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Abstract.

A vibration energy harvester designed to access parametric resonance can
potentially outperform the conventional direct resonant approach in terms of
power output achievable given the same drive acceleration. Although linear
damping does not limit the resonant growth of parametric resonance, a damping
dependent initiation threshold amplitude exists and limits its onset. Design
approaches have been explored in this paper to passively overcome this limitation
in order to practically realise and exploit the potential advantages. Two
distinct design routes have been explored, namely an intrinsically lower threshold
through a pendulum-lever configuration and amplification of base excitation fed
into the parametric resonator through a cantilever-initial-spring configuration.
Experimental results of the parametric resonant harvesters with these additional
enabling designs demonstrated up to an order of magnitude lower initiation
threshold than otherwise, while attaining a much higher power peak than direct
resonance.

PACS numbers: 07.07.Mp, 89.30.-g, 07.07.Df

Keywords: parametric, resonance, vibration, energy harvesting, initiation, threshold

Submitted to: Smart Mater. Struct.

1. Introduction

The fundamental mode of direct mechanical resonance has served as the basis
for the conventional resonant-based vibration energy harvesting [1]. However, it
is neither the sole nor the best resonant phenomenon that can be exploited for
mechanical amplification to maximise mechanical-to-electrical energy conversion for
vibration energy harvesting. This paper explores an alternative candidate: parametric
resonance, which instead of exhibiting a forced response, involves a time dependent
modulation in at least one of the homogenous system parameters at specific frequency
and amplitude conditions. Once activated, unlike its direct resonant counterpart,
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the oscillatory amplitude growth of parametric resonance does not saturate due to
linear damping and only settles with the rise of vibrational nonlinearities at high
amplitudes [2, 3]. The wider transducer community has dubbed this as the ‘parametric
amplification effect’ employed to achieve higher input-to-output sensitivity than direct
resonance [4, 5, 6, 7].

A critical onset condition is a damping-dependent initiation threshold amplitude,
which must be fulfilled prior to accessing this alternative resonant regime, otherwise
the steady state oscillatory response returns to zero. This initiation threshold, as well
as the operational frequency bandwidth of the parametric resonant peaks, rapidly
recede with increasing damping [2, 8]. This results in the elusiveness of parametric
resonance despite its theoretical existence in almost all systems [9]. Previous studies by
the authors have demonstrated over an order of magnitude higher power output when
the same system is driven into parametric resonance rather than direct resonance for
both macro-scale [10, 11] and MEMS-scale devices [12, 13, 14], while demonstrating
the parametric resonant effect for all of the major transducers: electromagnetic [10],
piezoelectric [11] and electrostatic [13]. This study investigates various design routes
to overcome the threshold limitation and realise parametric resonance at practical
vibrational acceleration levels (assumed to be ∼1’s ms−2).

2. Background

Any vibratory system can theoretically exhibit both direct resonance and parametric
resonance depending on the nature of the excitation and boundary conditions. They
can be respectively represented by equations 1 and 2.

ẍ+ cẋ+ ω2

0
x = F cos (ωt) (1)

ẍ+ cẋ+ (ω2

0
+ 2ε cos (ωt))x = 0 (2)

where, x is the oscillatory displacement in the x plane, c is the damping, ω0 is the
natural frequency, ω is the drive frequency, F is the direct forcing amplitude in the
x plane, ε is the parametric excitation amplitude typically orthogonal to the x plane
and t is the time domain; also, unit mass are assumed in these particular equations.

Equation 1 can represent a generic second order mass-spring-damper system
where a forced periodic excitation matching the natural frequency yields the
fundamental mode of direct resonance (ω = ω0). Even when the excitation frequency
operates outside the resonant bandwidth, a forced response can be observed, albeit
relatively minuscule.

On the other hand, parametric resonance represented by a form of the damped
Mathieu equation in equation 2, does not rely on forced excitation but rather a periodic
variation in one of its homogenous system parameters. Parametric excitation is
typically orthogonal (but not exclusively) to the plane of the oscillatory displacement.
Equation 2 can be further reduced to the classical damped Mathieu equation shown
equation 3 [8].

ẍ+ cẋ+ (δ + 2ε cos (2t))x = 0 (3)

where, δ is the natural frequency squared and ω = 2. Figure 1 is known as the
Strutt diagram [2] and is the stability chart for δ and ε parameters in equation 3.
The unshaded area is the stable region where oscillatory displacement x has bounded
solutions and converges to zero at steady state. The shaded unstable region is where
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the onset of parametric resonance can be observed and the oscillatory amplitude builds
up with time until a shift in eigenfrequency from nonlinearities saturates the resonant
growth.

Figure 1: Strutt diagram for principal (1st order) parametric resonance. Shaded area
represent the instability region where parametric resonance can be achieved, which
elevates away from the horizontal base axis with increasing damping, thus creating an
initiation threshold amplitude that excitation amplitude must attain.

Parametric resonance can be activated when the excitation frequency ω is in
the vicinity of 2ω0/n, where ω0 is the natural frequency and n is a positive integer
representing the order number of the parametric resonance. Therefore, the principal
(1st order) parametric resonance can be accessed when the excitation frequency is
2ω0, which corresponds to δ = 1 in figure 1. The second order can then be observed
at δ = 4, the third order at δ = 9, so on and so forth.

The response frequency for any order of parametric resonance is around the
natural frequency. As damping c increases, the unstable region elevates away from the
horizontal axis in the Strutt diagram and an initiation amplitude threshold manifests,
which the excitation amplitude need to minimally attain prior to accessing parametric
resonance even if the desired frequency is matched.

The initiation threshold amplitude has been previously shown to be a key
limiting factor in accessing the profitable regions of parametric resonance within
practical acceleration levels and damping conditions [15, 7]. This is especially true
for energy harvesting as the technology relies on electrical damping to extract energy.
Active actuators have been used in sensor applications to realise the parametric
amplification effect [16, 17], however, extra power expenditure is counterintuitive for
energy harvesting. In the meantime, the acceleration levels of real world infrastructural
vibrations are typically small (0.1’s ms−2 to 1’s ms−2).

Design techniques illustrated in figure 2 have been previously proposed by the
authors [12] to passively minimise this critical threshold in order to practically realise
the profitable regions of the parametric resonance at lower acceleration levels. This
paper presents the detailed experimental investigation of design iterations stemming
from both of the proposed design routes.

Route I represents an electrically undamped parametric resonator coupled to a
subsidiary mechanical amplifier where electrical damping is applied. The instability
region in Route I is intrinsically lowered towards the horizontal axis in figure 1.
Route II employs an electrically undamped mechanical amplifier as an initial spring
to magnify the base excitation fed into the electrically damped parametric resonator.
Here, the horizontal axis in figure 1 is brought up towards the instability region.
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Figure 2: Design routes to minimise the initiation threshold amplitude to activate
parametric resonance at lower acceleration levels..

3. Route I: electromagnetic pendulum and lever configuration

3.1. Design

Figure 3 presents a design iteration of Route I described in figure 2. Figure 3a is a
simple pendulum where the oscillatory angular displacement is directly damped by an
electromagnetic transducer. Figure 3b consists of an electrically undamped pendulum
on the left-hand-side of the pivot, which is allowed to freely experience a build up of
the oscillatory angular displacement with minimal effect from the electrical damping of
the transducer. As the pendulum oscillates, the periodic unbalancing of the lever beam
oscillates the right-hand-side of the lever beam in the x plane, which is electrically
damped by an electromagnetic transducer.

!
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Av#cos(ωt)!

Ah#cos(ωt)!

Coupled!to!
transducer!

(a) Pendulum

!

mg#
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x#

Transducer!

Vibration!propagates!to!
pendulum!suspension!

(b) Pendulum coupled to a lever

Figure 3: Design iteration of a parametric resonator (pendulum) with intrinsically low
initiation threshold by electrically damping the displacement x of the other end of the
lever beam instead of the pendulum displacement θ.

Horizontal excitation of the pendulum corresponds to direct excitation as given
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in equation 4.

θ̈ + cθ̇ + ω2

0
sin θ − ω2

h

Ah

l
cos (ωht) = 0 (4)

where, θ is the angular displacement, ωh is the excitation frequency in the
horizontal axis, Ah is the excitation displacement amplitude in the horizontal axis
and l is the pendulum length. Equation 5 governs the parametric excitation in the
vertical axis.

θ̈ + cθ̇ + (ω2

0
+ ω2

v

Av

l
cos (ωvt)) sin θ = 0 (5)

where, ωv is the excitation frequency in the vertical axis and Av is the excitation
displacement amplitude in the vertical axis. The combination of horizontal (direct)
and vertical (parametric) excitations are governed by equation 6.

θ̈ + cθ̇ + (ω2

0
+ ω2

v

Av

l
cos (ωvt)) sin θ − ω2

h

Ah

l
cos (ωht) = 0 (6)

Detailed governing equations and numerical analysis of this pendulum-lever
system, along with the electromagnetic transduction, have been explored in a previous
macro-scale investigation [10].

SolidWorks schematics of the prototypes explored here, based on the basic
working mechanisms illustrated in figures 3a and 3b, are shown in figures 4 and 5
respectively.

(a) Dimetric view

(b) Side view

Figure 4: SolidWorks drawings of the sole pendulum prototype, dubbed Swing.

Both prototypes employ electromagnetic transducers to convert mechanical
energy into electrical energy. The first prototype (figure 4) is essentially a sole
pendulum with magnets as its pendulum mass, moving against a fixed coil. The
second prototype (figure 5) consists of an eccentric pendulum on one side of the lever
beam while a counter mass made up of magnets rests on the other side of the lever
beam. A coil is fixed against these magnets to complete the transducer.
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(a) Dimetric view

(b) Side view

Figure 5: SolidWorks drawings of the pendulum-lever prototype, dubbed Corsair.

3.2. Apparatus

The experimental prototypes shown in figures 6 (dubbed Swing) and 7 (dubbed
Corsair) are iterations of the designs from figures 3a and 3b respectively and the
realisation of the schematics shown in figures 4 and 5 respectively. Both prototypes
are approximately 300 cm3 in practical device volume at rest, while Corsair has ∼80
cm3 and Swing has ∼150 cm3 in component volume. The harvesters were mounted on
a shaking table, which was driven by an air-cooled electromechanical shaker controlled
by an external function generator and an accelerometer was attached to the shaking
platform to quantify the applied driving force.

The electromagnetic transducers of both harvesters employ orthocyclically wound
copper coils with 50 mm outer diameter, 5 mm inner diameter, 10 mm depth, 90 µ
wire diameter. The magnets were sintered neodymium iron boron (NdFeB). Corsair
contains four rectangular magnets (grade N35H) with individual dimensions of 30
mm length, 10 mm width and 5 mm depth. Swing consists of four circular magnets
(grade N38H) with individual dimensions of 10 mm diameter and 10 mm depth. The
four-magnet configuration [18] is employed to maximise flux density through the coil.
The coil is positioned in a sandwich configuration in between each pair of magnets
with an approximately 1 mm air gap between the magnet and the coil on either
side. Additionally, two pieces of 1 mm thick rectangular mild steel plates have been
magnetically attached to the sides of the magnets facing away from the coil to act as
the magnetic flux keeper to further concentrate the flux density within the transducer.

Optimal electrical load was experimentally found to be between 15 kΩ and 20
kΩ for both devices through impedance matching and the coils measure electrical
resistance of 15 ± 1 kΩ. Although the experimentally matched optimal load resistance
varies depending on amplitude and the specific resonant regime, the variation is
negligible for the studied amplitude and frequency ranges. Lubricated ball bearings
have been used for minimal mechanical damping and energy loss from the cyclic
motions of the pendulum suspension in the Swing and the pivot of the lever beam
for the Corsair. The magnets constituent the primary mass of the pendulum of the
Swing. The electromagnetic transducer is directly coupled to this pendulummass. The
Corsair on the other hand, utilises an eccentric pendulum mass to conserve volume
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Figure 6: Electromagnetic pendulum harvester prototype: Swing.

and the magnets form the counter mass for the other end of the lever beam, which
is then coupled to the electromagnetic transducer. The Swing and Corsair possess
natural frequencies around 1.7 Hz and 4.5 Hz respectively .

3.3. Numerical analysis

Based on the numerical model previously established in [10] and the parameters listed
in table 1, the initiation of parametric resonance was analysed for the two prototypes
using ODE45 solver in MATLAB. A variation of the Strutt stability chart, plotting
excitation frequency against input acceleration, for the Swing and Corsair prototypes
are presented in figures 8 and 9.

Table 1: System parameters used to simulate the stability charts of the Swing and
Corsair prototypes. Damping values are fitted to the experimental prototypes.

Parameter Swing Corsair Units

Natural frequency 1.7 4.5 Hz
Pendulum length 86 12.2 mm

Lever length (pendulum side) n/a 25 mm
Lever length (transducer side) n/a 30 mm

Pendulum mass 0.205 0.097 kg
Lever counter mass n/a 0.080 kg

Mechanical parasitic damping 84.4 18.8 N·s·m−1

Electrical transducer damping 291 295 N·s·m−1

It can be seen that the application of electrical damping, as the mechanical-to-
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Figure 7: Electromagnetic pendulum-lever harvester prototype: Corsair.

(a) Electrically undamped
(b) Electrically damped - significantly higher
initiation threshold amplitude

Figure 8: Simulated stability chart of the Swing prototype where the pendulum
is electrically damped to complete the mechanical-to-electrical energy conversion.
Shaded region represents the unbounded solutions of the Mathieu equation and
the onset of parametric resonance. The addition of electrical damping pushed the
initiation threshold from ∼ 1 ms−2 to ∼ 4.8 ms−2.

electrical transducer is in operation, a noticeable increase in the initiation threshold of
parametric resonance for the Swing prototype occurs. On the other hand, the presence
of electrical damping has minimal effects on the Corsair prototype as the pendulum
(the parametric resonator) is not directly subjected to the electrical damping of the
transducer and is still allowed to freely build-up its oscillatory amplitude.
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(a) Electrically undamped
(b) Electrically damped - slightly higher initiation
threshold amplitude

Figure 9: Simulated stability chart for the Corsair prototype where the pendulum
is intrinsically electrically undamped and the lever beam is electrically damped as
the transducer. Shaded region represents the unbounded solutions of the Mathieu
equation and the onset of parametric resonance. The addition of electrical damping
pushed the initiation threshold from ∼ 0.76 ms−2 to ∼ 1.0 ms−2.

3.4. Power and threshold

Prototypes were subjected to direct (horizontal) and parametric (vertical) excitation
from the shaker. Parametric resonant onset at 3.4 Hz (twice the natural frequency) for
the Swing has been observed for an electrically undamped (open circuit) configuration
when a minimum acceleration of approximately 1 ms−2 is attained. However, with
the application of the resistive load (∼17.6 kΩ), parametric resonance failed initiate
within the scanned acceleration range limited by the physical constraint of the shaker
(maximum displacement ∼10 mm, which translates to 4.56 ms−2 for 3.4 Hz).
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Figure 10: Power response per excitation acceleration levels for the electromagnetic
Swing (pendulum) and Corsair (pendulum-lever) prototypes.

On the other hand, the onset of parametric resonance for the electrically damped
Corsair was much more readily accessible at lower acceleration levels as shown in
figure 10. The pendulum can freely build up its oscillatory amplitude with relatively
less restriction, since it is not directly coupled to the electrical damping of the
transducer and the damping term in equations 5 and 6 is lower for this prototype
compared the Swing design.

The initiation threshold amplitude of the Corsair under matched optimal electrical
load (∼16.8 kΩ) was recorded at 1.11 ms−2 and the power performance of parametric
resonance outraced direct resonance for accelerations in excess of approximately 1.5
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Figure 11: Power response of Corsair (fn∼4.5 Hz) in the frequency domain.

ms−2. Figure 11 presents the frequency characteristics of the Corsair. At an excitation
of 3.99 ms−2, 12.21 mW (half power band of 0.17 Hz) and 35.67 mW (half power band
of 0.20 Hz) were recorded for the direct resonant and parametric resonant peaks.

As acceleration increases and pushing device operation deeper into the profitable
region, the power performance gap of parametric resonance over its direct counterpart
further widens. The onset of nonlinearities at high amplitudes help to mildly
broaden the resonant peaks. No higher orders of parametric resonance were observed,
potentially due to the fast narrowing nature of the frequency bandwidth of these higher
orders. The same parametric amplification characteristics is theoretically predicted for
the Swing prototype as well, but the onset of parametric resonance, when electrically
damped by the transducer, is at a larger acceleration level than that attainable by the
mechanical shaker employed at this frequency.

4. Route II: piezoelectric cantilever and initial spring configuration

4.1. Design

Unlike the design from the previous section, the parametric resonators here are directly
subjected to electrical damping from a piezoelectric transducer. Figure 12a illustrates
a simple cantilever whose oscillatory displacement in the x plane is electrically damped.
Horizontal forcing along the same x plane corresponds to a direct excitation, while
orthogonal driving force such as in the vertical direction can potentially act as the
parametric excitation. In figure 12b, an orthogonal clamped-clamped beam is added
to the structure prior to the anchor. This additional initial spring directly displaces
along the same direction as the parametric excitation in the vertical axis. Therefore,
the base vibration of parametric excitation along the vertical axis undergoes additive
mechanical amplification before being fed into the vertically upright cantilever beam.
Although the initial beam can lower the initiation threshold amplitude of parametric
resonance [12], it also acts as an additional source of energy dissipation. The
following sections investigates various design parameters in an attempt to optimise
this threshold-aided cantilever-based parametric resonant harvester.

When the natural frequency of the initial spring is matched to two times that of
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Figure 12: Design iteration with the addition of initial spring to amplify the base
excitation fed into the parametric resonator (cantilever beam).

the cantilever beam in figure 12b, a direct resonant amplification of the parametric
excitation can be achieved. This is known as auto-parametric resonance, where the
energy build up from direct resonant input into an initial resonator in a multiple
degree-of-freedom system is internally transferred to a secondary resonator as an
internal parametric resonance [9].

Auto-parametric resonators possess the advantage of lower initiation threshold
due to this resonant-based amplification for the parametric excitation. Alternatively,
there is a frequency bandwidth advantage from tuning the natural frequencies away
from this 2-to-1 frequency ratio and sacrificing the auto-parametric effect in order to
exhibit multiple resonant peaks.

Cantilever beam driven by direct excitation in the direction of displacement x
can be represented by equation 7.

ü+ 2c1u̇+ c2u̇|u̇|+ µu3 + ω2

0
u = ω2X cos (ωt) (7)

where, u and X are the dimensionless quantities of response displacement in
the x axis and direct excitation displacement Ah normalised against beam length l,
c1 is the linear viscous damping parameter, c2 is a quadratic damping representing
the dominant higher order damping nonlinearity, µ is a parameter representing cubic
geometric non-linearities, ω is the excitation frequency and ω0 is the angular natural
frequency. The parameters c1, c2 and µ are normalised parameters against effective
mass. Parametric excitation applied in the orthogonal direction of the displacement
is given by equation 8 [15, 19].

ü+ 2c1u̇+ c2u̇|u̇|+ µu3 + (ω2

0
− ω2Y cos (ωt))u = 0 (8)

where, Y is the parametric excitation displacement Av normalised against l.

4.2. Apparatus

Figure 13 presents the piezoelectric cantilever-based harvester set up for both direct
and parametric excitations. A single cantilever beam configuration and the addition
of a clamped-clamped beam (single or double) as the initial spring is investigated
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(a) Piezoelectric cantilever (b) With initial spring
!

Double 

beam 

PZT 

(c) With double beam

Figure 13: Cantilever-based harvester with initial spring to reduce the initiation
threshold amplitude. Transverse forcing relates to direct excitation while acceleration
along the long length of the beam can potentially represent parametric excitation.

Volture Systems V21BL from MIDE have been employed as the piezoelectric
transducer. The transducer is made from a flexible laminate substrate, PZT with
piezoelectric constant d31 of −190 × 10−12 C N−1 as well as an electromechanical
coupling coefficient k31 of 0.36 and FR4 as the outer insulator coating. The electrodes
sandwich the piezoelectric layer and primary strain is along the transverse direction
of the beam, therefore, the primary operational mode utilises the d31 constant.

The beam is approximately 33.8 mm long and 14.2 mm wide of active piezoelectric
bi-morph area near the supposedly clamped-end and a further ∼20.8 mm by ∼17.0 mm
of non-piezoelectric beam area for the placement of proof mass. This design enables
maximum strain near the clamped end of the beam, which is ideal for the piezoelectric
transduction mechanism.

Multiple units of NdFeB magnets with dimensions of 30 mm by 10 mm by
5 mm and density of 7.4 gcm−3 were used as the proof mass. Initial beams
were manufactured from stainless steel with various thickness iterations. A 3-axis
accelerometer was used to control the acceleration fed into the vibratory system by a
function generator controlled mechanical shaker fixed on a vibration isolation platform.

A number of system parameters and configurations were explored, which included:

• Effective mass (mainly relating to natural frequency and maximum strain)

– Number of magnets attached
– Positioning of the magnets along the beam length
– Asymmetry induced from uneven number of magnets on either sides.

• Initial spring (mainly relating to initiation threshold of parametric resonance)

– 3 thickness of beam: 101.6 µm, 152.4 µm and 203.2 µm
– Active length of the clamped-clamped beam: 60 mm, 55 mm and 50 mm
– Either single beam or double beam
– Distance between the double beam

4.3. Power and threshold

4.3.1. Initial spring thickness Initial spring made from stainless steel had maximum
active length of 60 mm and breadth of 5 mm with three thickness iterations of 101.6
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µm, 152.4 µm and 203.2 µm. The configuration from figure 13b was setup with four
pieces of symmetrically placed magnets near the free end of the beam.

!
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of parametric 
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 3.9 ms
-2
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Figure 14: Power output per acceleration for piezoelectric cantilevers with and without
the threshold-reducing initial spring structure.

It can be seen from figure 14 that the onset acceleration for parametric resonance
is significantly reduced with the initial spring; from 38.8 ms−2 (no initial spring) to 9.8
ms−2 (thick initial spring), 6.9 ms−2 (medium initial spring) and 3.9 ms−2 (thin initial
spring). However, this additional degree-of-freedom also acts as an energy dissipator.
Stiffer the initial spring, more of the vibrational energy can propagate towards the
subsidiary resonator and higher the quality factor. On the other hand, the earlier
initiation of parametric resonance from more flexible initial springs maximises the
profitable regions over direct resonance. Therefore, an optimal balance exist where
this superior resonant phenomenon can be activated at relatively low acceleration
while not sacrificing too much energy in the initial spring.

Direct resonant power output steadily increases with input acceleration until the
approaching the physical limits of the piezoelectric transducer. The power slopes for
both direct and parametric resonances flatten with thinner initial springs. Although
the initial spring parametric curves demonstrated large profitable regions over direct
counterparts, improvement over the sole cantilever structure was only observed for the
thick initial spring iteration in excess of 56 ms−2. Further widening of the profitable
region was limited by the transducer limits employed here.

4.3.2. Strain compromise from the addition of initial spring While other mechanical-
to-electrical transducers like electromagnetic and electrostatic rely primarily on
displacement maximisation, piezoelectric focuses on strain maximisation. Therefore,
the addition of the initial spring structure, despite the ability for the system to
attain high displacement when parametric resonance is activated, compromises the
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effective strain across the piezoelectric region on the main cantilever compared to a
sole cantilever design as can be seen in figure 15.

(a) Cantilever without initial spring, 1st
bending mode eigen-frequency = 21.1 Hz

(b) Cantilever on an initial spring, 1st
bending mode eigen-frequency = 6.66 Hz

Figure 15: Although initial spring structure helps to activate parametric resonance
at lower excitation amplitudes, strain maximisation during deflection is compromised
across the main cantilever beam, which is important for piezoelectric transducers.
Stress is concentrated around the initial spring rather than the active piezoelectric
region on the main cantilever.

Henceforth, the significant power advantage of parametric resonance over a
comparable direct resonant system without the threshold-reducing designs, as observed
for earlier parametric resonant harvesters for both electromagnetic (section 3) and
electrostatic [13, 14] transducers, were not obvious for the piezoelectric system here.

4.3.3. Further stiffness variation The similar trend from figure 14 was observed
where the stiffness of the initial spring was further tuned either by changing the
active length or by varying the proof mass. While shorter beam corresponds to lower
flexibility, larger proof mass yields the opposite result. The addition of a second
parallel initial spring was aimed to provide additional stiffness variation. However,
the double beam structure appears to worsen in both power output and initiation
threshold amplitude from the increased damping and energy dissipation. Nonetheless,
as the distance between the double beam widens, the experimental trend projects a
decrease in initiation threshold amplitude.

4.3.4. Transient state The transient build-up time required for parametric resonance
is almost always longer than direct resonance and is directly dependent on the
acceleration amplitude relative to the initiation threshold amplitude. As acceleration
increases beyond this threshold and move deeper into the instability region of the
Strutt diagram, shorter time is required to reach the non-trivial steady-state solution.

4.3.5. Variation in T-shape The transverse mode of the cantilever beam here is
along the narrow breadth of the clamped-clamped initial spring instead of the long
length. The later configuration was investigated in an earlier study by the authors
[11], but was difficult to achieve with the Volture piezoelectric beam employed here.
As the cantilever beam vibrates along the more flexible plane of the clamped-clamped
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beam, more energy is lost to displacement rather than strain on the piezoelectric and
therefore compromises the quality factor.

4.3.6. Mass and frequency tuning All variable parameters investigated can tune the
natural frequency of the system but the positioning and size of the proof mass are by
far the most influential factors. Larger lumped mass and longer active length not only
reduces the natural frequency but also yield greater power output per acceleration.

Another initiation criterion of parametric resonance is a non-zero initial
displacement. Previous study has shown the advantage of the vertically upright mount
over other mounting configurations [12, 11, 13], where comparisons can be drawn to an
inverted pendulum. Asymmetrical proof mass further introduces an initial deflection,
which helps to push the system into the instability region when the excitation is close
to the initiation threshold.

4.3.7. Auto-parametric resonance The base excitation amplification exercised by
the initial spring here is non-resonant. If the natural frequency of the clamped-
clamped initial spring is tuned to twice that of the cantilever transverse mode, auto-
parametric resonance can be achieved. It is a subset of parametric resonance where an
externally driven direct resonator internally activates the parametric resonant response
of a subsidiary resonator within the system. This would further minimise initiation
threshold without sacrificing additional energy to an otherwise thinner initial spring.
A recent publication by the authors on a different device has resulted in preliminary
demonstration of this phenomenon [11]. However, the variability of the tuneable
system parameters here did not accommodate for such natural frequency ratios.

4.4. Frequency domain characteristics

Figure 16 presents frequency domain voltage outputs (rectified across a matched
optimal load) recorded from continuous frequency sweeps around the natural
frequency. The natural frequency value agrees with the corresponding finite element
model shown in figure 15b. Acceleration response is also shown in parallel due to
the fixed displacement amplitude nature of the frequency sweep. Apart from the
expected linear resonant peak of the 1st transverse mode of the cantilever beam, a
second smaller resonant peak in the lateral plane (twisting) was also observed but the
resultant strain on the piezoelectric layers was indirect and minuscule.

Figure 17 illustrates downwards frequency sweeps around twice the natural
frequency. A slow 450 s sweep was undertaken to accommodate the long transient
build-up required for parametric resonance. Once inside the instability region,
frequency shifts within this region do not need to undergo this long build-up again.

Generally, significant portions of the nonlinear power response at frequency
regions below than the natural frequency (right-hand side) do not show up during an
upward sweep unless a significant displacement is already present, whereas downward
sweeps reveal all the entire operational bandwidth. The onset of a steeper increase
in response beyond a certain excitation amplitude was seen (figure 17b), which was
absent for lower amplitudes (figure 17a). This indicates higher mechanical advantage
and power output from a given drive acceleration, as the system moves deeper into
the dominance of the instability region of the Mathieu equation.

At even higher amplitudes (figure 17c), a region of unsteady response can be seen
prior to attaining the nonlinear resonant peak. This ‘knocking effect’ in the otherwise
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Figure 16: Oscilloscope voltage response from frequency sweep from 3 Hz to 9 Hz
(around 1st mode of direct resonance ∼6.6 Hz) in the time domain.

steady-state is absent on either sides of this fluctuating frequency region. Figure 18 is a
time domain scan at a fixed frequency within this unsteady band. A repetitive pattern
of local minima and maxima can be observed. A potential explanation is that this
band is within a nonlinear transition region for an amplitude dependent eigenfrequency
shift. For a specific fixed excitation frequency, as the eigenfrequency begins to shift
away, the response amplitude drops, which in turn returns the eigenfrequency before
the next cycle. An alternative physical explanation is the possible modulated energy
drain to another nonlinear coupled mode that becomes significant at specific amplitude
and frequency conditions.

5. Conclusion

This work investigated prototype iterations of two distinct design routes in an
attempt to passively minimise the initiation threshold amplitude required to access
parametric resonance. This alternative resonant phenomenon can offer additional
resonant regimes and potential power amplification over direct resonance. While one
design route investigated an electrically undamped parametric resonator (pendulum)
coupled to an electrically damped (electromagnetic) subsidiary mechanical amplifier
(lever beam); the other approach involved an electrically undamped mechanical
amplifier (clamped-clamped initial spring) coupled to a subsidiary electrically damped
(piezoelectric) parametric resonator (cantilever beam). Up to an order of magnitude
lower initiation threshold was experimentally observed for both designs. Ongoing and
future work include auto-parametric resonant harvesters to lower initiation threshold
without sacrificing significant energy dissipation as well as multifrequency operation
from a coupled direct and parametric resonant system.
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Figure 17: Oscilloscope voltage response of frequency sweep from 13.7 Hz to 12.7 Hz
(around principal (1st order) parametric resonance) in the time domain with varying
acceleration levels.
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