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Parametric Resonance Characteristics
of Laminated Composite

Doubly Curved Shells Subjected
to Non-Uniform Loading

S. K. SAHU AND P. K. DATTA*

Department of Aerospace Engineering

I.I.T.

Kharagpur-721302, India

ABSTRACT: The parametric resonance characteristics of laminated composite doubly
curved panels subjected to various in-plane static and periodic compressive edge loadings,
including partial and concentrated edge loading are studied using finite element analysis.
The first order shear deformation theory is used to model the doubly curved panels, consid-
ering the effects of transverse shear deformation and rotary inertia. The theory used is the
extension of dynamic, shear deformable theory according to the Sander’s first approxima-
tion for doubly curved laminated shells, which can be reduced to Love’s and Donnell’s
theories by means of tracers. The effects of number of layers, static load factor, side to
thickness ratio, shallowness ratio, boundary conditions, degree of orthotropy, ply orienta-
tions and various load parameters on the principal instability regions of doubly curved
panels are studied in detail using Bolotin’s method. Quantitative results are presented to
show the effects of shell geometry, lamination details and load parameters on the stability
boundaries. Results of plates and cylindrical shells are also presented as special cases and
are compared with those available in the literature.

KEY WORDS: composite, doubly curved shell, non-uniform loading, instability, finite
element.

INTRODUCTION

S
TRUCTURAL ELEMENTS SUBJECTED to in-plane periodic forces may lead to

parametric resonance, due to certain combinations of the values of load

parameters. The instability may occur below the critical load of the structure under

compressive loads over wide ranges of excitation frequencies. Several means of
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combating resonance such as damping and vibration isolation may be inadequate

and sometimes dangerous with reverse results [1]. Thus the parametric resonance

characteristics are of great importance for understanding the dynamic systems

under periodic loads. The parametric instability characteristics of laminated com-

posite flat panel subjected to uniform loads were studied by several authors [2–4].

Parametric resonance in shell structures under periodic loads has been of consider-

able interest since the subject was more elaborately introduced by Bolotin [5] and

Yao [6]. The parametric instability of thick orthotropic cylindrical shells was stud-

ied analytically by Bert and Birman [7]. The dynamic instability of composite sim-

ply-supported circular cylindrical shell was analysed by the Method of Multiple

Scale (MMS) by Cederbaum [8]. A perturbation technique was employed by

Argento and Scott [9–11] to study the instability regions subjected to axial loading

and torsional loading. The dynamic instability of laminated composite circular

cylindrical shells was studied by Ganapathi and Balamurugan [12] using a C0

shear flexible two noded axisymmetric shell element. The dynamic stability of

cross-ply laminated composite cylindrical shells under combined static and peri-

odic axial force was investigated by Ng, Lam and Reddy [13] using Love’s classi-

cal theory of thin shells. Most of the above mentioned investigators studied the

dynamic stability of uniformly loaded closed cylindrical shells with a simply sup-

ported boundary condition. Recently the parametric instability of laminated com-

posite conical shells under periodic edge loading was studied by Ganapathi et al.

[14]. The practical importance of stability analysis of doubly curved panels/open

shells has been increased in structural, aerospace (skin panels in wings, fuselage

etc.), submarine hulls and mechanical applications. The static [15] and free vibra-

tion [16–19] characteristics of doubly curved shallow shells/curved panels were

studied by a number of researchers and well reviewed [20,21]. The vibration and

buckling stresses were studied for cylindrical panels [22–24] and isotropic thick

simply-supported double curved open shells/panels [25]. The buckling character-

istics of flat panel [26,27] and closed cylindrical shell [28,29] due to concentrated

loadings were also investigated. The study of the parametric instability behaviour

of curved panels is new. Recently, the effects of curvature and aspect ratio on

dynamic instability for a uniformly loaded laminated composite thick cylindrical

panel were studied by Ganapathi et al. [30]. However, no results have been

reported in the literature on parametric instability of doubly curved composite

shells. Besides this, the applied load and boundaries are seldom uniform in prac-

tice. The application of non-uniform loading and boundary conditions on the

structural component will alter the global quantities such as free vibration fre-

quency, buckling load and dynamic instability region (DIR).

In the present study, the parametric instability of doubly curved composite

panels subjected to various in-plane non-uniform loads, including partial and con-

centrated edge loadings are investigated. The influences of various parameters like

effects of number of layers, static and dynamic load factors, side to thickness ratio,



shallowness ratio, various boundary conditions, ply orientations, load bandwidth

and position of concentrated loads on the instability behaviour of curved panels

have been examined. The present formulation of the problem is made general to

accommodate a doubly curved panel with finite curvatures in both the directions

having arbitrary load and boundary conditions.

THEORY AND FORMULATIONS

The basic configuration of the problem considered here is a doubly curved panel

subjected to various non-uniform in-plane edge loadings, boundary conditions

and is shown in Figure 1.

Governing Equations

The equation of equilibrium for free vibration of a structure subjected to

in-plane loads can be written as:

(1)

The in-plane load P(t) is periodic and can be expressed in the form

(2)

where Ps is the static portion of P. Pt is the amplitude of the dynamic portion of P

and Ω is the frequency of excitation. The static buckling load of elastic shell Pcr is

the measure of the magnitude of Ps and Pt,

(3)

where α and β are termed as static and dynamic load factors respectively. Using

Equation (2) the equation of motion is obtained as:

(4)

Equation (4) represents a system of second order differential equations with

periodic coefficients of the Mathieu-Hill type. The development of regions of

instability arises from Floquet’s theory which establishes the existence of periodic
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(a)

(b)

Figure 1. Geometry and co-ordinate systems of a doubly curved panel: (a) partial loading;
(b) concentrated loading.



solutions. The boundaries of the dynamic instability regions are formed by the

periodic solutions of period T and 2T, where T = 2π/Ω. The boundaries of the pri-

mary instability regions with period 2T are of practical importance [3] and the

solution can be achieved in the form of the trigonometric series

(5)

Putting this in Equation (4) and if only first term of the series is considered,

equating coefficients of sin Ωt/2 and cos Ωt/2, the Equation (4) reduces to

(6)

Equation (6) represents an eigenvalue problem for known values ofα, β and Pcr.

The two conditions under a plus and minus sign correspond to two boundaries of

the dynamic instability region. The eigenvalues are Ω, which give the boundary

frequencies of the instability regions for given values of α and β. In this analysis,

the computed static buckling load of the panel is considered as the reference load

[31,32].

An eight-noded curved isoparametric element is employed in the present analy-

sis with five degrees of freedom u, v, w, θx and θy per node. First order shear defor-

mation theory is employed and the shear correction coefficient accounts for the

nonlinear distribution of the thickness shear strains through the total thickness.

The displacement field assumes that mid-plane normal remains straight before and

after deformation, but not necessarily normal after deformation, so that

(7)

where θx, θy are the rotations of the mid surface.

Also and u, v and w are displacement components in the x, y, z directions

at any point and at the mid surface respectively. The constitutive relationships for

the shell becomes
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(8)

where Aij, Bij, Dij and Sij are the extension-bending coupling, bending and trans-

verse shear stiffness respectively [33]. A shear correction factor of 5/6 is included

in Sij for all the numerical computations. Extension of shear deformable Sander’s

kinematic relations for doubly curved shells [15–17] are used in the analysis. The

linear strain displacement relations are

(9)

where

(10)

and C1 and C2 are tracers by which the analysis can be reduced to that of shear

deformable Love’s first approximation and Donnell’s theories. The element
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geometric stiffness matrix for the doubly curved panel is derived using the nonlin-

ear strain components as:

(11)

The overall matrices [Ke], [Kg] and [M] are obtained by assembling the corre-

sponding element matrices.

Computer Program

A computer program has been developed to perform all the necessary computa-

tions. The element stiffness and mass matrices are derived using a standard proce-

dure. The geometric stiffness matrix is essentially a function of the in-plane stress

distribution in the element due to applied edge loading. Since the stress field is

non-uniform, plane stress analysis is carried out using the finite element tech-

niques to determine the stresses and these stresses are used to formulate the geo-

metric stiffness matrix. Reduced integration technique is adopted for the element

matrices in order to avoid possible shear locking. The overall matrices [Ke], [Kg]

and [M] are obtained by assembling the corresponding element matrices, using

skyline technique. Subspace iteration method is adopted throughout to solve the

eigenvalue problems.

RESULTS AND DISCUSSIONS

The convergence studies are made for non-dimensional fundamental frequen-

cies of vibration of doubly curved cross-ply and angle-ply shells. Shells of various
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geometry such as cylindrical (Ry/Rx = 0), spherical (Ry/Rx = 1), and hyperbolic

paraboloidal shells (Ry/Rx = –1) are studied. The results are shown in Table 1 and

Table 2. This shows good convergency of the numerical solutions. A 10 × 10 mesh

has been employed to idealise the panel in the subsequent analysis. This idealisa-

tion is chosen in order to apply compression to a small fraction of the edge length

and also for convergence criterion. The converged results compare well with the

results by Qatu and Leissa [18]. The present formulation is validated for free vibra-

tion analysis of a doubly curved cross ply and angle-ply shells. The results are

Table 1. Convergence of non-dimensional frequencies without
in-plane load of doubly curved 0°/90°/0° cross ply shells/panels.

a/b = 1, b/h = 100, b/Ry = 0.5
E11 = 138 GPa, E22 = 8.96 GPa, G12 = 7.1 GPa, 12 = 0.3

Non-dimensional frequency,

Mesh Division

Non-Dimensional Frequencies of Shells

Plate Cylindrical Spherical

Hyperbolic

Paraboloid

4 × 4 0.9988 1.8607 1.5428 1.4776

8 × 8 0.9986 1.8606 1.5313 1.4586

10 × 10 0.9986 1.8606 1.5305 1.4577

Reference [18] (0.9998) (1.8652) (1.5362) (1.4645)

Table 2. Convergence of non-dimensional frequencies without
in-plane load of doubly curved 45°/–45°/45° angle ply shells/panels.

a/b = 1, b/h = 100, b/Ry = 0.5
E11 = 138 GPa, E22 = 8.96 GPa, G12 = 7.1 GPa, 12 = 0.3

Non-dimensional frequency,

Mesh Division

Non-Dimensional Frequencies of Shells

Plate Cylindrical Spherical

Hyperbolic

Paraboloid

4 × 4 0.4600 1.6990 1.3507 0.9703

8 × 8 0.4581 1.6587 1.2977 0.9223

10 × 10 0.4577 1.6545 1.2941 0.9183

Reference [18] (0.4607) (1.6574) (1.3063) (0.9234)
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presented in Tables 3 and 4, showing good comparison with the literature. To vali-

date the formulation further, the buckling results of singly and doubly curved

shells/panels are compared with those available in the literature. The buckling

results for singly and doubly curved shells are shown in Table 5 and Table 6 respec-

tively. The above studies indicate good agreement exits between the present study

and those from the literature. Once the free vibration and buckling results are vali-

dated, the dynamic instability studies are made.

Table 3. Non-dimensional fundamental frequencies for the simply
supported four layered cross-ply (0°/90°/90°/0°) spherical shell.

E11/E22 = 25, G23 = 0.2E22, G12 = G13 = 0.5E22, 12 = 0.25

Non-dimensional frequency,

R/b

a/h = 100 a/h = 10

Ref. [16] Ref. [17]

Present

FEM Ref. [16] Ref. [17]

Present

FEM

1 126.33 126.7 126.32 16.172 16.195 16.146

2 68.294 68.284 68.293 13.459 13.459 13.440

3 47.415 47.553 47.415 12.795 12.805 12.793

4 37.082 37.184 37.082 12.552 12.560 12.551

5 31.079 31.159 31.079 12.437 12.444 12.436

10 20.380 20.417 20.380 12.280 12.286 12.280

1030 (plate) 15.184 15.195 15.184 12.226 12.233 12.226

 
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2

2
22

a
E h
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Table 4. Non-dimensional fundamental frequencies for the various
simply supported doubly curved angle-ply shells/panels.

a/b = 1, h/Rx = 1/500, a/h = 100
E11/E22 = 25, G23 = 0.2E22, G12 = G13 = 0.5E22, 12 = 0.25

Non-dimensional frequency,

Laminations

Spherical Elliptical Paraboloid Hyperbolic Paraboloid

Ref. [33]

Present

FEM Ref. [33]

Present

FEM Ref. [33]

Present

FEM

0/45/0 41.748 41.6659 33.468 33.291 15.335 15.2847

(0/45)s 45.535 45.3005 36.634 36.3207 15.756 15.6999

45/–45 49.289 49.1690 37.985 37.8152 15.174 15.1429

(45/–45)2 58.94 58.8263 50.421 49.3048 19.393 19.3909

 
=  

 
2

2
22
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Table 5. Non-dimensional buckling loads for the
simply supported singly-curved cylindrical panel.

a = 0.25 m, b = 0.25 m, h = 2.5 mm, a/Rx = 0, E11 = 2.07 × 1011 N/m2,
E22 = 5.2 × 109N/m2, G12 = 2.7 × 109N/m2, 12 = 0.25

Non-dimensional buckling load,

b/Ry

Non-Dimensional Buckling Loads

Orientation Present FEM Ref. [22]

0 90/0

0/90

12.63

12.63

12.63

12.63

0.1 90/0

0/90

17.629

17.612

17.51

17.49

0.2 90/0

0/90

32.565

32.5027

32.06

32.17

0.3 90/0

0/90

57.28

57.117

56.28

56.62

= xN b

E h

2

3
22

�

Table 6. Non-dimensional buckling stresses for the
simply supported doubly-curved shell/panel.

a/b = 1, E11 = E22 = 70 GPa, G12 = G23 = 26.923 GPa, 12 = 21 = 0.3

Non-dimensional buckling stress,

Ds =

a/h a/Rx b/Ry

Non-Dimensional Buckling Stresses

Present FEM Ref. [25]

10 0

0.2

0

–0.2

0

0.2

0.2

0.2

3.7315

4.1591

3.8307

3.7006

3.7412

4.1394

3.8391

3.7100

20 0

0.2

0

–0.2

0

0.2

0.2

0.2

3.9288

5.6957

4.3627

3.897

3.9307

5.6904

4.3636

3.9012

= x
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Parametric Instability Studies

The parametric instability regions are plotted for a uniaxially loaded doubly

curved panel with/without static component to consider the effect of various

parameters. A simply supported doubly curved panel of a = b = 500 mm, h = 2 mm,

ρ= 1580 kg/m3, E11 = 141.0 GPa, E22 = 9.23 GPa, G12 = G13 = 5.95 GPa, G23 = 2.96

GPa, ν12 = 0.313, Rx = Ry = 2000 mm is described as standard case and the com-

puted buckling load of this eight layer antisymmetric angle ply panel is taken as the

reference load for all further computations. The non-dimensional excitation

frequency is used throughout the dynamic instability studies,

(unless otherwise mentioned) where is the excitation frequency in radian/sec-

ond. The effect of number of layers is shown in Figure 2. The dynamic instability

regions have been plotted for 2, 4, 8 and 10 layer antisymmetric angle-ply doubly

curved shell panel. It is seen that the effect of number of layers does not vary much

beyond 8 layers. Hence, the further parametric studies are carried out for 8 layer

angle ply shells only. The effect of static component of load forα = 0.0, 0.2 and 0.4

on the instability region is shown in Figure 3. Due to increase of static component,

the instability regions tend to shift to lower frequencies and become wider. The

effect of degree of orthotropy is studied for E11/E22 = 40, 25, 15, keeping other

material parameters constant and is shown in Figure 4. The study shows an

decrease of excitation frequencies with decrease of degree or orthotropy. Figure 5

Ω
2 2

22/a E hΩ = Ω ρ

Figure 2. Effect of number of layers on instability region of an antisymmetric angle-ply shell:
a/b = 1, b/h = 250, a/Rx = b/Ry = 0.25, α = 0.2, N = 2, 4, 8, 10.



Figure 4. Effect of degree of orthotropy on instability region of a (±45°)2 antisymmetric
angle-ply shell: a/b = 1, b/h = 250, a/Rx = b/Ry = 0.25, α = 0.2, G12/E22 = G13/E22 = 0.6,
G23/E22 = 0.5, E11/E22 = 40, 25, 15.

Figure 3. Effect of static load on instability region of a fully-loaded antisymmetric angle-ply
shell: a/b = 1, b/h = 250, a/Rx = b/Ry = 0.25, α = 0, 0.2, 0.4.



shows the influence of different boundaries on the instability regions. The

boundaries considered are: simply supported on all sides (SSSS), simply sup-

ported on curved surfaces and clamped boundary conditions on straight edges

(SCSC) and all sides clamped (CCCC). As expected the excitation frequencies

increase from simply supported to clamped edges due to the restraint at the edges.

The effect of the shallowness of curved panel on the instability regions is shown in

Figure 6. It is observed that, the instability excitation frequency is higher by

decreasing Rx and Ry. The effect of lamination angle has been studied for uniaxial

loading with static component. The lamination angles considered are: 0°, 15°, 30°,

45°, 60°, 75°, 90°. As observed in Figure 7, the instability region is smaller and

starts at higher frequencies with greater the lamination angle for this range of

thickness ratio b/h and material properties for uniaxially loaded shell. The ply

orientation of 45° seems to be a preferential orientation for this type of panel. For

this orientation, the instability region shifts to higher frequencies and becomes

narrower in comparison with other orientations. Similar trends are also observed

by Narita and Zhao [34] based on an optimisation study on free vibration

characteristics of this range of shells. Studies have also been made (Figure 8) for

comparison of instability regions for different shell geometries. It is observed that

the excitation frequency increases with introduction of curvatures from cylindrical

panel to doubly curved panel. However, the hyperbolic paraboloid shows interme-

diate stiffness between a singly cylindrical panel to a spherical shell panel. The

Figure 5. Effect of boundary conditions (SSSS, SCSC, CCCC) on instability region of the
curved panel for a/b = 1, b/h = 250, a/Rx =0.0, b/Ry = 0.25 and α = 0.2.



Figure 6. Effect of shallowness on instability region of the curved panel for a/b = 1, b/h =
250, a/Rx = b/Ry = 0.3, 0.2, 0.1, α = 0.2.

Figure 7. Effect of different ply orientations on instability region of a (±45)2 antisymmetric
angle-ply simply supported cylindrical panel: a/b = 1, b/h = 250, b/Ry = a/Rx = 0.25,α= 0.2.



Figure 8. Effect of curvature on instability region of different curved panels for a/b = 1, b/h =
250, b/Ry = 0.25, a/Rx = 0, 0.25, –0.25, α = 0.0.

Figure 9. Effect of side to thickness ratio on instability region of the curved panel for a/b = 1,
b/h = 100, 200, 250, a/Rx = b/Ry = 0.25, α = 0.2.



effect of side to thickness ratio on instability regions is shown in Figure 9. The

onset of dynamic instability regions occur later for lower b/h ratio and the width of

the instability regions increased with increase of b/h ratio. The investigation has

been extended to instability behaviour under various non-uniform loadings. For

this, various partial and concentrated edge loadings are considered. The instability

behaviour of curved panels under non-uniform loading seems to be quite different

to that of under uniform loading. The onset of dynamic stability regions occurs

earlier with increase of percentage of loaded edge length. Figure 10 shows that the

instability occurs later for a small patch of loading (c/b = 0.2) as compared to a

higher load band width of c/b = 0.8. Even the onset of instability occurs later for the

partial loading from both ends (Figure 11) than that of partial loading from one

end. This may be due to the constraint at the edges. The effects of positions of load-

ings for single (Figure 12) and double pair of concentrated loadings (Figure 13) are

studied. The instability behaviour is also affected by the positions of concentrated

loading. As can be seen, the instability in general occurs at lower excitation fre-

quencies with increase of distance from the edges (c/b). The curved panel with a

small patch of loading behaves in a similar manner to that of a panel subjected to a

pair of concentrated loading near the edges. The panel with a double pair of con-

centrated loading near the edges shows highest stiffness among all the loading

cases considered.

Figure 10. Effect of percentage of loaded edge length on instability region of a spherical
panel for loading at one end, a/b = 1, a/Rx = b/Ry = 0.25, c/b = 0.2 and 0.8, α = 0.2.



Figure 11. Effect of percentage of loaded edge length on instability region of a spherical
panel for loading from both ends, a/b = 1, a/Rx = b/Ry = 0.25, c/b = 0.2 and 0.8,α= 0.2.

Figure 12. Effect of position of concentrated load on instability region of a spherical shell for
single pair of loads, a/b = 1, a/Rx = b/Ry = 0.25, c/b = 0, 0.25 and 0.5, α = 0.2.



CONCLUSIONS

The results of the stability studies of the shells can be summarised as follows:

1. The laminated composite shells become more stiff with more number of layers.

2. Due to static component, the instability regions tend to shift to lower frequen-

cies with wide instability regions showing destabilizing effect on the dynamic

stability behaviour of the curved panel.

3. The instability begins at higher excitation frequencies having wider instability

zones with increase of degree of orthotropy.

4. The instability regions have been influenced due to the restraint provided at the

edges.

5. The instability regions start at higher frequencies with lower shallowness ratio.

6. The ply orientation of 45° seems to be a preferential orientation for uniaxially

loaded antisymmetric angle-ply doubly curved panels for the ranges of geome-

try and material properties considered.

7. The curved panels show more stiffness due to increase of curvatures. The

hyperbolic paraboloid panels behave in between a singly curved cylindrical

panel and a doubly curved spherical shell.

8. The onset of instability occurs at lower excitation frequencies with higher b/h

ratio, but with wider instability region.

Figure 13. Effect of position of concentrated load on instability region of a spherical shell for
double pair of loads, a/b = 1, a/Rx = b/Ry = 0.25, c/b = 0, 0.25 and 0.5, α = 0.2.



9. The onset of instability occurs at a higher excitation frequencies for loadings

having small bandwidth and for concentrated loads near the edges but at lower

frequencies for loading of large bandwidth and for concentrated loads away

from the edges.

SYMBOLS

a, b dimensions of shell

Rx, Ry radii of curvature of shell

c load bandwidth/distance of concentrated load from edge

E11, E22 Young’s modulus

G12, G13, G23 shear modulus

[K] stiffness matrix

[Kg] geometric stiffness matrix

[M] mass matrix

{q} vector of generalized coordinates

w deflection of mid-plane of doubly curved panel

ν12, ν21 Poisson’s ratio

θx, θy rotations about axes

ρ mass density

σx, σy, τxy initial in-plane stresses

Ω, ω frequency of forcing function and transverse vibration

α, β static and dynamic load factors

Pcr critical buckling load
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