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Abstract

We study a dimer in a periodic potential well, which is a conservative but non integrable system.

This seemingly simple system exhibits a surprisingly rich dynamics. Using a systematic asymptotic

analysis, we demonstrate that the translation mode of the dimer (center of mass motion) may

induce a parametric resonance of the oscillatory mode. No external forcing occurs, thus this

system belongs to the class of autoparametric systems. When the dimer energy is such that both

particles are trapped in neighboring potential wells, we derive the relevant amplitude equations for

the eigenmodes (center of mass motion and relative motion) and show that they are integrable.

In the opposite limit, when the dimer slides along the external potential so that the center of

mass motion is basically a translation, we also exhibit autoparametric amplification of the relative

motion. In both cases our calculations provide reliable estimates of the relevant parameters for the

autoparametric resonance to appear. Moreover, the comparison between the numerical integration

of the actual system and the asymptotic analysis evidences an excellent quantitative agreement.
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I. INTRODUCTION

The dynamics of coupled linear oscillators is easily described as a superposition of their

eigenmodes motions. This is not the case for nonlinear oscillators, since their characteristic

frequencies depend on the amplitude of the oscillations. The coupling may therefore induce

a resonant response of some of the oscillatory modes. Nonlinear resonances are very common

in physical systems, and usually difficult to analyse [1].

When energy is supplied by an external source, in such a way that a characteristic param-

eter of the oscillator becomes time-dependant, such as e.g. the length of a pendulum, the

oscillator response may exhibit parametric resonance [2]. A paradigm of the parametric res-

onance is the nonlinear Mathieu equation [3–8]. The resonance phenomenon is maximized

when the forcing frequency ω is roughly twice the natural frequency ω0 of the oscillator,

more precisely in a resonance tongue centered on ω = 2ω0, with a width that depends on

the forcing amplitude. When this frequency tuning happens, a typical feature of parametric

resonance is the very slow increase of the parametrically amplified oscillatory mode. There

are thus two time scales, a fast one which is the frequency of the forcing and a slow one which

characterises the slowly varying amplitude of the forced oscillator. The nonlinear Mathieu

equation is not a conservative system, but when dissipation is not taken into account, the

amplitude equation [5] that describes the slow dynamics is conservative. Physically, it means

that the energy transfer between the oscillator and the external source that provides the

parametric excitation vanishes when averaged on the slow time scale.

In a conservative system, without any external source, there could be a resonant energy

exchange between two oscillatory modes. Recent studies have considered coupled Duffing

oscillators [9–12] that exhibit nonlinear resonant response. A swinging spring is another well

known mechanical apparatus that may evidence resonant behavior when the frequencies of

the elastic and pendular oscillations are in the ratio 2:1 [13, 14]. In astronomy, quasi-periodic

oscillations (QPO) are observed in accretion disks of massive neutron stars or black holes, and

it has been suggested that the QPOs arise from the coupling of two oscillatory modes [15–18].

A particle in the accretion disk may have radial, vertical and azimuthal epicyclic oscillations

around its stable orbit, and because of angular momentum conservation only two of them are

independent, and may exhibit a resonance [17]. Such resonances are called autoparametric

because there is no external forcing, and the behavior of the resonant mode mimics two
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well known characteristics of parametric resonance. The amplitude of the resonant mode

is a function of time that exhibits an initial exponential increase, and that evolves with a

characteristic timescale much larger than the period of the forcing oscillations.

In this paper, we consider a nonlinear conservative system with two degrees of freedom.

More precisely, we study a dimer, made of two interacting point particles submitted to an

external periodic potential and moving on a line. Such a system is in some sense a toy

model of an adatoms cluster moving on a surface [19–21]. This seemingly simple system

exhibits a surprisingly rich dynamics, as shown in an heuristic way in Ref. [20] in which an

autoparametric resonance of the dimer was observed. We proceed to a systematic asymptotic

expansion of the equations of motion when a small parameter |ǫ| ≪ 1 may be defined,

taking into account in a consistent fashion the nonlinearities of the interaction and confining

potential. This multiscale analysis [22] is not only a convenient technical tool, but it also

provides relevant orders of magnitude. When the dimer remains trapped in a well of the

external potential, assuming a ratio of the dimer energy on the confining potential of order

ǫ2, an autoparametric resonance of the dimer vibrations is seen if the interaction potential

stiffness is of order ǫ2, the slow timescale that characterises the parametric amplification is

found order ǫ−2 and the width of the resonance tongue is of order ǫ. In the opposite limit

such that the initial kinetic energy is high enough for the dimer center of mass to slide on the

external potential, if ǫ is the order of magnitude of the vibrations, the sliding velocity is of

order ǫ0, and an autoparametric resonance of the vibrations is observed if the the interaction

potential stiffness is of order ǫ0, with a characteristic resonance time of order ǫ−2 and a width

of the resonance tongue that is of order ǫ2.

The theoretical analysis of the dimer motions is done in Section II. This theoretical

analysis is completed by two appendices devoted to technical details. In Section III, we

compare our perturbative solution to a numerical integration of the actual equations of the

motions for a dimer in a periodic external potential. When the initial conditions are such

that the relevant conditions for the validity of the perturbative analysis are fulfilled, an

excellent agreement between the actual motion and our theoretical description is evidenced.

In Section IV we sum up our conclusions.
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II. DIMER IN A PERIODIC POTENTIAL : AMPLITUDE EQUATIONS.

The dimer is made of two point particles of mass m that interact with a potential Uint(r)

where r is the distance between the particles, submitted to an external periodic potential

and moving on a line. We take a sinusöıdal external potential of period a,

Uext(x1, x2) = U0

(
2− cos

2πx1
a

− cos
2πx2
a

)
, (1)

where xi is the spatial coordinate of the i-th particle (i = 1, 2) and 2U0 is the potential

barrier per particle. We consider the commensurate configuration for which the period a is

also the dimer equilibrium length. Setting ẍi ≡ d2xi/dt
2, the equations of motion are






mẍ1 = −∂Uint/∂x1 − (2πU0/a) sin(2πx1/a),

mẍ2 = −∂Uint/∂x2 − (2πU0/a) sin(2πx2/a),
(2)

There are two configurations in which this system may be solved perturbatively. In the

first case, the dimer particles are trapped in adjacent external potential wells, and the small

parameter depends on the ratio E0/U0 ≪ 1 where E0 is the initial energy of the dimer.

This configuration is studied in Sec. IIA. The second case is, in some sense, the opposite

limit when the center of mass slides along the external potential. In this case, the small

parameter depends on the ratio U0/(mV
2
0 ) ≪ 1, where V0 is the mean velocity of the center

of mass. This configuration is studied in Sec. II B.

A. Dimer in a well.

Let us first assume that the dimer, during its motion, does not escape the external

potential well. Because of the commensurability assumption, when both particles are in

adjacent wells of the external potential the interaction potential is also minimum. It is

sufficient to take its harmonic approximation with a stiffness k, so that the equations of

motion read 




mẍ1 = k(x2 − x1 − a)− (2πU0/a) sin(2πx1/a),

mẍ2 = k(x1 − x2 + a)− (2πU0/a) sin(2πx2/a).
(3)
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We rescale the variables using a/(2π) as the unit length, U0 as the unit energy and therefore
√
ma2/(4π2U0) as the unit time. Moreover, we introduce the normal modes as

x ≡ x1 + x2
2

− π, y ≡ x2 − x1
2

− π, (4)

in dimensionless units. The mode x is the center of mass motion, and the mode y the relative

motion of the dimer particles. The potential energy reads

U(x, y) = 2
(
1− cosx cos y +Ky2

)
, (5)

where K = ka2/(4π2U0) is the dimensionless stiffness. The equations of motion become





ẍ = − sin x cos y,

ÿ = −2Ky − cosx sin y.
(6)

This set of equations provides an exact description of the dimer motions, since it amounts

to a rewriting of Eqn. (3) with the new variables (4). The configuration of a trapped dimer

in adjacent potential wells corresponds to the equilibrium position x = 0(modπ) and y = 0.

We search for a solution of the system (6) perturbatively, using the method of multiple

scales. We introduce a small parameter ǫ, with |ǫ| ≪ 1 and let x = O(ǫ) and y = O(ǫ), and

we introduce successive times scales T0 = t, T2 = ǫ2t, . . .. Formally, we write




x(t) = ǫX1(T0, T2, . . .) + ǫ3X3(T0, T2, . . .) + . . . ,

y(t) = ǫY1(T0, T2, . . .) + ǫ3Y3(T0, T2, . . .) + . . . ,

d2

dt2
=

∂2

∂T 2
0

+ 2ǫ2
∂2

∂T0∂T2
+ . . . .

(7)

Up to order ǫ3, the equations of motion are given by the system :





ẍ = −x+ 1

2
y2x+

1

6
x3,

ÿ = −(2K + 1)y +
1

6
y3 +

1

2
yx2.

(8)

All nonlinear terms are of order ǫ3, therefore a necessary condition for a parametric resonance

to appear is a very small stiffness of the dimer interaction, such that K = O(ǫ2). To this

end, we set K ≡ ǫ2K̃ where K̃ is assumed to be of order ǫ0, so that the nonlinearities are

of the same order of magnitude as the detuning between the two oscillatory modes. Our
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calculations will validate a posteriori this ansatz, because K̃ will indeed be found to give

the width of the resonance tongue.

At order O(ǫ), the two modes X1(T0) and Y1(T0) behave as free uncoupled harmonic

oscillators with the same frequency (1 in our dimensionless variables) so that the solutions

at this order are

X1 = A(T2)e
iT0 + A(T2)e

−iT0 , Y1 = B(T2)e
iT0 +B(T2)e

−iT0 , (9)

where A(T2) and B(T2) are slowly varying complex amplitudes.

The multiple scales method is particularly simple to apply in the present case, because at

order ǫ3, the equations for X3(T0) and Y3(T0) are both that of a forced harmonic oscillator.

Since this method is well described in textbooks [22] we do not give the details of the calcu-

lations. To ensure the consistency of the asymptotic expansion, one requires the vanishing

of the secular terms which would induce a forcing at the characteristic oscillator frequency

of X3 and Y3. The relevant amplitude equations, which give the evolution of the oscillator

amplitude with the slow time-scale are obtained when these secular terms are eliminated.

This solvability condition provides the following coupled amplitude equations :






2i
∂A

∂T2
=

1

2
|A|2A+ |B|2A+

1

2
B2A, (a)

2i
∂B

∂T2
= −2K̃B +

1

2
|B|2B + |A|2B +

1

2
A2B. (b)

(10)

We will see that these amplitude equations are an integrable dynamical system. Before

providing a complete phase portrait of the system (10), lets us begin by its simplest equilib-

rium solutions. An obvious equilibrium is (A = 0, B = 0), which is marginally stable since

the frequency for A vanishes. This solution is basically worthless and reflects the stable

equilibrium position of the dimer in the potential well.

In contrast, the solution (A0 6= 0, B = 0), with 4i(∂A0/∂T2) = |A0|2A0 is of great

physical significance. Setting A0 ≡ a0e
iφ0 , and separating real and imaginary parts, we get

A0(T2) = a0 exp−i (a20T2/4 + φ0), where a0 and φ0 do not depend on T2. The center of mass

motion is thus

x(t) = 2ǫa0 cos

[(
1− ǫ2a20

4

)
t + φ0

]
, (11)

which exhibits an amplitude dependent frequency (Borda frequency) because of the nonlin-

6



earities. When this solution for A is injected into the equation for B, we get

2i
∂B

∂T2
= −2K̃B +

1

2
|B|2B + a20B +

a20
2
e−ia

2

0
T2/2B,

where we have chosen φ0 = 0. Setting B(T2) = D(T2) exp (−ia20T2/4), we get the au-

tonomous equation
∂D

∂T2
= i

(
K̃ − a20

4

)
D + i

a20
4
D − i

4
|D|2D. (12)

The dynamics of the amplitude D is thus given by the normal form [23] of the amplitude

equation for a parametrically forced oscillator with a cubic nonlinearity [4, 5, 7]. Moreover,

since the coupling terms between A and B are at least quadratic in B in Eqn. (10) (a), the

solution for A0 is linearly stable. The normal form (12) is the only equation relevant to

the linear stability analysis of the solution (A0, B = 0). This solution is thus parametrically

unstable for 0 6 K̃ 6 a20/2 [4, 5, 7]. Physically, it means that the center of mass motion may

induce a parametric amplification of the relative motions between the two particles of the

dimer. Since there is no external source to induce the parametric resonance, we follow the

terminology of Ref. [17] and call this resonant coupling between the two oscillatory modes

of the dimer an autoparametric resonance.

There is also a solution (A = 0, B0 6= 0), with 4i(∂B0/∂T2) = −4K̃B0 + |B0|2B0. Setting

B0 ≡ b0e
iψ0 , we get as before B(T2) = b0 exp−i

[(
K̃ − b20/4

)
)T2 + ψ0

]
, where b0 and ψ0

do not depend on T2. To study the linear stability of this solution, let A = δA′ such that

|δA′| ≪ 1. We get from (10) (a)

2i
∂δA′

∂T2
=
b20
4
δA′ +

ab20
2
e2iψδA′.

We obtain an autonomous equation by setting δA′ = δAeiψ,

i
∂δA

∂T2
=

(
K̃ +

b20
4

)
δA+

b20
4
δA.

If we write δA = δAr + iδAi, separating real and imaginary part we get that both variables

behaves as harmonic oscillators of real frequency

σ2 = K̃

(
b20
2
+ K̃

)
> 0,

which indicates that this solution is always stable. There is therefore no parametric ampli-

fication of the center of mass motion by the relative motion of the particles in the dimer.
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We will now fully describe the solutions of the amplitude equations (10), recovering our

previous results as special cases. Let us express the complex amplitudes A and B as

A(T2) = a(T2)e
iφ(T2), B(T2) = b(T2)e

iψ(T2), (13)

where the real functions a and b are the amplitudes, and where the real functions φ et ψ are

the phases. Taking real and imaginary parts in both equations of the system (10), one gets





ȧ =
b2a

4
sin θ,

ḃ = −a
2b

4
sin θ,

θ̇ = 2K̃ +
1

2
(b2 − a2) (1 + cos θ),

(14)

where for simplicity ȧ ≡ ∂a/∂T2, and the same for ḃ. We notice that the phase space of

the dynamical system is actually of dimension 3, since the phases are involved only through

their difference θ ≡ 2(ψ − φ). Indeed, the knowledge of the three functions a, b and θ is

sufficient to get all dynamical variables since

φ(t) = −
∫ t

0

[
a(u)2

4
+
b(u)2

2
+
b(u)2

4
cos θ(u)

]
du, ψ(t) = φ(t) + θ(t)/2. (15)

In order to get a full phase portrait of our system, it is convenient to search for constants

of the motion for the system (14). There is an obvious one,

a2 + b2 ≡ N ⇐⇒ ada = −bdb. (16)

There is a second independent constant which may be found as in Ref. [17]. Let us consider

θ as a function of a, so that

θ̇ =
dθ

da
ȧ =

b2a

4
sin θ

dθ

da
,

where we used the first equation of (14). Injecting this result in the equation for θ̇, and

multiplying all terms by ada, we get

b2a2

4
sin θdθ − b2

2
cos θada +

a2

2
cos θada− 2K̃ada+

a3

2
da− b2

2
ada = 0

−b
2a2

4
d (cos θ)− b2

2
cos θd

(
a2

2

)
− a2

2
cos θd

(
b2

2

)
− K̃d

(
a2
)
+ d

(
a4

8

)
+ d

(
b4

8

)
= 0

where in the second line we used (16). We thus get a second constant of motion,

J ≡ a4

8
+
b4

8
− K̃a2 − b2a2

4
cos θ, (17)
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which is obviously independent on the first one. In appendix A, we derive both constants us-

ing lagrangian formalism and Noether theorem. Because of these two independent constants

of the motion, our system is integrable.

Let us introduce the dynamical variable χ(t), such that 0 6 χ 6 1, as

a(t)2 ≡ N [1 − χ(t)], b(t)2 = Nχ(t). (18)

We show in appendix B that an appropriate definition of the small parameter ǫ allows to

take N = 1 without any loss in generality, and we will do it henceforward.

Using (14), we get the dynamical equations






χ̇ = −1

2
χ(1− χ) sin θ,

θ̇ = 2K̃ +
1

2
(2χ− 1)(1 + cos θ).

(19)

There is a pair of fixed points

χ∗ = 0, cos θ∗ = 4K̃ − 1, (20)

if we are in the autoparametric (AP; 0 6 K̃ 6 1/2) regime. Since the constant of the motion

is

J(χ, θ) =
1

8
− 1

4
χ(1− χ)(1 + cos θ)− K̃(1− χ), (21)

these fixed points correspond to J = 1/8− K̃. Introducing small perturbations (δχ, δθ), the

linear stability analysis gives

δχ̇ = −1

2
sin θ∗δχ, δθ̇ = sin θ∗δθ, (22)

which shows that these fixed points are saddle points.

The other fixed point is

χ∗ =
1

2
− K̃, θ∗ = 0, (23)

which only exists in the AP regime, and which corresponds to J = −K̃(1 + K̃)/2. The

linear stability analysis gives

δχ̈ = −
(
1

2
− K̃

)(
1

2
+ K̃

)
δχ,

showing that this fixed point is a node.
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Knowing the constant of motion J , we can plot the phase portrait of the dynamical

system in the plane (θ, χ). In the AP regime, J has the local minimum J = 1/8− K̃ for the

fixed points (20), and the absolute minimum J = −K̃
(
K̃ + 1

)
/2 for the fixed point (23).

Therefore 



−K̃(K̃ + 1)/2 6 J 6 1/8 (AP),

1/8− K̃ 6 J 6 1/8 (NR),
(24)

where NR means non resonant case.

The available range of χ is obtained by taking the square of the equation for χ̇ in (19),

expressing the result as a function of cos θ and eliminating θ with the help of (17). Indeed,

we eventually get

4

(
dχ

dt

)2

= χ2(1− χ)2 −
[
χ2 + (1− χ)2

2
− 4K̃(1− χ)− 4J

]2
≡ F (χ)2 −G(χ)2, (25)

which shows that the motion is restricted to those values of χ for which the right-hand-side

is positive. The solutions of F (χ) = +G(χ) are

χ+
±
=

1

2
− K̃ ±

√(
K̃ +

1

2

)2

− 1

4
+ 2J. (26)

Since χ ∈ [0, 1] by construction, we must have χ+
− > 0, which implies J > 1/8−K̃. Otherwise

we must take the solution of F (χ) = −G(χ), that reads

χ−

+ = 1− 1

K̃

(
1

8
− J

)
, (27)

Using Eqn. (21), we see that the trajectories in phase space are given by

cos θ =
χ2 + (1− χ)2 − 8K̃(1− χ)− 8J

2χ(1− χ)
=
G(χ)

F (χ)
, (28)

Searching for extremal values of cos θ, we solve G′F − F ′G = 0 and get

χ∗

±
= 1− 1− 8J

8K̃


1±

√

1− 8K̃

1− 8J


 . (29)

There are no real solutions in the NR case, which means that θ ∈ [−π, π] for all possible

values of J in the NR case, so that only open trajectories occur.

In the AP case, there is a real solution 0 < χ∗

−
< 1 for 8K̃ < 1− 8J (the solution χ∗

+ < 0

has to be rejected). In that case, the trajectories are closed curves, such that θ ∈ [−θ∗
−
, θ∗

−
]
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with θ∗
−
< π. For θ = 0, we deduce from (28) that F (χ) = G(χ), so that χ(θ = 0) on

the closed trajectories is given by χ+
± in (26). The limit χ+

− = χ+
+, which requires the

vanishing of the square root, is the fixed point (23). These closed trajectories are forbidden

for J > 1/8 − K̃. The separatrix, between the closed trajectories and the open ones, is

thus given by Eqn. (28) for J = 1/8− K̃, and therefore includes the two saddle points (20).

The linear stability analysis of these points provides the orientation of the separatrix. The

orientation of the other trajectories is given by (19), which shows that θ increases with time

and that χ increases (decreases) with time for θ ∈ [−π, 0] (θ ∈ [0, π]).
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0.4
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e
χ
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FIG. 1. (Color online) Phase portrait of the dynamical system (14) in the plane (θ, χ). Left plot :

AP case, K̃ = 0.2. The separatrix (J = 1/8 − K̃) is plotted in red, the black dotted line connects

the points of vanishing θ̇. The red dots indicate the saddle points on the separatrix, the blue dot

indicates the node (23) which corresponds to J = −K̃
(
K̃ + 1

)
/2. Closed trajectories (blue lines)

are observed for −K̃
(
K̃ + 1

)
/2 < J < 1/8 − K̃. Open trajectories (black lines) are observed for

1/8− K̃ < J < 1/8. Right plot, NR case, K̃ = 0.7. All trajectories are open, 1/8 − K̃ < J < 1/8.

The phase portraits are shown in Fig. 1, for two values of K̃. The left plot corresponds

to an autoparametric resonance, the right plot to a non resonant case. There is an obvious

topological difference between the two phase portraits, since in the left one closed and open

trajectories coexist, whereas in the right plot there are only open trajectories.

The left plot provides a fully nonlinear description of the autoparametric resonance, which
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completes our previous discussion (12). The key point here is that along the separatrix (solid

red line) the relative motion amplitude χ increases from χ = 0 up to a finite maximum

amplitude χmax = 1− 2K̃. If one consider any initial condition with a very small amplitude

for the relative motion, 0 < χ0 ≪ 1, either on an open trajectory or on a closed trajectory,

the relevant phase space trajectory will be very close to the separatrix, and the smaller

χ0 the closer. The amplification of the relative motion will thus be (1 − 2K̃)/χ0 which

diverges when χ0 → 0, which evidences the autoparametric resonance. The divergency of

the travel time along the separatrix [26] implies the divergency of the time of parametric

amplification in the limit χ0 → 0. For a given K̃ in the resonance tongue, the amplitude

χmax = 1 − 2K̃ that is eventually reached by the relative motion corresponds to the upper

limit of the resonance tongue.

Apart from the parametric resonance stricto sensu, the phase portrait in the AP case

evidences a parametric amplification when the relative motion amplitude is small (but not

vanishingly small). Let us assume, e.g., an initial value χ0 = 0.1. In the AP case (left plot of

Fig. 1) the amplitude increases up to 0.65 whereas in the NR case (right plot of Fig. 1) the

amplitude on this phase space trajectory is at most 0.15. The NR case is thus qualitatively

different from the AP case in the whole phase portrait.

A common feature of both phase portraits is the periodic behavior of the eigenmodes

amplitudes. The energy is given to the relative motion by the center of mass motion for

−π < θ < 0, and restituted to the center of mass motion in the next half period, without

any net energy transfer when averaged on the slow time scale. Formally, this corresponds

to the fact that the amplitude equations (10) exhibits two constants of the motion, whereas

the underlying system (6) has only one constant of the motion, its conserved energy.

B. Sliding dimer.

Let us now consider the case of the sliding dimer. We assume that the initial kinetic

energy of the center of mass is much larger than the depth of a potential well, so that the

dimer motion is basically a monotonous translation of the center of mass together with

oscillations of the particles around their equilibrium distance a. This amounts to assuming

a strong enough interaction between the particles, in such a way that they cannot be distant

from more than one period of the external potential. More general motions are studied
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numerically in a forthcoming paper [24].

Setting the same dimensionless variables as before, and expanding the interaction poten-

tial up to order four in the small quantity y, we get the dimensionless equations of motion




ẍ = − sin x cos y,

ÿ = −K2y +K3y
2 −K4y

3 − cosx sin y.
(30)

where K2 = (U ′′

int/U0)(a/2π)
2, K3 = (U

(3)
int/2U0)(a/2π)

3 and K4 = (U
(4)
int/6U0)(a/2π)

4. Let us

emphasize the contrast with the trapped dimer configuration. In this case, the autoparamet-

ric resonance happens for a soft bond, so that the harmonic approximation of the interaction

potential is sufficient. For a sliding dimer, we will see that the autoparametric resonance

requires a strong bond, and consistently nonlinear terms in the interaction potential expan-

sion are to be taken into account. Note also that in order to describe a physically sounded

intermolecular interaction we have taken into account the fact that any reasonable interac-

tion potential such as the Lennard-Jones potential [20], or such as the Morse potential which

rather well describes chemical bonds [25] is dissymmetric near its minimum which requires

the cubic term proportional to K3.

Let V0 be the initial velocity of the center of mass, in dimensionless units. Introducing

τ = V0t, the previous equations now read




ẍ = − 1

V 2
0

sin x cos y,

ÿ = −K2

V 2
0

y +
K3

V 2
0

y2 − K4

V 2
0

y3 − 1

V 2
0

cosx sin y,

(31)

where from now on ẋ ≡ dx/dτ .

In the sliding configuration, the kinetic energy of the center of mass is much larger than

the depth of the potential, 8U0/(mV̂
2
0 ) ≪ 1 (where V̂0 is the velocity in SI units) which in

dimensionless units means 1/V 2
0 ≪ 1. Since it is the center of mass motion x(τ) that sets

the velocity, it cannot be considered as small. In contrast, we assume a small amplitude of

the relative motion, |y| ≪ 1. To sum-up, we introduce the following expansions,





x(τ) = X0 + ǫX1 + ǫ2X2 + . . . ,

y(τ) = ǫY1 + ǫ2Y2 + ǫ3Y3 + . . . ,
(32)

d

dτ
=

∂

∂T0
+ ǫ

∂

∂T1
+ ǫ2

∂

∂T2
=⇒ d2

dτ 2
=

∂2

∂T 2
0

+2ǫ
∂2

∂T0∂T1
+ ǫ2

(
2

∂2

∂T0∂T2
+

∂2

∂T 2
1

)
, (33)
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where ǫ2 ≡ 1/V 2
0 = U0/(mV̂

2
0 ) ≪ 1. We describe the stiff spring by setting

K2

V 2
0

=
1

4
− ηǫ2,

K3

V 2
0

= κ3,
K4

V 2
0

= κ4, (34)

where the parameters η, κ3 and κ4 are assumed to be of order O(ǫ0). The chosen expression

of K2 conveniently describes the main parametric resonance.

Taking into account all terms up to order ǫ3, the system (31) is writen perturbatively as[
∂2

∂T 2
0

+ 2ǫ
∂2

∂T0∂T1
+ ǫ2

(
2

∂2

∂T0∂T2
+

∂2

∂T 2
1

)]
(X0 + ǫX1 + ǫ2X2) =

= −ǫ2 sin(X0 + ǫX1 + ǫ2X2) cos
(
ǫY1 + ǫ2Y2 + ǫ3Y3

)
, (35)

[
∂2

∂T 2
0

+ 2ǫ
∂2

∂T0∂T1
+ ǫ2

(
2

∂2

∂T0∂T2
+

∂2

∂T 2
1

)]
(ǫY1 + ǫ2Y2 + ǫ3Y3) =

= −
(
1

4
− ηǫ2

)
(ǫY1 + ǫ2Y2 + ǫ3Y3) + κ3(ǫY1 + ǫ2Y2 + ǫ3Y3)

2 −

−κ4(ǫY1 + ǫ2Y2 + ǫ3Y3)
3 − ǫ2 cos(X0 + ǫX1 + ǫ2X2) sin

(
ǫY1 + ǫ2Y2 + ǫ3Y3

)
. (36)

In the previous section, both modes have oscillatory behavior and the use of the multiple

scales expansion is well documented [22]. In this section, we take advantage of the versatility

of the multiple scale method, since the motion of the center of mass is not oscillatory but

basically a translation. The calculations are thus explained in more details than in the

previous section.

Order O(ǫ0).

At this order, the only contribution comes from Eqn. (35), and is readily solved

∂2X0

∂T 2
0

= 0,
∂X0

∂T0
= A0(T1, . . .), X0 = A0(T1, . . .)T0. (37)

The initial conditions will be used at the end of the calculation, and for now A0(T1, . . .) is

an unknown function of the slow scales T1, T2, . . .. Nevertheless, it is important to keep in

mind that, because of the definition of the time scale τ , A0 = 1 + . . ., where the dots stand

for a small correction that will be found later to be of order ǫ2.

order O(ǫ).

The relevant terms from Eqn. (35) reads

∂2X1

∂T 2
0

= −2
∂2X0

∂T0∂T1
= −2

∂A0

∂T1
. (38)
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To get a consistent expansion, the term X1 should not increase faster with T0 than X0,

which requires ∂A0/∂T1 = 0 so that A0(T2, . . .). Then we take without loss of generality

X1 = 0 since the relevant initial condition on x(t) may be set on X0.

The term of order O(ǫ) that comes from (36), reads

∂2Y1
∂T 2

0

+
1

4
Y1 = 0, Y1 = B(T1)e

iT0/2 +B(T1)e
−iT0/2. (39)

Order O(ǫ2).

At this order, we get the second order correction for x, which reads

∂2X2

∂T 2
0

= − sinX0 − 2
∂2X0

∂T0∂T2
= − sin(A0T0)− 2

∂A0

∂T2
. (40)

As before, to get a consistent expansion, the term X2 should not increase faster with T0

than X0, which requires ∂A0/∂T2 = 0. Therefore, the solution at this order reads

X0 = A0(T3)T0, X2 =
1

A0(T3)2
sin[A0(T3)T0]. (41)

The second order correction X2 is thus independent on T2 and T1, which will be used later.

The term of order O(ǫ2) that comes from (36), reads

∂2Y2
∂T 2

0

+
1

4
Y2 = −2

∂2Y1
∂T0∂T1

+ κ3Y
2
1 = −i ∂B

∂T1
eiT0/2 + κ3

(
B2eiT0 + |B|2

)
+ CC, (42)

where ”CC” means ”complex conjugate”. The resonant term must vanish, therefore

∂B/∂T1 = 0, and we get at this order

Y2 = 8κ3|B(T2)|2 −
4κ3
3
B(T2)

2eiT0 − 4κ3
3
B(T2)

2e−iT0 . (43)

order O(ǫ3).

These terms occur in the relative motion equation (36), which reads

∂2Y3
∂T 2

0

+
1

4
Y3 = −2

∂2Y1
∂T0∂T2

+ ηY1 + 2κ3Y1Y2 − κ4Y
3
1 − Y1 cosX0 (44)

To obtain the required amplitude equation for the relative motion, we only need the calcu-

lation of the secular term in the right hand member. It reads

∂2Y3
∂T 2

0

+
1

4
Y3 = eiT0/2

[
−i ∂B
∂T2

+ ηB −
(
3κ4 −

40κ23
3

)
B2B − B

2
ei(A0−1)T0

]
+CC+NST (45)
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where NST means non secular terms. The last secular term comes from the coupling

between the center of mass and relative motions. It is emphasized as the boxed term in

2Y1 cosX0 =
(
BeiT0/2 +Be−iT0/2

) (
eiA0T0 + e−iA0T0

)
=

= Bei(A0+
1

2
)T0 + Bei(A0−

1

2
)T0 +Be−i(A0−

1

2
)T0 +Be−i(A0+

1

2
)T0 .

The term in the box is indeed a secular term, because of the initial condition on the center

of mass motion. From the center of mass motion at order ǫ2, given by Eqn. (41), we must

have

x(τ) = A0τ +
ǫ2

A2
0

sinA0τ =⇒ dx

dτ
= A0 +

ǫ2

A0
cosA0τ.

In the variable τ , the initial velocity is unity, so that

dx

dτ

∣∣∣∣
τ=0

= A0 +
ǫ2

A0
= 1 =⇒ A0 = 1− ǫ2 +O(ǫ4).

Injecting this expression forA0 in the secular term of Eqn. (45), we get the relevant amplitude

equation for the relative motion as the solvability condition

∂B

∂T2
= −iηB + iκB2B + i

B

2
e−iT2 , κ ≡ 3κ4 −

40κ23
3

. (46)

Setting B = e−iT2/2D, we recover the autonomous amplitude equation for the parametric

instability,
∂D

∂T2
= i

(
1

2
− η

)
D + iκ|D|2D + i

D

2
. (47)

which is the same as Eqn. (12), apart from small changes in the notations. Note that the

sign of κ is not relevant, since we can take the complex conjugate of this equation as well [4].

The condition of parametric amplification of the relative motion now reads

0 6 η 6 1. (48)

III. DIMER IN A PERIODIC POTENTIAL : NUMERICAL SIMULATIONS.

In this section, we compare the analytic description of the previous section to direct

numerical simulations of the actual dynamical system (6). For the comparison to make

sense, the initial conditions for the numerical integration of the equations of motion have to

be consistent with the approximations of the previous section. Therefore, we consider the

cases of the dimer trapped in a well and of the sliding dimer separately.
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A. Dimer in a well

For this configuration to takes place, a necessary condition is that the initial energy of

the dimer should be less than the depth of the potential well. In the simulations, we take

as initial conditions x = 0, y = 0 and non vanishing velocities. Since we choose the external

potential energy as the energy scale, the relevant dimensionless parameter is

ǫ2 ≡ m (ẋ21 + ẋ22)

8U0

∣∣∣∣
(t=0)

=
ẋ20 + ẏ20

4
, (49)

and we assume |ǫ| ≪ 1 for the sake of comparison with the calculations of Sec. IIA.

The main analytical result of Sec. IIA are the coupled amplitude equations (10), whose

solutions are fully described by the phase portraits displayed in Fig. 1. The dynamics of the

eigenmodes is given by




x(t) = 2ǫa cos(t+ φ) = 2ǫa(cos t cosφ− sin t sinφ),

y(t) = 2ǫb cos(t+ ψ) = 2ǫb(cos t cosψ − sin t sinψ),
(50)

where the slowly varying amplitudes a and b are given by Eqn. (18) and where the slowly

varying phases φ and ψ are given by Eqn. (15). The direct numerical simulations of the

system (6) give x(t) and y(t) as rough numerical data, from which we have to extract the

slowly varying amplitudes and phases. Once this is done, there remains no free parameter

to undertake the comparison between the simulations and the multiple scale analysis.

An example of the signals x(t) and y(t) is displayed in Fig. 3, for initial conditions

that are consistent with a small value of ǫ. The time evolution of both signals obviously

validates the assumption of a slow variation of the amplitudes, with characteristic period

much larger than 2π which is the quick time period. To calculate the amplitudes from the

raw simulations data, we extract the local maxima, and then we build from these set an

interpolation function in order to get a smooth function for the amplitude. Doing this, we

get the slowly varying function

χ(t) =
b2(t)

a2(t) + b2(t)
. (51)

To get the slowly varying phases, we multiply the raw numerical data by either cos t or

sin t, and take the average on the fast time variable. For example, we numerically integrate

the simulations data to calculate

〈XC〉 ≡
1

2π

∫ 2π

0

x(t) cos tdt = ǫa cosφ, (52)
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since the slowly varying functions a and φ may be considered as constant for the integration.

Since we already know the amplitude a as a (slow) function of time, we thus get cos φ.

Replacing cos t by sin t in (52), we get sin φ and doing the same work on y(t) we get cosψ

and sinψ as (slow) functions of time. Then we define complex variables Zφ = cosφ+ i sin φ

and Zψ = cosψ + i sinψ, so that the variable θ is obtained as

θ = Arg
(
Z2
ψ/Z

2
φ

)
. (53)

The numerical algorithms that calculate an angle as the argument of a complex number are

the less sensitive to noise, which justifies their use.

This data analysis allows a direct comparison between the the phase space trajectories

calculated from direct numerical simulations of the system (6) and the phase space trajec-

tories provided by the multiple scale analysis, Eqn. (28). This is done in the upper plot of

Fig. 2, for a dimensionless stiffness in the parametrically unstable tongue, K̃ = 0.158, and

for initial conditions such that ǫ = 0.224. Our data evidence an excellent agreement between

the multiple scale analysis and the numerical data. In the bottom plot of Fig. 2, we compare

the slow modulation period measured from direct numerical simulations (open circles) to a

calculation derived from Eqn. (25) (crosses), for every phase space trajectories. This period

is either the duration of one loop of a closed trajectory, or the travel time from −π to π

for an open trajectory. Here again, the numerical data are in excellent agreement with the

multiple scale analysis. The period is an increasing function of the maximum amplitude

χmax for closed trajectories and a decreasing function of χmax for open trajectories, since it

diverges on the separatrix [26].

In Fig. 3 we plot the normal modes x(t) and y(t) as a function of time from a direct

numerical integration of the system (6) and compare them to a numerical integration of

the amplitude equations (19). We see that the amplitude equations accurately predict the

slow modulation of the normal modes, without any fitting parameter. Moreover, we display

zooms on both oscillatory modes in order to make the physical significance of the phase

difference θ clearer. Initially, this phase difference vanishes. For an open trajectory in phase

space (upper plot of Fig. 3, see Fig. 2 for the relevant phase trajectory) when the amplitude

of x(t) is maximal the amplitude of y(t) is minimal and the two signals are in quadrature

(θ/2 = π/2). For a closed trajectory (bottom plot of Fig. 3, see Fig. 2 for the relevant phase

trajectory) the phase difference is clearly less than π/2. This illustrates the link between
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FIG. 2. (Color online). Top : Phase trajectories (θ, χ) from Eqn. (26) (dotted lines) and from

numerical integration of (6) (solid lines) for K̃ = 0.158 and ǫ = 0.224. The initial phase is θ0 = 0 in

all simulations. The initial values χ0 are : χ0 = 0.8 (J = 0.013), χ0 = 0.64 (J = −0.047), χ0 = 0.48

(J = −0.082), χ0 = 0.32 (J = −0.091), χ0 = 0.16 (J = −0.075), χ0 = 0.001 (J = −0.034). The

filled squares correspond to the zooms in Fig. 3. Bottom : Slow oscillations period T (dimensionless)

as a function of the maximum value of χ on the corresponding phase trajectory. Open circles from

numerical integration of (6), crosses from Eqn. (26) (same color code as in the top plot).

the phase difference θ and the time evolution of x(t) and y(t).

It is clear that the actual dynamics of the dimer in an external potential well, obtained

from direct numerical simulation of (6), is in excellent agreement with the multiple scale

analysis of Sec. IIA, whithout any fitting parameter. This is evidenced for ǫ = 0.224, which

is indeed not much smaller than unity. In a forthcoming paper [24] we extend our numerical
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FIG. 3. (Color online). Plot of dimensionless amplitudes x(t) (solid cyan lines) and y(t) (solid red

lines) as functions of the dimensionless time, from a numerical integration of (6) for K̃ = 0.158 and

ǫ = 0.224. The dashed lines are the slowly varying amplitudes of x(t) (magenta) and y(t) (blue),

from a numerical integration of the amplitude equations (19), with initial phase θ0 = 0. The insets

are zooms that correspond to the filled squares in Fig. 2. Upper plot : χ0 = 0.52 (J = −0.082),

open trajectory in Fig. 2. The right hand zoom evidences that x(t) and y(t) are in quadrature,

θ = π. Bottom plot : χ0 = 0.999 (J = −0.034), closed trajectory in Fig. 2. The center zoom

evidences a phase difference between x and y that is less than π/2. Note also the abcissae ranges.

simulations to larger values of ǫ. The agreement between the simulations and the multiple

scale analysis is numerically excellent up to ǫ ≈ 0.5, and remains qualitatively correct up

to the limit of trapped dimer, ǫ 6 1. The only strict condition is that of commensurability

between the dimer and the external periodic potential. The motions where a particle may
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jump to the next well are discussed in Ref. [24].

B. Sliding dimer

The analytic description of the dimer motion in the sliding configuration is expressed

by the normal form (47) for the parametric amplification of a nonlinear oscillator without

dissipation. It assumes that the initial velocity of the center of mass is such that the kinetic

energy is much larger than the external potential well. As in Sec. II B, it is convenient to

define τ = V0t and to set ǫ ≡ 1/V 2
0 ≪ 1. The actual system that describes the dimer

motion, which is solved numerically, is thus the system (31). For the sake of comparison

with the theoretical analysis, the initial conditions in the simulations of the system (31) are

x(t = 0) = 0, which only set the axis origin, ẋ(t = 0) = 1 by definition of the time unit,

y(t = 0) = y0 ≪ 1 to put the focus on the autoparametric resonance, and ẏ(t = 0) = 0. This

exact numerical solution is then compared to the approximation provided by the multiscale

analysis which gives the slowly varying amplitude of y(t) as 2ǫ|D|(t), where D(t) is the

numerical solution of Eqn. (47) with initial conditions D(t = 0) = y0/(2ǫ) (choosing a

vanishing initial phase).

The sliding motion of the center of mass may induce a parametric amplification of the

particles relative motion. This parametric amplification in the sliding regime only happens

when the interaction is strong enough for the constants κi to be of the same order as

the dimensionless kinetic energy V 2
0 , as explained in (34). The condition for parametric

excitation of the relative motion by the center of mass motion is given by (48). This behavior

is illustrated in Fig. 4, in which we show the relative motion y(t) as a function of time for

several values of the shift η from the main parametric resonance. The numerical solution

of the full system (31) evidences that the width of the resonance tongue in the vicinity of

K2/V
2
0 = 1/4 scales as ǫ2, as expected from our theoretical analysis. In the center plot of

Fig. 4 the value η = 1/2 is inside the parametric resonance tongue, and the relative motion

y(t) as a function of time exhibits the expected parametric resonance, with an amplitude

amplification by a factor 100. In the left and right plots of Fig. 4 the values of η are outside

the parametric resonance tongue, and consistently the relative motion y(t) as a function of

time exhibits no parametric resonance but low amplitude nonlinear beatings.

In Fig. 5, we compare the exact solution, given by the numerical integration of (31) to
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FIG. 4. (Color online). Plot of the dimensionless amplitude 103y of the relative motion as a

function of the dimensionless time from a numerical integration of the system (31). The relevant

parameters are κ = 1, , κ4 = 1, and ǫ = 0.1. The initial conditions for the numerical integration

are x(0) = 0, ẋ(0) = 1, y(0) = 0.001 and ẏ(0) = 0. From left to right the spring constant 1/4− ǫ2η

is 0.2375 (η = 1.25), 0.2450 (η = 0.5) and 0.2550 (η = −0.5). As expected, the relative motion

inside the parametric resonance tongue (48) (center plot) is markedly different from the others

which are outside the resonance tongue. We do not display the center of mass motion since it is in

all cases basically a straight line of unit slope.

the predictions of the amplitude equation (47), for increasing values of the small parameter

ǫ (from top to bottom). We see that the time evolution of the relative motion amplitude

is indeed very well predicted by the asymptotic analysis, and the smaller ǫ the better. The

maximum amplitude of the relative motion scales as ǫ, and the characteristic time for the

parametric amplification of the relative motion scales as ǫ2 (see the time scales in the plots).

The amplitude growth begins as an exponential, which evidences the parametric amplifica-

tion. The ratio between the maximum amplitude yM of the relative motion and its initial

value y(0) is 350, 100 and 200 from top to bottom, which evidences a huge amplification of

the relative motion. Since the system (31) is conservative, the energy transfer between the

sliding motion of the center of mass and the relative motion is periodic.

Let us add a final remark. In Fig. 5, we still see a small discrepancy between the theoreti-

cal analysis and the numerical solution of the actual system for ǫ = 0.1. Therefore, the range

of validity of the multiscale analysis is much smaller in the sliding dimer case than when the

dimer is trapped in a well. This is discussed at length in the forthcoming paper [24], where

we also discuss the loss of commensurability of the configurations, when the link between

the two particles is weak enough for one particle to jump farther away from the other than

a period of the potential.
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FIG. 5. (Color online). Cyan (light grey) solid line : Plot of the dimensionless amplitude y of

the relative motion as a function of the dimensionless time from a numerical integration of the

full system (31). Red (dark grey) solid line : Amplitude R = |B| of the slow oscillations, from a

numerical integration of the amplitude equation (47). The relevant parameters are κ = 1, κ4 = 1

and η = 1/2, and from top to bottom ǫ = 0.032, ǫ = 0.1 and ǫ = 0.2. The initial conditions for the

numerical integration of (31) are x(0) = 0, ẋ(0) = 1, ẏ(0) = 0, and for the numerical integration

of (47) we set φ(0) = Arg(B)|t=0 = 0 and R(0) = y(0)/(2ǫ). Note that the choice ẋ(0) = 1

ensures that the time unit is the same in all plots. From top to bottom the initial condition for y is

y(0) = 0.0001, y(0) = 0.001 and y(0) = 0.001 (same as before). In the first two plots the resolution

is insufficient to distinguish the quick oscillations.
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IV. CONCLUSION

A dimer in a periodic potential is a simple system with a complicated dynamics. It is

conservative, but not integrable. Its motions are determined by its initial energy and the

stiffness of the interaction between the particles. If the equilibrium length of the dimer

is equal to the period of the potential, this commensurate configuration makes detailed

calculations achievable in two limits.

In the first one, the initial energy and the interaction energy are small enough in compari-

son with the external potential energy barrier so that the dimer is trapped in a potential well.

In this configuration, the center of mass motion may induce a parametric resonance of the

relative motion for a soft bond of sufficiently low stiffness. The system comes down to cou-

pled nonlinear oscillators that are easily addressed by a consistent multiple scale expansion.

Moreover, the amplitude equations obtained with this analysis are found to be integrable,

which allows a complete description of the dimer motions. When numerical simulations of

the actual system are compared to the analytic description, this latter is found to describe

accurately the motions of the dimer. It will be shown in a forthcoming paper [24] that the

validity of our amplitude equations extends on much higher values of the small parameter

(the ratio between the initial energy and the energy barrier) than expected. This system

therefore exhibits autoparametric resonance between two oscillatory modes of a conservative

system on a rather large parameter range.

The second configuration allowing a complete analytical description is when both the

initial kinetic energy and the interaction energy are high enough in comparison with the

external potential energy barrier for the dimer to slide along the external potential. The basic

motion is the sliding of the dimer center of mass, that is coupled by the external potential to

the relative motion of the particles. In this configuration, the center of mass motion induces

a parametric resonance of the relative motion if there is a strong bond between the particles,

so that we expand the interaction potential up to the fourth order. Taking advantage of the

versatility of the multiple scales expansion, we show that the relevant amplitude equation is

exactly that of the (cubic) nonlinear Mathieu equation, which is a paradigm of parametric

amplification of a nonlinear oscillator. Since no external energy is provided to the system,

this is another example of autoparametric behavior.

Apart from these two limiting cases, the system may exhibit complicated behaviors for
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which the commensurability is lost, when the initial energy is high enough, and the inter-

action energy small enough for the particles to jump in non neighbouring potential wells.

A description of such behaviors will be the subject of a forthcoming work [24]. Another

extension of this work is to take into account a dissipative term, together with a non zero

temperature.

Appendix A: Constants of motion for a trapped dimer

The equations (10) are Lagrange equations for the lagrangian

L = i
(
AȦ−AȦ

)
+i

(
BḂ −BḂ

)
+
|A|4 + |B|4

4
+|A|2|B|2−2K̃|B|2+B

2A
2
+ A2B

2

4
, (A1)

This lagrangian (A1) is obviously invariant under the transform

A −→ A′ = Aeiη, A −→ A
′

= Ae−iη, B −→ B′ = Beiη, B −→ B
′

= Be−iη,

where η is a real constant phase. Assuming |η| ≪ 1, we get the relevant infinitesimal

transform, so that we deduce from Noether’s theorem [27] the conserved quantity (16),

∂L
∂Ȧ

(iA) +
∂L
∂Ȧ

(−iA) + ∂L
∂Ḃ

(iB) +
∂L
∂Ḃ

(−iB) = 2|A|2 + 2|B|2.

Another conserved quantity is due to the fact that the lagrangian (A1) has no explicit

time dependence. The conserved quantity H reads

−H ≡ Ȧ
∂L
∂Ȧ

+ Ȧ
∂L
∂Ȧ

+ Ḃ
∂L
∂Ḃ

+ Ḃ
∂L
∂Ḃ

− L,

so that

H = 2K̃|B|2 − |A|2|B|2 − |A|4 + |B|4
4

− 1

4

(
B2A

2
+ A2B

2
)

(A2)

There must be a relationship between H , N and the constant J , since only two of them may

be independent. Indeed

H = 2K̃(N − a2) +
a4 + b4

4
−
[
a2b2 +

a4 + b4

2

]

︸ ︷︷ ︸
=N2/2

−1

2
a2b2 cos θ,

so that eventually

H − 2K̃N +
N2

2
= 2

(
a4 + b4

8
− K̃a2 − 1

4
a2b2 cos θ

)
= 2J.
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Appendix B: About the constant N .

In all generality, the dimer motion depends on the initial conditions x0, y0, ẋ0 et ẏ0, in

dimensional variables. For the analysis of Sec. IIA to be relevant, the initial conditions must

be such that

2π|x0|
a

≪ 1,
2π|y0|
a

≪ 1,

√
m

U0
|ẋ0| ≪ 1,

√
m

U0
|ẏ0| ≪ 1. (B1)

Let us keep the tilde˜ for the dimensionless variables, for the sake of clarity. Let us define

x̃0 ≡
2πx0
a

, ỹ0 ≡
2πy0
a

, ˙̃x0 ≡
√
m

U0

ẋ0, ˙̃y0 ≡
√
m

U0

ẏ0, (B2)

where the dot means the derivation with respect to the dimensionless time t̃. These di-

mensionless initial conditions are consistently of order ǫ. The amplitude equations (10)

gives

x̃
(
t̃
)
= 2ǫa cos

(
t̃+ φ

)
, ỹ

(
t̃
)
= 2ǫb cos

(
t̃+ ψ

)
, (B3)

where a =
√
N(1− χ) and b =

√
Nχ. The initial conditions for the dynamical variables χ,

φ and ψ are given by Eqn. (B2), and reads





x̃0 = 2ǫ
√
N(1− χ0) cosφ0,

˙̃x0 = −2ǫ
√
N(1 − χ0) sin φ0,





ỹ0 = 2ǫ
√
Nχ0 cosψ0,

˙̃y0 = −2ǫ
√
Nχ0 sinψ0.

(B4)

A simple manipulation gives





x̃20 +
˙̃x
2

0 = 4ǫ2N(1 − χ0),

ỹ20 +
˙̃y
2

0 = 4ǫ2Nχ0,
(B5)

therefore

x̃20 +
˙̃x
2

0 + ỹ20 +
˙̃y
2

0 = 4ǫ2N. (B6)

If we define the small parameter ǫ as

ǫ ≡

√
x̃20 +

˙̃x
2

0 + ỹ20 +
˙̃y
2

0

2
≪ 1, (B7)

we can take N = 1 in all generality. Physically, the small parameter is the ratio between

the initial energy and the depth U0 of the well.
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We then get

χ0 ≡
ỹ20 +

˙̃y
2

0

x̃20 +
˙̃x
2

0 + ỹ20 +
˙̃y
2

0

, (B8)

which is consistent with the requirement 0 < χ0 < 1. Moreover, since we may write

χ0 ≡
ỹ20 +

˙̃y
2

0

4ǫ2
, 1− χ0 =

x̃20 +
˙̃x
2

0

4ǫ2
, (B9)

we see that injecting these expressions in the system (B4) we get consistent real values for

the phases, since the relevant trigonometric functions range between −1 and 1.

[1] Elena Kartashova, Nonlinear Resonance Analysis: Theory, Computation, Applications (Cam-

bridge University Press, 2010).
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