparametric inference about B, separately from Ayo(t) and
separately from the models for F;(t; Z) (j # k), Fine and Gray (1999) constructed a partial likelihood in
which the risk set for type k events is constructed so that subjects having already experienced events other
than type k are always at future “risk” of a type k event. This differs from the traditional cause-specific
hazard analysis where the occurrence of an event other than type k removes an individual from future risk
sets (Kalbfleisch and Prentice, 1980).

Extending Fine (2001), we propose a general parametric class of transformation models, in which
there may be unknown parameters in g (-). Each event type has its own model, with distinct parameters
for gk (+), uk(+), and By. The link function gk (-) in (3.1) may have arbitrary parametric form gi (vk; o),
where ax may be unknown. In the Protocol B-19 analysis, we employ the odds rate transformation

Ok (vk; ak) = log[{(1 —vx)™™ —1}/ak], —oo0 < ak < oo, (3.5)

which includes the proportional hazards and proportional odds models (Dabrowska and Doksum, 1998)
when a — 0 and a = 1, respectively. Adopting a flexible link function is useful for assessing the
goodness-of-fit of the proportional hazards model and other fully specified models for gk (-). Under model
(3.5), the cumulative probability of a type k event is given by

Fi(t; 2) =1 — {1+ axexp(ZT Bi)uk ()} L. (3.6)

In this paper, the Gompertz (1825) distribution is used to parameterize the log baseline cumulative
subdistribution hazard function, uk(t), which permits the asymptote of the cumulative distribution func-
tion to be <1. The cumulative distribution function can be written

B(t; p, 7) =1 —exp[r{1l —exp(pt)}/p], (3.7)
where —oo < p < oo and 0 < 7 < oo. The hazard function {dB(t; p, 7)/dt}{1 — B(t; p, 7)} L is
A8t p, 1) = Texp(pt), (38)

and hence the cumulative hazard function is given by u®(t; p, 7) = z{exp(pt) — 1}/p. An improper
distribution occurs when p < 0 and ¢ < oo. The hazard function (3.8) can fit either increasing or
decreasing hazards, depending on the signs of the parameters.
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The implied parametric regression model for the cumulative incidence function is
Fi(ts Wi, Z) = 1= {1+ a exp(ZT BUg (t; p, 7)) %, (3.9)

where y = (ax, ,BE, Pk, Tk). For large t, one minus the cumulative distribution function in (3.9) equals
the proportion of patients cured, given a set of covariate values. With competing risks data, this cured
fraction is the proportion of individuals never experiencing event k, for example, breast cancer recurrence.
Note that, when p < 0,ast — oo, the formula reduces to

Fr(00; Wi, Z) = 1 — {1 — ok exp(ZT )/ pi) =%, (3.10)

so that the proportion never experiencing a type k event is 1 — Fy(co; wy, Z).

4. MAXIMUM LIKELIHOOD ESTIMATION

Let Tj and C; be the potential failure time and the potential censoring time, respectively, for the ith subject.
Define Xj = min(T;, Cj). The indicators for the competing events are

1, if the ith subject experiences the kth cause-specific event as a first event,
ki = .
' 0, otherwise,

fork = 1,...,nk. In the breast cancer example where nx = 2, d1j = 1 if the ith patient experiences
a recurrence as a first event and 0 otherwise, and dy; is similarly defined for the ith patient experiencing
events other than recurrences. The observable data are denoted as (Xi, Olis - -5 Ongis Zi) i=1,...,n).

Following similar arguments for direct inference for Fy in the one-sample case (Jeong and Fine, 2006),
given covariate Z; = z;, the likelihood function is

n nk nk 1_22215“
[ka(xi,V/kQZi)éki][1—2Fk(xi,vfk§zi)] ; (4.1)
i=1| lk=1 k=1
where f(X, wi; zi) = dFc(X, wy; zi)/dx (k = 1, ..., nk). Note that the likelihood involves information

from all failure types and does not factor into separate pieces for each type. This differs from the parame-
terization based on the cause-specific hazard functions (Prentice and others, 1978), where the likelihood
factors so that inferences about cause 1 may be carried out separately from the models for other causes.
Under this formulation, misspecification of cause-specific hazard models for other causes does not lead to
bias in the estimated model for cause 1. A limitation is that direct inference about the cumulative incidence
functions is not possible.

In (4.1), the cumulative probability of failure from any event is the sum of the nk cumulative incidence
functions, F1(), ..., Fn, (-). Under the cause-specific hazard formulation, this cumulative probability is
obtained from the overall hazard rate, which is the sum of the corresponding nk cause-specific hazard
functions (Benichou and Gail, 1990; Bryant and Dignam, 2004).

When the proportional subdistribution hazard model (Fine and Gray, 1999) is assumed for type k
events, Fx (X, wy; zi) may be replaced with Fy(x; z) in (3.4) after parameterizing uk (x) by uE(x; Pk Tk)-
In this paper, our focus is a model with general g (vk; ax), including the odds rate model (3.9), which
accommodates a range of nonproportional hazards models.

From (4.1), the log-likelihood function is given by

> [Zéki logy { fk (Xi, w; zi)} + (1 - Zéki)bg ’l — > R, wi Zi)” : (4.2)

i=1 Lk=1 k=1 k=1
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Differentiating (4.2) and setting the resulting score function equal to 0 with respect to y, the maxi-
mum likelihood estinlator v, k =1,...,nk, can be obtained. The maximum likelihood estimator of
F(t; wi, 2 is Fe(t, wy; 2, k=1,...,nk.

5. LARGE SAMPLE INFERENCES

The observed information matrix can be derived by taking the second derivatives of the log-likelihood
function. Given Z = z, the variance of F(t, w; z) can be evaluated by the multivariate delta method as

dFx(t, wk;z)) oF(t, wk;z))’

, (5.2)
opy oy

var(Fu(t, ¥ 2)) = (

_var(yy) ( )
Y=V« V=¥«

where dF(t, yy; 2)/0y is a vector of the first derivatives of the cumulative incidence function for
the kth cause-specific event with respect to y. The matrix var(y) is a submatrix of the inverse of the
observed information matrix corresponding to the variance of y, evaluated at y4, ..., . A pointwise

95% confidence interval for F(t; z) is

Fi(t, W 2) £1.96 x \Var{F(t, wy: 2}, k=1,...,nk. (5.2)

Confidence intervals may also be based on inverting the likelihood ratio test, which may have better small
sample properties than (5.2). A disadvantage is that these intervals cannot be calculated using output from
the fitted model and additional computations are needed.

One may evaluate the regression parameters and the form of g (-) with simple Wald-type test statistics.
Under model (3.9), the hypotheses are (i) Ho: akx = ako, kK = 1, ..., nk, for testing the proportional
hazards (ako = 0) or odds (axo = 1) assumption and (ii) Ho: fkp = 0,k =1,...,nx, p=1,...,P
(where B = (Bki.-..,pxp)"), for testing the covariate effect on the cumulative incidence of type k
events. To test (i), the statistic

Ok — ako
Zy =—, k=1,... 5.3
ak SE(&I() > > > nK > ( )
may be used. To test the hypothesis (ii), we consider
Pep
Zp = ——=—, p=1,....P, k=1,...,nk. (5.4)
P = SE(Bip)

From the theory of maximum likelihood estimation, the statistics Z,, and Z,, follow the standard normal
distribution asymptotically when the corresponding null hypothesis holds. Likelihood ratio and score tests
may also be utilized for testing.

6. APPLICATION TO BREAST CANCER DATA

The data comes from Protocol B-19, one of the earliest clinical trials on breast cancer treatment at NSABP.
Two adjuvant chemotherapy regimens, methotrexate and 5-fluorouracil (MF) and cyclophosphamide plus
MF (CMF), were compared among breast cancer patients with negative axillary lymph nodes and negative
estrogen receptors. The patients have been followed 15+ years for cancer recurrence and mortality. Fisher
and others (2004) reported an analysis of the 13-year update of the B-19 data. In this paper, we use a cohort
of 1017 eligible patients with known pathological tumor sizes (510 in the MF arm; 507 in the CMF arm).

In the analysis, we define recurrence as any breast cancer recurrence in local, regional, or distant
sites as first events. Other competing first events include second primary cancer other than breast and
deaths without evidence of any disease. This definition implies disease-specific versusnon-disease-specific
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events in terms of breast cancer. In this cohort, the numbers of recurrences and other events are 211 and
161, respectively.

The focus of the analysis is the effects of treatment and other baseline prognostic factors on the cumu-
lative incidence functions of recurrence and other events, which quantify long-term disease burden. Since
all patients on NSABP B-19 are axillary lymph node negative and estrogen receptor negative, we only
consider treatment group (trt), tumor size (tsize), and age at randomization (age) as potential covariates in
our models. We analyze two models: a simple model with one covariate for the treatment effect and a full
model based on the three covariates.

We begin by analyzing the model with a single treatment effect covariate (trt), coded 0 for the MF
group and 1 for the CMF group. For comparison, the method of Fine and Gray (1999), denoted as F-G,
was used to fit a semiparametric transformation model with g (vx) = log{—log(1 — vk)} in (3.3) and
uk(-) completely unspecified. Parametric generalized odds rate regression models with Gompertz base
distribution were fit with o = 0 (proportional hazards; PH(®)), o = 1 (proportional odds; PO(®)),
and with ay estimated (GOR(®)). Table 1 summarizes parametric and semiparametric estimates of the
regression models for breast cancer recurrence and other competing events.

The negative sign of p for recurrence indicates that the estimated distribution is improper. Testing
the null hypothesis Hyp: p > 0 in this case gives a one-sided p-value less than 0.0001. Interestingly,
for other events o > 0 and testing the null hypothesis Ho: p > 0 gives a one-sided p-value of 0.20,
indicating the estimated cumulative incidence function is proper. These results make intuitive sense if one
considers that the cumulative incidence functions are estimated using data from the observation period
of Protocol B-19, which only spans 14 years. Few breast cancer recurrences occur after 10 years and
the cumulative incidence function for recurrence plateaus between 10 and 14 years; see Figure 1. An
improper distribution is clearly warranted. On the other hand, other events occur at a fairly steady rate
over the entire time period, with the cumulative incidence increasing linearly up to 14 years; see Figure 1.
While one would expect that this incidence curve would plateau at later times, over the first 14 years, the
curve is better described by a proper distribution. Of course, it would be inappropriate to extrapolate the
fitted Gompertz model to estimate long-term probabilities of other events.

The proportional hazards and proportional odds assumptions were tested using the statistic (5.3). The
p-values from testing the proportional hazards (odds) assumptions are 0.41 (0.16) and 0.45 (0.46) for
recurrence and other events, respectively. Neither of the models is rejected for either event type, reflecting
the large variances of a.

Table 1. Parameter estimates (standard errors) from parametric and semiparametric regression models

for cumulative incidence of recurrence (R) and other events (O) with trt as covariate in NSABP B-19

data; GOR(®) = parametric generalized odds rate model with Gompertz baseline, F-G = Fine and

Gray (semiparametric) model, PO(®) = proportional odds model with Gompertz baseline, PH(®) =
proportional hazards model with Gompertz baseline

K  Model P T a Bt
GOR®)  —0.29 (0.05) 0.07 (0.01) —1.40 (1.69)  —0.45 (0.17)
F-G — — — —0.54 (0.14)
PO®  —0.23(0.02) 0.08(0.01) 1.00 (fixed)  —0.60 (0.16)
PH(®) —0.25(0.02)  0.08 (0.01) 0.00 (fixed)  —0.54 (0.14)

0 GOR®  048(0.58) 0.008 (0.004) 33.90 (44.80) —0.32 (0.52)
F-G — — — —0.10 (0.16)
PO©) 0.05 (0.02)  0.010 (0.002) 1.00 (fixed)  —0.12 (0.17)

PH©®) 0.04 (0.02)  0.010 (0.002) 0.00 (fixed) ~ —0.10 (0.16)
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Fig. 1. Comparison of estimated cumulative incidence functions. (a) Recurrence, (b) other events.

Given the weak evidence against proportional hazards and odds models, we now consider analyses fix-
ing « = 0 or 1, which may have greater efficiency and greater interpretability than analyses in which a is
estimated (see Table 1). Under the proportional hazards model, Wald tests based on the F-G semiparam-
etric estimates of the treatment effects give p-values of 0.0001 for recurrences and 0.52 for the other
events. After fixing ax = 1 under the proportional odds model with Gompertz baseline, Wald tests for
the treatment effects result in p-values of 0.0001 and 0.50, for recurrence and other events. Under the
parametric proportional hazards model with Gompertz baseline and ax = 0, the corresponding p-values
are 0.0002 and 0.51. The estimated treatment effects under the semiparametric and parametric propor-
tional hazards models are almost identical. Under the proportional odds model, the odds of recurrence on
CMF is exp(—0.6) = 0.55 that on MF, at all times t, based on the cumulative incidence functions. This
interpretation may be more natural than that based on the proportional hazards model with & = 0, where
the regression parameters denote subdistribution hazard ratios.

Figure 1(a) shows a comparative plot of the nonparametric (dotted and dashed) estimates, semiparam-
etric estimates from the proportional hazards model (dashed), and parametric estimates from the gen-
eralized odds rate model (solid) and the proportional odds model (dotted) of the cumulative incidence
curves for recurrence up to year 14. Figure 1(b) shows a similar plot for the other events. To check the
baseline Gompertz assumption, the parametric and semiparametric estimates of the baseline cumulative

hazard functions were compared under the proportional hazards model (Figure 2). The parametric esti-

©) o ~ ~ ~ ~ .
mates of ug(t) are calculated as uéPH )(t; p,7) = t{exp(pt)—1}/p, where p and 7 are the estimates from

the parametric proportional hazards model with Gompertz baseline. The semiparametric estimates are
calculated using u(()F_G)(t) = —log{l — I’:\lfg_G) (t)}, where l':\k(g_e)(t) is the semiparametric estimate
of the baseline cumulative subdistribution from the F-G model. In both Figures 1 and 2, the paramet-

ric curves agree reasonably well with the nonparametric and semiparametric estimates, although there is
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Fig. 2. Checking baseline distributional assumptions of Gompertz in NSABP B-19 data set. (a) MF group, (b) CMF
group.

some evidence of lack of fit in the first few years of the follow-up period for breast cancer recurrence in
Figure 1(a). There do not appear to be substantial differences between the different parametric fits. These
findings suggest that the cumulative incidence functions may be well approximated by simple Gompertz
models. Moreover, the estimated long-term failure probabilities are fairly insensitive to p in the odds rate
model.

Next, we fit a regression model with age and tsize, as well as trt. The parametric and semiparametric
estimates are summarized in Table 2. P-values for testing the proportional hazards (odds) assumptions are
0.73 (0.32) and 0.36 (0.27) for recurrence and other events, respectively. Again, there is large variability
in estimation of «, which makes it difficult to differentiate between different transformations in (3.1).

For breast cancer recurrence, Wald tests for Sy, flage, and fisize give p-values of 0.0001, 0.321, and
0.010 from the parametric proportional odds model, 0.0001, 0.330, and 0.004 from the semiparamet-
ric proportional hazards model, and 0.0001, 0.335, and 0.012 from the parametric proportional hazards
model with Gompertz baseline. For other non-breast-cancer-related events, p-values for the regression
coefficients are 0.548, 0.003, and 0.839 from the parametric proportional odds model, 0.540, 0.008, and
0.930 from the F-G model, and 0.557, 0.003, and 0.808 from the parametric proportional hazards model
with Gompertz baseline.

For both recurrence and other events, the results are rather consistent across models. There are signif-
icant treatment and tumor size effects on recurrence among node-negative and estrogen receptor-negative
breast cancer patients in Protocol B-19. The observation of a positive correlation between tumor size
and breast cancer recurrence rate is anticipated, but is still important information for patients and inves-
tigators. The decreased risk of recurrence with CMF persists after adjusting for initial disease severity,
as measured by tumor size. For non-breast-cancer-related events, only the effect of age is significant.
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Table 2. Parameter estimates (standard errors) from parametric and semiparametric regression models

for cumulative incidence of recurrence (R) and other event types (O), including trt, age, and tsize as

covariates in NSABP B-19 data; GOR(®) = parametric generalized odds rate model with Gompertz

baseline, F-G = Fine and Gray (semiparametric) model, PO‘®) = proportional odds model with
Gompertz baseline, PH(®) = proportional hazards model with Gompertz baseline

K Model ) T a Bt B\age Brsize
R GOR®G) _027 (0.05) 0.08 (0.03) —0.52 (1.54) -0.51(0.17) —0.007(0.007) 0.011 (0.006)
F-G — — — —0.56 (0.14) —0.007 (0.007) 0.013 (0.004)
PO(©) —0.23(0.02) 0.08 (0.03) 1.00 (fixed) —0.61 (0.16) —0.008 (0.008) 0.015 (0.006)
PH(©®) —0.25 (0.02) 0.08 (0.03) 0.00 (fixed) —0.55(0.14) —0.007(0.007) 0.013 (0.005)
O GOR® —0.03 (0.08) 0.003(0.004) —4.78(5.24) —0.06 (0.10) 0.02 (0.01) 0.001 (0.003)
F-G — — — —0.10 (0.16) 0.02 (0.01) 0.001 (0.007)
PO©) 0.05 (0.02) 0.003 (0.001) 1.00 (fixed) —0.10 (0.17) 0.03 (0.01) 0.001 (0.006)
PH©G) 0.04 (0.02) 0.003 (0.001) 0.00 (fixed) —0.09 (0.16) 0.02 (0.01) 0.001 (0.006)
a b
O g 0 g
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Fig. 3. Comparison of predicted cumulative incidence functions at different tumor sizes. (a) Tumor size = 15mm,
(b) tumor size = 30 mm, (c) tumor size = 45 mm.

This may be because the etiology of the other causes of failure is connected to the aging process, which
is unaffected by either treatment or the size of the original breast tumor.

We consider estimation of the recurrence rates conditionally on treatment group and tumor size, whose
effects are statistically significant in all models. The parametric generalized odds rate model with unknown
a. (smooth lines) and the semiparametric F-G model (dashed lines with jumps) are shown in Figure 3 for
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different values of tumor size in each treatment group. For the odds rate model, the point estimates are
supplemented by 95% pointwise confidence intervals. The parametric curves are calculated with

Fi(t; trt, tsize) = 1 — [1 + a7 exp(But x trt + Busize x tsize){exp(pt) — 1}/5]" Y%,

where group = 0 for the MF arm or 1 for the CMF arm and tsize = 15, 30, or 45 mm. The two cumu-
lative incidence estimates agree, on average, with the parametric model tending to underestimate at early
time points. The semiparametric curves are within the pointwise confidence intervals from the parametric
estimates, except for the first few years of the follow-up period. In each treatment group, the probability
of recurrence increases as tumor size increases. Parametric estimates of 5- and 10-year recurrence rates
in the MF arm at tumor sizes of 15, 30, and 45 mm are 17.9, 21.0, and 24.5% and 22.4, 26.2, and 30.6%,
respectively.

The proportion of breast cancer patients never experiencing breast cancer recurrence, which can be
interpreted as a cure fraction, can be estimated by replacing the parameters in (3.10) with their maximum
likelihood estimates. Under the generalized odds rate model, this yields

1 — Fi(oo; trt, tsize) = {1 — a7 exp(But x trt + Busize x tsize)/p} Y%,

For tumor size 20 mm (median in Protocol B-19), the estimated long-term cure rates are 74.7 and 84.4%
for patients on MF and CMF, respectively. This represents a meaningful decrease in disease burden for
breast cancer patients receiving CMF. It is important to recognize that such estimation is not possible
under nonparametric and semiparametric models, where uy(t) cannot be estimated beyond the largest
observed follow-up time.

7. DISCUSSION

In this paper, we proposed maximum likelihood inferences for a direct parametric regression modeling
framework for the cumulative incidence function with competing risks data. A general parametric form of
the transformation gk (vk; ak) was considered, which includes proportional hazards and proportional odds
models. The baseline distribution was modeled using a Gompertz specification, which accommodates
improper distributions, like the cumulative incidence function. In theory, any parametric model could be
used for uy (t), with the maximum likelihood estimators giving valid inferences under the usual regularity
conditions.

The parametric analysis enables estimation of the long-term proportion of individuals experiencing a
particular event type. This differs from standard nonparametric and semiparametric analyses, where uk(t)
is completely unspecified. Of course, care should be exercised when interpreting parametric extrapola-
tions, particularly when there is no evidence of a plateau in the tail of the estimated cumulative incidence
function over the observed time period.

A two-parameter Gompertz distribution was used to parameterize the baseline distribution. It is worth
noting that this model only allows monotone hazard shapes. Greater flexibility may be obtained with other
parametric models which permit unimodal and bathtub shapes. The additional flexibility may be helpful
in obtaining more accurate predictions of the cumulative incidence functions over the entire follow-up
period, as in Protocol B-19, where there is some evidence of lack of fit at early time points. There may
be other applications where the Gompertz model is seriously deficient and different specifications may be
needed to obtain reliable results.
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