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Abstract

In this paper, we study the problem of constructing a family of surfaces from a given spatial geodesic curve. We derive a parametric

representation for a surface pencil whose members share the same geodesic curve as an isoparametric curve. By utilizing the Frenet trihedron

frame along the given geodesic, we express the surface pencil as a linear combination of the components of this local coordinate frame, and

derive the necessary and sufficient conditions for the coefficients to satisfy both the geodesic and the isoparametric requirements. We

illustrate and verify the method by finding exact surface pencil formulations for some simple surfaces, such as surfaces of revolution and

ruled surfaces. Finally, we demonstrate the use of this method in a garment design application.

q 2003 Elsevier Ltd. All rights reserved.

Keywords: Surface pencil; Geodesic; Frenet frame; Surface flattening

1. Introduction

Geodesic on a surface is an intrinsic geometric feature

that plays an important role in a diversity of applications.

Geometrically, a geodesic on a surface is an embedded

simple curve on the surface such that for any two points on

the curve the portion of the curve connecting them is also

the shortest path between them on the surface. Many

geometric operations are inherently related to geodesics. For

instance, when a developable surface is flattened into a

planar figure (with no distortion), any geodesic on it will be

mapped to a straight line in the planar figure [10]. Thus, to

flatten an arbitrary non-developable surface with as little

distortion as possible, a good algorithm should try to

preserve the geodesic curvatures on the surface [2,3].

Geodesic method also finds its applications in computer

vision and image processing, such as in object segmentation

[6,7,26] and multi-scale image analysis [22,28]. The

concept of geodesic also finds its place in various industrial

applications, such as tent manufacturing, cutting and

painting path, fiberglass tape windings in pipe manufactur-

ing, textile manufacturing [4,5,12,14–17,35].

Traditional fundamental research in geodesics concen-

trated on finding and characterizing geodesics on analytical

curved surfaces [31]. As the computer becomes increasingly

more powerful, and discretized models become more

prevalent in geometric modeling, discrete geodesics have

also been gaining attention. Over the last decade there has

been a flush of research results on how to efficiently

compute geodesics on discretized surfaces (i.e. polyhedra or

grid-based systems) [1,8,11,13,18–30,32]. Regardless of

the representation of the surface, most existing work on

geodesics can be viewed as ‘forward analysis’: given a

surface, how to find a geodesic or a structure of geodesics.

In this paper, we study the reverse problem, or ‘backward

synthesis’: given a 3D curve, how to characterize those

surfaces that possess this curve as a common geodesic. This

is a reverse engineering problem. We use an example in

shoe design to illustrate potential applications of this

problem. Fig. 1 shows a model of a women’s shoe, which

is usually represented by one or several free-form B-spline

surfaces. On the shoe, there is one important characteristic

curve called the girth, which more or less measures the

width and height of the shoe. Given a particular model and
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the nominal size of the shoe (say USA women’s size 8), the

girth is usually fixed, while the shape of the shoe changes

frequently to suit various design intents, e.g. the fashion. A

common practice in shoe manufacturing industry is to

require that, when the shoe’s surface is flattened to the

plane, the girth should be mapped to a straight or near-

straight line with minimum flattening distortion. This

implies that the girth is preferred to be a geodesic on the

shoe’s surface.

Given a 3D parametric curve rðsÞ; 0 # s # L; we call

rðsÞ an isogeodesic of a surface P if it is both a geodesic and

an isoparametric curve on P; in other words, P can be

expressed as a parametric representation Pðs; tÞ and there

exists a parameter t0 such that rðsÞ ¼ Pðs; t0Þ; 0 # s # L:

The objective of study in this paper is to establish the correct

parametric representation of Pðs; tÞ for a given rðsÞ: In

Section 2, by utilizing the Frenet trihedron frame from

differential geometry, we derive the necessary and sufficient

conditions for the correct parametric representation of the

surface Pðs; tÞ when the parameter s is the arc length of the

curve rðsÞ: The basic idea is to represent Pðs; tÞ as a linear

combination of the three vector functions TðsÞ; NðsÞ; and

BðsÞ; which are the tangent vector, the principal normal, and

the binormal of rðsÞ; respectively, and find the necessary

constraints on the coefficients of these vectors so that both

the geodesic and isoparametric requirements are met. Since

arc-length parametrization is impractical, in Section 3 we

also give the parametric representation of the surface pencil

for the case when the given geodesic curve is arbitrarily

parametrized. To verify the formulae derived in Sections 2

and 3, and also for illustration purpose of the application of

an isogeodesic surface pencil in geometric design, in

Section 4 we choose some simple yet representative

geodesic curves rðsÞ and determine the exact corresponding

surface pencils that not only share the common geodesic but

also contain certain known geometric features such as

cylinders, surface of revolution, and ruled surfaces. Finally,

as a practical example, an application of the isogeodesic

surface pencil in garment design is presented in Section 5.

We conclude the paper in Section 6 with some pointers to

possible future research in this area.

2. Parametric representations of a geodesic

surface pencil

Suppose we are given a spatial parametric curve

C : r ¼ rðsÞ; 0 # s # L; ð2:1Þ

in which s is the arc length, and rðsÞ has third derivatives.

We assume that r00ðsÞ – 0; 0 # s # L; because otherwise

the curve is a straight line segment or the principal normal is

undefined at some points on the curve.

Let TðsÞ; NðsÞ; and BðsÞ be the tangent, principal normal,

and binormal vectors of the curve C; respectively; and let

kðsÞ and tðsÞ be the curvature and the torsion, respectively.

The parametric surface Pðs; tÞ : ½0;L� £ ½0;T�! R3 is

defined based on the given curve rðsÞ and the local

coordinate frame defined by TðsÞ; NðsÞ; and BðsÞ as follows

(see Fig. 2):

Pðs; tÞ ¼ rðsÞ þ ðuðs; tÞ; vðs; tÞ;wðs; tÞÞ

TðsÞ

NðsÞ

BðsÞ

0
BB@

1
CCA;

0 # s # L; 0 # t # T ;

ð2:2Þ

where uðs; tÞ; vðs; tÞ and wðs; tÞ are all C1 functions. If the

parameter t is seen as the time, the functions uðs; tÞ; vðs; tÞ

and wðs; tÞ can then be viewed as directed marching

distances of a point unit in the time t in the direction TðsÞ;

NðsÞ; and BðsÞ; respectively, and the position vector rðsÞ is

seen as the initial location of this point unit. Here the values

of the functions uðs; tÞ; vðs; tÞ; and wðs; tÞ indicate,

respectively, the extension-like, flexion-like, and retortion-

like effects, by the point unit through the time t; starting

from rðsÞ: Hence in this paper we call uðs; tÞ; vðs; tÞ; and

wðs; tÞ the marching-scale functions in the directions TðsÞ;

NðsÞ; and BðsÞ; respectively.

Our goal is to find the necessary and sufficient conditions

for which the curve C is a geodesic on the surface Pðs; tÞ:

First, since the curve C is an isogeodesic on the surface

Fig. 1. A shoe surface model with its girth curve.

Fig. 2. Generating a surface Pðs; tÞ based on the Frenet frame of the

curve rðsÞ:
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Pðs; tÞ; there exists a parameter t ¼ t0 [ ½0;T� such that

Pðs; t0Þ ¼ rðsÞ; 0 # s # L; that is,

uðs;t0Þ¼vðs;t0Þ¼wðs;t0Þ;0; t0[ ½0;T�; 0#s#L: ð2:3Þ

Secondly, according to the geodesic theory [31], the curve C

is a geodesic on the surface Pðs;tÞ if and only if at any point

on the curve C the principal normal NðsÞ to the curve and the

normal nðs;t0Þ to the surface Pðs;tÞ are parallel to each other.

The normal nðs;t0Þ can be computed by taking the cross

product of the partial differentials; that is, based on the

following derivation using the Serret–Frenet formula

›Pðs;tÞ

›s
¼TðsÞþðuðs;tÞ;vðs;tÞ;wðs;tÞÞ

0 kðsÞ 0

2kðsÞ 0 tðsÞ

0 2tðsÞ 0

0
BB@

1
CCA

�

TðsÞ

NðsÞ

BðsÞ

0
BB@

1
CCAþ

›uðs;tÞ

›s
;
›vðs;tÞ

›s
;
›wðs;tÞ

›s

� � TðsÞ

NðsÞ

BðsÞ

0
BB@

1
CCA

and

›Pðs;tÞ

›t
¼ðTðsÞ;NðsÞ;BðsÞÞ

›uðs;tÞ

›t

›vðs;tÞ

›t

›wðs;tÞ

›t

0
BBBBBBBB@

1
CCCCCCCCA
;

the normal vector can be expressed as

nðs;tÞ¼
›Pðs;tÞ

›s
£
›Pðs;tÞ

›t
¼ 12vðs;tÞkðsÞþ

›uðs;tÞ

›s
;uðs;tÞkðsÞ

�

2wðs;tÞtðsÞþ
›vðs;tÞ

›s
;vðs;tÞtðsÞþ

›wðs;tÞ

›s

�

£

0 BðsÞ 2NðsÞ

2BðsÞ 0 TðsÞ

NðsÞ 2TðsÞ 0

0
BBB@

1
CCCA

›uðs;tÞ

›t

›vðs;tÞ

›t

›wðs;tÞ

›t

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Thus, we get

nðs;t0Þ¼f1ðs;t0ÞTðsÞþf2ðs;t0ÞNðsÞþf3ðs;t0ÞBðsÞ;

where

f1ðs;t0Þ¼
›vðs;t0Þ

›s

›wðs;t0Þ

›t
2
›wðs;t0Þ

›s

›vðs;t0Þ

›t
;

f2ðs;t0Þ¼2 1þ
›uðs;t0Þ

›s

� �
›wðs;t0Þ

›t
þ
›wðs;t0Þ

›s

›uðs;t0Þ

›t
;

f3ðs;t0Þ¼ 1þ
›uðs;t0Þ

›s

� �
›vðs;t0Þ

›t
2
›vðs;t0Þ

›s

›uðs;t0Þ

›t
:

Since

NðsÞ¼
1

kðsÞ

d2rðsÞ

ds2
;

we know that NðsÞknðs;t0Þ; 0#s#L; if and only if

f1ðs; t0Þ ¼f3ðs; t0Þ; 0;

f2ðs; t0Þ– 0; 0# s# L; 0# t0 # T :
ð2:4Þ

Combining the conditions (2.3) and (2.4), we have found the

necessary and sufficient conditions for the surface Pðs; tÞ to

have the curve C as an isogeodesic.

To distinguish from other parametric surfaces that also

have the curve C as a geodesic, we call the set of surfaces

defined by Eqs. (2.2)–(2.4) an isogeodesic surface pencil,

since the common geodesic is also an isoparametric curve on

these surfaces. Any surface Pðs; tÞ defined by Eq. (2.2) and

satisfying Eqs. (2.3) and (2.4) is a member of this pencil. For

the purposes of simplification and better analysis, next we

study the case when the marching-scale functions uðs; tÞ;

vðs; tÞ; and wðs; tÞ can be decomposed into two factors:

uðs; tÞ ¼ lðsÞUðtÞ;

vðs; tÞ ¼ mðsÞVðtÞ;

wðs; tÞ ¼ nðsÞWðtÞ;

8>><
>>: 0 # s # L; 0 # t # T : ð2:5Þ

Here lðsÞ; mðsÞ; nðsÞ; UðtÞ; VðtÞ and WðtÞ are all C1 functions,

and lðsÞ;mðsÞ and nðsÞ are not identically zero. Thus, from Eq.

(2.3), we can simply express the sufficient condition for

which the curve C is an isogeodesic curve on the surface

Pðs; tÞ as

Uðt0Þ ¼ Vðt0Þ ¼ Wðt0Þ ¼ 0;

dVðt0Þ

dt
¼ 0; or mðsÞ ¼ 0;

dWðt0Þ

dt
¼ const – 0;

nðsÞ – 0;

8>>>>>>><
>>>>>>>:
t0 [ ½0; T�; 0 # s # L:

ð2:6Þ

The factor-decomposition form possesses an evident

advantage: any set of functions lðsÞ; mðsÞ; and nðsÞ would

satisfy Eq. (2.6), thus the designer can select different

sets of functions lðsÞ; mðsÞ; and nðsÞ to adjust the shape

of the surface until they are gratified with the design, and

the resulting surface is guaranteed to belong to the

isogeodesic surface pencil with the curve C as the

common geodesic.

For convenience in practice, the marching-scale func-

tions can be further constrained to be in more restricted

forms and still possess enough degrees of freedom to define

a large class of isogeodesic surface pencils. Specifically, let

us suppose that uðs; tÞ; vðs; tÞ and wðs; tÞ depend only on the

parameter t; that is, in Eq. (2.5)

lðsÞ ¼ mðsÞ ¼ nðsÞ ; 1: ð2:7Þ
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Furthermore, we can assume that UðtÞ; VðtÞ and WðtÞ are all

cubic polynomials, defined on interval ½0; 1�: Then the

sufficient conditions in Eq. (2.6) ðnðsÞ ; 1 – 0Þ clearly

become:

UðtÞ ¼ a1ðt 2 t0Þ þ a2ðt 2 t0Þ
2 þ a3ðt 2 t0Þ

3
;

VðtÞ ¼ b2ðt 2 t0Þ
2 þ b3ðt 2 t0Þ

3
;

WðtÞ ¼ c1ðt 2 t0Þ þ c2ðt 2 t0Þ
2 þ c3ðt 2 t0Þ

3
;

8>><
>>:
c1 – 0; 0 # t # 1; t0 [ ½0; 1�;

ð2:8Þ

where the coefficients ai; ci ði ¼ 1; 2; 3Þ and bi ði ¼ 2; 3Þ

are eight arbitrary real number constants. The corres-

ponding isogeodesic surface pencil can then be rep-

resented as a surface family controlled by these eight

parameters, i.e.

Pðs; t; a1; a2; a3; b2; b3; c1; c2; c3Þ

0 # s # L; 0 # t # 1

( ����� ai; bi; ci [ R1

c1 – 0

)
:

If a1 ¼ a2 ¼ a3 ¼ b2 ¼ b3 ¼ c2 ¼ c3 ¼ 0; but c1 – 0; we

will obtain the simplest member. The designer can adjust

these parameters to produce surfaces that meet certain

constraints, such as the boundary, feature lines, data

points, curvatures, etc.

As an alternative to polynomials, UðtÞ; VðtÞ and WðtÞ can

be defined as C-Bézier splines [33,34]:

UðtÞ ¼ a1ðt 2 t0Þ þ a2½1 2 cos ðt 2 t0Þ� þ a3sin ðt 2 t0Þ;

VðtÞ ¼ b2½1 2 cos ðt 2 t0Þ� þ b3½ðt 2 t0Þ2 sin ðt 2 t0Þ�;

WðtÞ ¼ c1ðt 2 t0Þ þ c2½1 2 cos ðt 2 t0Þ� þ c3sin ðt 2 t0Þ;

8>>>><
>>>>:
c1 þ c3 – 0; 0 # t # a; t0 [ ½0;a�: ð2:9Þ

It is a simple matter to validate that this suite of functions

satisfies the conditions in Eq. (2.6). Here we also have

eight parameter values. Since the bases of C-Bézier spline

are {1; t; cos t; sin t; 0 # t # a}; C-Bézier spline can

represent both free form curves and conic sections

without rational polynomials. Note that here a is not

only the length of the parameter interval, but also a shape

control parameter.

3. Surface pencil with a geodesic expressed

by an arbitrary parameter

In the majority of practical cases, the parameter of a

given curve is usually not its arc length. So in this section we

present an algorithm for constructing an isogeodesic surface

pencil from an arbitrarily parametrized geodesic. Suppose

we are given a spatial parametric curve

C : RðrÞ ¼ ðXðrÞ;YðrÞ; ZðrÞÞ; 0 # r # H; ð3:1Þ

where the parameter r is not the arc length. The components

of the Frenet frame are now defined by [9]

~TðrÞ ¼
_RðrÞ

l _RðrÞl
;

~BðrÞ ¼
_RðrÞ £ €RðrÞ

l _RðrÞ £ €RðrÞl
;

~NðrÞ ¼ ~BðrÞ £ ~TðrÞ:

ð3:2Þ

When the given curve C is in the oxy plane, the following

moving frame can be used:

~TðrÞ ¼
ð _X; _Y; 0Þffiffiffiffiffiffiffiffiffiffi
_X2 þ _Y2

p ; ~NðrÞ ¼
ð2 _Y; _X; 0Þffiffiffiffiffiffiffiffiffiffi
_X2 þ _Y2

p ;

~BðrÞ ¼ ð0; 0; 1Þ:

ð3:3Þ

The surface pencil generated from the arbitrarily

parametrized geodesic RðrÞ is expressed as

~Pðr; tÞ ¼ RðrÞ þ ðuðr; tÞ; vðr; tÞ;wðr; tÞÞ

~TðrÞ

~NðrÞ

~BðrÞ

0
BB@

1
CCA;

0 # r # H; 0 # t # T ;

ð3:4Þ

and the necessary and sufficient conditions for which the

curve RðrÞ is an isogeodesic on the surface ~Pðr; tÞ can

correspondingly be written as

uðr; t0Þ ¼ vðr; t0Þ ¼ wðr; t0Þ ; 0;

f1ðr; t0Þ ¼ f3ðr; t0Þ ; 0; f2ðr; t0Þ – 0;

(

0 # r # H; 0 # t0 # T :

ð3:5Þ

For the case when the marching-scale functions depend

only on the parameter t; the isogeodesic surface pencil

becomes

~Pðr; tÞ ¼ RðrÞ þ ðUðtÞ;VðtÞ;WðtÞÞ

~TðrÞ

~NðrÞ

~BðrÞ

0
BB@

1
CCA;

0 # r # H; 0 # t # T :

ð3:6Þ

As in Section 2, when the marching-scale functions are all

cubic polynomials, the shape of a member surface in the

pencil is determined by the eight constants.

4. Examples of generating simple surfaces with

common geodesics

In this section we illustrate that it is possible to derive

exact isogeodesic surface pencils whose members include

cylinders, surfaces of revolution, and ruled surfaces, by

specifying a geodesic that represents a geometric feature of

the object to be designed. In other words, the parametric
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definitions of the corresponding marching-scale functions

can be derived exactly based on the geometric character-

istics. We present four concrete examples to illustrate this

viewpoint. They also serve to verify the correctness of the

formulae derived in Sections 2 and 3.

4.1. Cylinder with a geodesic circular helix

In this first example, we construct an isogeodesic surface

pencil in which all the surfaces share a geodesic circular

helix represented as:

RðrÞ ¼ ða cos r; a sin r; brÞ;

a . 0; b – 0; 0 # r , 2p:

ð4:1Þ

It is easy to show that

~TðrÞ ¼
ð2a sin r; a cos r; bÞffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p ;

~NðrÞ ¼ ð2cos r;2sin r; 0Þ;

~BðrÞ ¼
ðb sin r;2b cos r; aÞffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p :

By choosing

UðtÞ ¼ at; VðtÞ ¼ 0; WðtÞ ¼ bt;

b – 0; 0 # t # T ;

and from formula (3.6), we obtain the following isogeodesic

surface pencil

~Pðr; t;a;bÞ ¼ ða cos r; a sin r; brÞ þ ða; 0;bÞ

2a sin r a cos r b

2cos r 2sin r 0

b sin r 2b cos r a

0
BB@

1
CCA tffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

0 # r # 2p; 0 # t # T ;

8>>>>>>><
>>>>>>>:

���������������

a [ R1

b [ R1

b – 0

9>>>>>>>=
>>>>>>>;
;

which has the curve C as a common spatial geodesic. If we

let its two pencil parameters be

a ¼ 2
b2

ffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p

a2
; b ¼ 2

b
ffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p

a
;

we immediately obtain a member surface

a cos r; a sin r; b r 2 1 þ
b2

a2

 !
t

 ! !
;

0 # r , 2p; 0 # t # T ;

which is obviously a cylinder with radius a: This surface is

shown in yellow in Fig. 3, in which a ¼ 2; b ¼ 1; T ¼ 10:

As a comparison, if we set a ¼ 0:1; b ¼ 21; we obtain

another member surface in the pencil as shown in green in

Fig. 3. This surface is not a cylinder but still possesses the

same geodesic circular helix. This fact conforms with the

geodesic theory in differential geometry.

4.2. Surface of revolution with a geodesic circle

Let

lðtÞ ¼ ð0; lyðtÞ; lzðtÞÞ; 0 # t # T ; ð4:2Þ

be a parametric curve in the oyz plane satisfying the

following conditions:

lðt0Þ ¼ ð0; a; 0Þ;

l0ðt0Þ ¼ ð0; 0; bÞ; a . 0; b – 0; 0 # t0 # T :

ð4:3Þ

By revolving the curve lðtÞ; as a generating curve, about the

z-axis, we obtain a surface of revolution. Suppose now we

are given a circle

RðrÞ ¼ ða cos r; a sin r; 0Þ; a . 0; 0 # r , 2p: ð4:4Þ

We show how to select the marching-scale functions UðtÞ;

VðtÞ and WðtÞ in terms of lyðtÞ; lzðtÞ such that the surface

family ~Pðr; tÞ is an isogeodesic surface pencil with the circle

RðrÞ as a common geodesic.

Fig. 3. Two surfaces generated with a circular helix: ~Pðr; t;2
ffiffi
5

p
=4;2

ffiffi
5

p
=2Þ (yellow) and ~Pðr; t; 0:1;21Þ (green).
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It is easy to show that

~TðrÞ ¼ ð2sin r; cos r; 0Þ; ~NðrÞ ¼ ð2cos r;2sin r; 0Þ;

~BðrÞ ¼ ð0; 0; 1Þ:

Thus the surface pencil can be represented as

~Pðr; tÞ ¼ ða cos r; a sin r; 0Þ þ ðUðtÞ;VðtÞ;WðtÞÞ

�

2sin r cos r 0

2cos r 2sin r 0

0 0 1

0
BB@

1
CCA;

0 # r , 2p; 0 # t # T :

It follows that ~Pðr; tÞ is a surface of revolution with

generating curve lðtÞ; i.e.

~Pðr; tÞ ¼ ðlyðtÞcos r; lyðtÞsin r; lzðtÞÞ;

if and only if

UðtÞ ¼ 0; VðtÞ ¼ a2 lyðtÞ; WðtÞ ¼ lzðtÞ; 0# t # T :

This leads to the selection

UðtÞ ¼aðt2 t0Þ; VðtÞ ¼bða2 lyðtÞÞ;

WðtÞ ¼ glzðtÞ; g– 0; 0# t # T ;

from which it is easy to see that the functions UðtÞ; VðtÞ; and

WðtÞ comply with the conditions in Eqs. (2.5)–(2.7), given

that lðtÞ satisfies the conditions in Eq. (4.3). By substituting

these choices of marching-scale functions into the surface

pencil equation and rearranging, we obtain the following

isogeodesic surface pencil containing the common geodesic

circle RðrÞ:

Fig. 4 shows a surface of revolution (in yellow) obtained

by setting a ¼ 0; b ¼ 1; g ¼ 1; with the parametric curve

lðtÞ given as

lðtÞ ¼ 0; a
2 cos t þ 3

5

� �
1 2

3t2

40

 !
; bt

 !
;

a ¼ 2; b ¼ 1; t0 ¼ 0; 0 # t , 2p:

Note that it satisfies the conditions in Eq. (4.3). We observe

that when a ¼ 0 and b – 1 or g – 1; the corresponding

member surface is always a surface of revolution. If we

choose a – 0; the corresponding member surface is no

longer a surface of revolution; specifically, Fig. 4 shows a

surface (in green) with a ¼ 0:3; b ¼ 1:1; g ¼ 0:9:

4.3. Surface of revolution with a geodesic

as the generating curve

Suppose we are given a parametric curve in the oyz

plane:

RðrÞ ¼ ð0;YðrÞ;ZðrÞÞ; 0 # r # H: ð4:5Þ

We will construct an isogeodesic surface pencil sharing the

curve RðrÞ as the geodesic, and such that a member of the

pencil is a surface of revolution, on which the curve RðrÞ is

not only a geodesic, but also the generating curve (which

when revolved about the z-axis produces the surface of

revolution).

From the definition of the Frenet frame in Eq (3.2), and

denoting DðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_Y2ðrÞ þ _Z2ðrÞ

p
; we obtain

~TðrÞ ¼ ð0; _YðrÞ; _ZðrÞÞ=DðrÞ; ~NðrÞ ¼ ð0;2 _ZðrÞ; _YðrÞÞ=DðrÞ;

~BðrÞ ¼ ð1;0;0Þ; 0# r #H:

The isogeodesic surface pencil generated is

~Pðr;tÞ¼ wðr;tÞ;YðrÞþ
uðr;tÞ _YðrÞ2vðr;tÞ _ZðrÞ

DðrÞ
;ZðrÞ

 

þ
uðr;tÞ _ZðrÞþvðr;tÞ _YðrÞ

DðrÞ

!
; 0#r#H;0#t#T : ð4:6Þ

Now we consider a member of the above isogeodesic

surface pencil ~Pðr;tÞ: If the surface is generated by rotation,

its parameter t is chosen as a rotation angle, and the

starting angle t0 is equal to p=2; then it must be in the

following form

~Pðr;tÞ¼ðYðrÞcost;YðrÞsint;ZðrÞÞ; 0#r#H;0#t,2p:

Hence we have wðr;tÞ¼YðrÞcost; and

_YðrÞuðr;tÞ2 _ZðrÞvðr;tÞ

DðrÞ
¼YðrÞðsint21Þ;

_ZðrÞuðr;tÞþ _YðrÞvðr;tÞ

DðrÞ
¼0:

8>>><
>>>:

ð4:7Þ

Thus, suppose aðrÞ; bðrÞ and gðrÞ–0 are arbitrary three

real functions, we set the marching-scale functions as

uðr;tÞ¼2aðrÞYðrÞ _YðrÞð12sintÞ=DðrÞ;

vðr;tÞ¼bðrÞYðrÞ _ZðrÞð12sintÞ=DðrÞ;

wðr;tÞ¼gðrÞYðrÞcost;

8>><
>>:
aðrÞ;bðrÞ;gðrÞ[R1

;gðrÞ–0;0#r#H;0#t,2p;

ð4:8Þ

~Pðr; t;a;b;gÞ ¼ ð2aðt 2 t0Þsin r þ ½a 2 bða 2 lyðtÞÞ�cos r;

aðt 2 t0Þcos r þ ½a 2 bða 2 lyðtÞÞ�sin r;glzðtÞÞ

0 # r , 2p; 0 # t # T ;

8>><
>>:

���������
a;b;g [ R1

;

g – 0

9>>=
>>;:
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to obtain the isogeodesic surface pencil

{ ~Pðr;t;aðrÞ;bðrÞ;gðrÞÞlaðrÞ;bðrÞ;gðrÞ[R1
;gðrÞ–0}:

When aðrÞ;bðrÞ;gðrÞ;1; the functions uðr;tÞ; vðr;tÞ and

wðr;tÞ are just the solution to system (4.7); the correspond-

ing member surface ~Pðr;t;1;1;1Þ¼ðYðrÞcost;YðrÞsint;ZðrÞÞ

is thus also a surface of revolution.

Note that we can easily verify that the marching-scale

functions satisfy the conditions for ~NðrÞk ~nðr; t0Þ; 0 # r #

H given in Eq. (3.5) with t0 ¼ p=2: Thus, Eqs. (4.6) and

(4.8) are exactly what we are looking for.

Fig. 5 depicts two members of the isogeodesic surface

pencil where the geodesic is given as

RðrÞ ¼ ð0; cos r þ 1:5; rÞ; 0 # r # 5;

the green and yellow surfaces have their pencil parameters

set as aðrÞ ¼ 1; bðrÞ ¼ 1; gðrÞ ¼ 1 and aðrÞ ¼ 1:2; bðrÞ ¼

1:2; gðrÞ ¼ 1:8; respectively. It is observed that the yellow

surface is not a surface of revolution.

4.4. Ruled surface with a geodesic directrix

Ruled surfaces are an important class of surfaces widely

used in many CAD systems. In this last example, we show

how to derive the formulation of a ruled isogeodesic surface

pencil such that the shared geodesic curve is also the directrix

of the ruled surfaces. Let rðsÞ be a 3D curve where s is the arc

length. Suppose Pðs; tÞ is a ruled surface with the directrix

rðsÞ; this means that the entire surface Pðs; tÞ is spanned by

straight lines emanating from the curve rðsÞ ¼ Pðs; t0Þ going

Fig. 5. Two surfaces with a geodesic generating curve: ~Pðr; t; 1; 1; 1Þ (green) and ~Pðr; t; 1:2; 1:2; 1:8Þ (yellow).

Fig. 4. Two surfaces with a common circle geodesic: ~Pðr; t; 0; 1; 1Þ (yellow) and ~Pðr; t; 0:3; 1:1; 0:9Þ (green).
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in the direction DðsÞ for some parameter t0; that is,

Pðs; tÞ2 Pðs; t0Þ ¼ ðt 2 t0ÞDðsÞ;

0 # s # L; 0 # t # T ; t0 [ ½0;T�:

From Eq. (2.2), the surface is equivalent to

ðuðs; tÞ; vðs; tÞ;wðs; tÞÞ

TðsÞ

NðsÞ

BðsÞ

0
BB@

1
CCA ¼ ðt 2 t0ÞDðsÞ;

0 # s # L; 0 # t # T ; t0 [ ½0;T�:

Writing the above equation for each of its coordinate

components, we obtain a system of three equations with

three unknowns uðs; tÞ; vðs; tÞ; and wðs; tÞ:Denoting the scalar

triple product of three vectors a;b; and c as ða; b; cÞ; their

solutions can be represented as:

uðs; tÞ ¼ ðDðsÞ;NðsÞ;BðsÞÞðt 2 t0Þ;

vðs; tÞ ¼ ðTðsÞ;DðsÞ;BðsÞÞðt 2 t0Þ;

wðs; tÞ ¼ ðTðsÞ;NðsÞ;DðsÞÞðt 2 t0Þ;

8>><
>>:
0 # s # L; 0 # t # T ; t0 [ ½0;T�:

ð4:9Þ

The above equations are just the necessary and sufficient

conditions for which Pðs; tÞ is a ruled surface with a directrix

rðsÞ:Next, we need to check if the curve rðsÞ is also a geodesic

on the surface Pðs; tÞ by using the conditions given in Eq.

(2.6). It is evident that in this case these conditions become:

ðTðsÞ;DðsÞ;BðsÞÞ ¼ 0;

ðTðsÞ;NðsÞ;DðsÞÞ – 0;

(
0 # s # L:

It follows that the at any point on the curve rðsÞ; the ruling

direction DðsÞ must be in the plane formed by TðsÞ and BðsÞ:

On the other hand, the ruling direction DðsÞ and the vector

TðsÞ must not be parallel. This implies

DðsÞ ¼ aðsÞTðsÞ þ bðsÞBðsÞ;

bðsÞ – 0; 0 # s # L

ð4:10Þ

for some real functions aðsÞ and bðsÞ: Substituting it into the

expressions in Eq. (4.9), we get

uðs; tÞ ¼ aðsÞt; vðs; tÞ ¼ 0; wðs; tÞ ¼ bðsÞt;

bðsÞ – 0:

So, the isogeodesic surface pencil with the common geodesic

directrix rðsÞ is given by

{Pðs; t;a;bÞ ¼ rðsÞ þ taðsÞTðsÞ þ tbðsÞBðsÞ; 0 # s # L; 0

# t # T la;b [ R1
; b – 0};

where aðsÞ and bðsÞ are two controlling functions of the

pencil.

It should be pointed out that in this model, there exist two

geodesics passing through every point on the curve rðsÞ—

one is rðsÞ itself, and the other is a straight line in the

direction DðsÞ as given in Eq. (4.10). Every member of the

isogeodesic surface pencil is decided by two pencil

parameters aðsÞ and bðsÞ; i.e. by the direction vector

function DðsÞ: Fig. 6 shows two member surfaces of a ruled

isogeodesic surface pencil whose geodesic directrix is the

circular helix in Eq. (4.1), with a ¼ 2; b ¼ 1; T ¼ 10: The

controlling functions of the two surfaces are aðrÞ ¼ bðrÞ ¼ffiffi
r

p
ðyellowÞ and aðrÞ ¼ 1:3

ffiffi
r

p
; bðrÞ ¼ 1:1

ffiffi
r

p
sinðr=4Þ

(green), respectively.

5. An application example in garment design

In this section, we demonstrate how the methodology of

constructing an isogeodesic surface pencil developed in this

paper can be used in garment design. A piece of garment,

Fig. 6. Two ruled surfaces with a circular helix geodesic: ~Pðr; t;
ffiffi
r

p
;
ffiffi
r

p
Þ (yellow) and ~Pðr; t; 1:3

ffiffi
r

p
; 1:1

ffiffi
r

p
sin ðr=4ÞÞ (green).

G.-J. Wang et al. / Computer-Aided Design xx (2003) xxx–xxx8

ARTICLE IN PRESS



such as a dress, is usually characterized by some key curves,

e.g. the waist line and chest line, which are assigned

measurements or dimensions. Given the nominal size of a

design, these salient dimensional curves are usually fixed,

while the shape of the garment itself may change to suit the

design intents. Many of these key dimensional curves are

required to be straight or near-straight lines when the piece

of clothing is flattened into its planar counter-part. There-

fore, in principle, these dimensional curves are preferred to

be geodesics on the surface of the garment. Fig. 7 shows a

dress with its waist line marked in black; here the waist line

happens to be a planar curve but it need not be so in general.

We now apply the concept of isogeodesic surface pencil

to the design of a dress. Assume that we are given a mesh

model for the dress. This initial model could be obtained

from some existing sample via laser scanning or based on

some conceptual designs. Also assume that the waist line is

the only key dimensional curve, represented as a 3D B-

spline curve RðrÞ embedded on the given model. Basically,

we want to model the dress as an isogeodesic surface with

RðrÞ as a geodesic. The initial model can be thought of as a

reference design. The objective is to find the ‘nominal’

values—ap
1; ap

2; ap
3; bp

2; bp
3; cp1; cp2; cp3—of the eight parameters

so that the corresponding member surface (as defined by

Eqs. (3.6) and (2.8)) contains RðrÞ as a geodesic and closely

approximates this reference design. Once these nominal

parameters are determined, the designer can then change the

eight parameters around these values to modify the shape of

the dress, while having the comfort that, no matter what

values the parameters take, the corresponding surface

always has RðrÞ as a geodesic.

To find these nominal parameter values, we employ the

least square fitting method. Specifically, the initial model is

sampled to obtain a set of data points {Qi; j}
m;n
i¼1 j¼1 [ R3;

capturing the important characteristics such as the boundary

and other critical points. We assume that the data points are

sampled in a sectional fashion; that is, the points in the ith

row {Qi; j}j¼1;2;…;n lie on a plane parallel to the curve RðrÞ;

and they are ordered in the row from ‘left’ to ‘right’. The

waist line RðrÞ divides the surface of the model into two

regions: Slower and Supper: Let the first k rows be in Slower and

the rest of the rows be in Supper: Let the parameter range for

the surface ~Pðr; tÞ be ½0;H� £ ½0; 1�: A simple parameteriza-

tion scheme for the two regions Supper and Slower is suggested

as follows:

Qi; j $ ðrj; tiÞ; i ¼ 1; 2;…;m; j ¼ 1; 2;…; n;

rj ¼
H
Xj21

h¼1
kQi;hþ1 2 Qi;hkXn21

h¼1
kQi;hþ1 2 Qi;hk

; j ¼ 1; 2;…; n;

ti ¼

0:5 £

Xi21

j¼1
kQjþ1;j 2 Qj;jkXk21

j¼1
kQjþ1;j 2 Qj;jk

0
@

1
A; if i # k

0:5 £ 1 þ

Xi21

j¼kþ1
kQjþ1;j 2 Qj;jkXm21

j¼kþ1
kQjþ1;j 2 Qj;jk

0
@

1
A; if i . k

8>>>>>><
>>>>>>:

;

i ¼ 1; 2;…;m:

Fig. 7. The original model of a dress and its waist line.
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Note that, with this parameter assignment, the parameter for

the curve RðrÞ is t0 ¼ 0:5: Introducing a variable g to iterate

through the x; y; z coordinates of the various vector

functions, the cost function of the approximation can be

expressed as

Fða1; a2; a3; b2; b3; c1; c2; c3Þ ¼
Xm
i¼1

Xn

j¼1

k ~Pðrj; tiÞ2 Qi; jk
2

¼
Xm
i¼1

Xn

j¼1

X
g¼x;y;z

½RgðrjÞ þ ðUðtiÞ ~TgðrjÞ þ VðtiÞ ~NgðrjÞ

þ WðtiÞ ~BgðrjÞÞ2 ðQgÞi; j�
2
;

where UðtiÞ; VðtiÞ; WðtiÞ and ~TgðrjÞ; ~NgðrjÞ; ~BgðrjÞ; g ¼ x; y; z;

can be computed by Eqs. (2.8) and (3.2), respectively. To

minimize this cost function, its partial derivatives with

respect to the variable parameters are set to zero. Thus, we

obtain a system of linear equations in the eight variables, a1;

a2; a3; b2; b3; c1; c2 and c3 :

›F

›al

¼
Xm
i¼1

Xn

j¼1

ðti 2 t0Þ
l
X

g¼x;y;z

~TgðrjÞ

0
@

1
A½RgðrjÞþðUðtiÞ ~TgðrjÞ

þVðtiÞ ~NgðrjÞþWðtiÞ ~BgðrjÞÞ2 ðQgÞi; j�

¼ 0;

Fig. 8. Nominal isogeodesic surface with its parameters.

Fig. 9. The superimposed original (purple) and the nominal isogeodesic (blue) surfaces.
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›F

›bh

¼
Xm
i¼1

Xn

j¼1

ðti 2 t0Þ
h
X

g¼x;y;z

~NgðrjÞ

0
@

1
A½RgðrjÞþ ðUðtiÞ ~TgðrjÞ

þVðtiÞ ~NgðrjÞþWðtiÞ ~BgðrjÞÞ2 ðQgÞi; j�

¼ 0;

›F

›ck

¼
Xm
i¼1

Xn

j¼1

ðti 2 t0Þ
k
X

g¼x;y;z

~BgðrjÞ

0
@

1
A½RgðrjÞþ ðUðtiÞ ~TgðrjÞ

þVðtiÞ ~NgðrjÞþWðtiÞ ~BgðrjÞÞ2 ðQgÞi;j�

¼ 0;

l¼ 1;2;3; h¼ 2;3; k¼ 1;2;3:

The solutions to the above system of equations—ap
1; ap

2;

ap
3; bp

2; bp
3; cp1; cp2; cp3—are the nominal parameters sought.

The corresponding surface closely approximates the initial

model and at the same time possesses curve RðrÞ as a

geodesic. By changing the values of the eight parameters

around their nominal values, one can achieve different

designs for the dress, all of which share the same geodesic

waist line RðrÞ:

As an illustration, the nominal isogeodesic surface
~Pðr; t; ap

1; a
p
2; a

p
3; b

p
2; b

p
3; c

p
1; c

p
2; c

p
3Þ that approximates the orig-

inal reference model of Fig. 7 is shown in Fig. 8; for

comparison purpose, it is also shown in Fig. 9 superimposed

with the original reference surface. Three variations of the

design surface are shown in Fig. 10, with one being

the nominal and the other two obtained by deviating the

nominal parameter values {bp
2; b

p
3; c

p
1; c

p
2; c

p
3} by certain

amounts. We point out that in this particular example the

three parameters a1; a2; and a3 are kept unchanged, as the

original model is symmetric about its center line and it is

found that changes of these three parameters from their

nominal values will alter this symmetry.

6. Conclusion

We have presented a method for finding a surface pencil

whose members all share a given geodesic curve as an

isoparametric curve. The surface pencil is controlled by three

marching-scale functions. For the simpler case when

Fig. 10. Three members of an isogeodesic surface pencil.
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the marching-scale functions are univariate and cubic, the

surface pencil is parameterized by eight constants. We verify

the method by finding exact surface pencil formulations

whose members include simple surfaces that are commonly

used in CAD. To illustrate potential applications of our

method, we show how to find the surface pencil represen-

tation for surfaces of more general object models. Least

square fitting is employed to fit the surface of the given model

and the resulting linear system is solved for the values of the

eight parameters. These values can then be perturbed to

achieve variations in the design surface, which are guaran-

teed to produce surfaces that contain the given geodesic.

Several open issues remain. While requiring the shared

geodesic to be an isoparametric curve on the surface greatly

simplifies the derivation and analysis of the formulae, the

constraint nevertheless limits the domain of surfaces sharing

the same geodesic curve. One possible alternative is to

consider the realm of implicit surfaces FðX;Y ;ZÞ ¼ 0 and

attempt to establish the conditions for a given parametric

curve rðsÞ to be a geodesic on FðX; Y ; ZÞ ¼ 0: Another

possibility is that, while still requiring the surface to be

parametric, the curve rðsÞ does not have to be isoparametric

on the parametric surface ~Pðr; tÞ; but instead is related to
~Pðr; tÞ by an algebraic constraint; that is, rðsÞ ¼ ~PðrðsÞ; tðsÞÞ

where rðsÞ and tðsÞ are two pre-specified algebraic functions.

A further relaxation is to allow multiple geodesics: given m

parametric curves riðsÞ and 2m smooth algebraic functions

riðsÞ and tiðsÞ; i ¼ 1; 2;…;m; find a geodesic surface pencil
~Pðr; tÞ such that riðsÞ ¼ ~PðriðsÞ; tiðsÞÞ and riðsÞ; i ¼

1; 2;…;m; are geodesics on ~Pðr; tÞ:
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