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Abstract. We demonstrate parametric resonance in Bose-Einstein condensates (BECs) with attractive
two-body interaction in a harmonic trap under parametric excitation by periodic modulation of the s-
wave scattering length. We obtain nonlinear equations of motion for the widths of the condensate using a
Gaussian variational ansatz for the Gross-Pitaevskii condensate wave function. We conduct both linear and
nonlinear stability analyses for the equations of motion and find qualitative agreement, thus concluding
that the stability of two equilibrium widths of a BEC might be inverted by parametric excitation.

1 Introduction

The phenomenon of parametric resonance, when a system
is parametrically excited and oscillates at one of its reso-
nant frequencies, is ubiquitous in physics: the phenomenon
is found from simple classical systems such as the swing
set and the vertically driven pendulum [1], to the Paul ion
trap [2] and aspects of some inflation models of the uni-
verse [3]. Parametrically excited systems are frequently
nonlinear: even the parametrically driven pendulum is
governed by the linear Mathieu equation only for small
oscillations about its equilibrium positions. Nonetheless,
valuable qualitative insight into these systems may be
gained by investigating their behavior in the vicinity of
equilibrium points.

In the realm of ultracold quantum gases, studies
of parametric resonance have featured Faraday pat-
terns [4–11], Kelvin waves of quantized vortex lines [12],
self-trapped condensates [13,14], bright and vortex soli-
tons [15–17], and self-damping at zero temperature [18].
Other investigations focus on the phenomenon of para-
metric resonance in the context of lower-dimensional Bose
and Fermi gases [19–21]. Parametric resonances have also
been studied for optical lattices when the intensity of the
lattice is periodically modulated in time [22] or when the
lattice is shaken. In the latter case it was even shown that
a periodic driving can induce a quantum phase transition
from a Mott insulator to a superfluid [23,24], paving the
way for new techniques to engineer exotic phases [25,26].
Other novel experimental techniques [27–29] to excite a
Bose-Einstein condensate (BEC) of 7Li in the vicinity of
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a broad Feshbach resonance [30] by harmonic modulation
of the s-wave scattering length, in contrast to the usual
method of excitation by modulation of the trapping po-
tential [31–36], have inspired investigations of parametric
resonance and other phenomena in references [16,37–39].
In the following we perform a systematic proof-of-concept
study of the simplest case of parametric resonance in a
three-dimensional BEC in a harmonic trap. To this end
we demonstrate that within both a linear analytic and a
nonlinear numeric analysis the stability characteristics of
its equilibrium configurations can be changed by a peri-
odic modulation of the attractive interaction.

2 Variational approach

We start with modeling the dynamics of a BEC at zero
temperature using the mean-field Gross-Pitaevskii (GP)
Lagrangian

L(t) =
∫ [

i�

2

(
ψ
∂ψ∗

∂t
− ψ∗ ∂ψ

∂t

)
− �

2

2m
|∇ψ|2

− V (r)|ψ|2 − 2π�
2a(t)
m

|ψ|4
]
dr. (1)

Extremising the Lagrangian results in the well-known
GP equation for the dynamics of the mean-field conden-
sate wave function ψ = ψ(r, t). In experiments generi-
cally a cylindrically-symmetric harmonic trapping poten-
tial V (r) = mω2

ρ(ρ2 + λ2z2)/2 is used, whose elongation
is described by the trap anisotropy parameter λ = ωz/ωρ.
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Furthermore, we assume that the s-wave scattering length
is periodically modulated according to

a(t) = a0 + a1 sinΩt. (2)

In the following we will investigate how the stability of
condensate equilibria depends on both the driving am-
plitude a1 and the driving frequency Ω, provided the
time-averaged s-wave scattering length a0 is slightly neg-
ative. In principle, this could be analyzed by solving the
underlying GP equation for the condensate wave func-
tion ψ = ψ(r, t), which follows from extremizing the
Lagrangian (1). However, the thorough numerical anal-
ysis in reference [37] demonstrated convincingly that the
dynamics of the GP equation can be well-approximated
within a Gaussian variational ansatz for the GP conden-
sate wave function [40,41]. Even for long evolution times
and in the vicinity of resonances, where oscillations of the
condensate are quite large, it was possible to reduce the
GP partial differential equation to a set of ordinary dif-
ferential equations for the variational parameters.

Therefore, we follow the latter approach and employ
the Gaussian ansatz

ψG(ρ, z, t) = N (t) exp
[
− ρ2

2ũ2
ρ

+ iρ2φρ

]

× exp
[
− z2

2ũ2
z

+ iz2φz

]
, (3)

with time-dependent variational widths ũρ, ũz, phases φρ,
φz , and normalization N (t) = N1/2π3/2ũ−1

ρ ũ
−1/2
z . Insert-

ing the Gaussian ansatz (3) into the GP Lagrangian (1)
and extremizing with respect to all variational parame-
ters, we obtain at first explicit expressions for the phases
φρ,z = m ˙̃uρ,z/(2�ũρ,z). We define the dimensionless time
τ = ωρt and scale the variational widths by uρ,z =
ũρ,z/aho, where aho =

√
�/(mωρ) is the harmonic oscil-

lator length. Finally, we write the dimensionless driving
function p(τ) = p0 + p1 sin (Ωτ/ωρ) according to the def-
initions p0,1 =

√
2/πNa0,1/aho. The resulting dynamics

for the widths uρ and uz is then determined by a pair of
coupled nonlinear ordinary differential equations:

üρ + uρ =
1
u3

ρ

+
p(τ)
u3

ρuz
,

üz + λ2uz =
1
u3

z

+
p(τ)
u2

ρu
2
z

. (4)

For attractive two-body interactions, there is a crit-
ical value of the time-averaged interaction strength
pcrit
0 (λ) < 0 beyond which no equilibria exist in the ab-

sence of parametric driving. This means physically that
for pcrit

0 (λ) < 0 the BEC always collapses. The depen-
dence of pcrit

0 (λ) < 0 on the trap anisotropy λ must be
evaluated numerically, as for example in reference [39]. For
pcrit
0 (λ) < p0 < 0, there exists a pair of equilibrium points

for equations (4), one stable and one unstable [40,41],
which we denote with u0+ and u0−, respectively. We re-
mark that the stability of these points in the absence of

parametric driving is determined by evaluating the fre-
quencies of collective modes for small oscillations about
equilibrium [39]. Whereas the equilibrium u0+ has real fre-
quencies for all modes and, therefore, is stable, the equilib-
rium u0− possesses an imaginary frequency for one mode,
implying exponential behaviour and thus instability.

3 Linear stability analysis

In view of a linear stability analysis we assume small os-
cillations about an equilibrium, write uρ ≈ uρ0 + δuρ and
uz ≈ uz0 + δuρ, and expand the nonlinear terms of equa-
tions (4) to first order in δuρ and δuz. We scale and trans-
late time as 2t′ + π/2 = Ωτ/ωρ, define displacement and
forcing vectors x(t′) and f ,

x(t′) =

(
δuρ(τ)

δuz(τ)

)
, f = 4

(ωρ

Ω

)2
( p1

u3
ρ0uz0
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)
, (5)

and finally we introduce the matrices A and Q corre-
sponding to coefficients of constant and periodic terms,
respectively:

A = 4
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⎠ . (6)

The result consists of two coupled inhomogeneous Mathieu
equations

ẍ(t′) + (A− 2p1Q cos 2t′)x(t′) = f cos 2t′, (7)

whose solutions determine whether the underlying equi-
librium is stable or unstable.

The Mathieu equation, a special case of Hill’s differ-
ential equation [42], has been studied extensively in ref-
erence [43]. Approaches to obtaining its stability diagram
include continued fractions [42,44,45], perturbative meth-
ods [46–48], and infinite determinant methods [49–52].
The problem has been treated in detail in reference [53]
for the study of the Paul trap, the stability of which is
governed exactly by a set of coupled homogeneous Math-
ieu equations. Of importance to our particular problem
are references [54,55], where it was shown that for both
single and coupled Mathieu equations, a harmonic inho-
mogeneous term does not affect the location of stability
borders to equation (7).

In many approaches (see, for example, Ref. [52]), equa-
tion (7) is reformulated as a first-order non-autonomous
Floquet system

φ̇ = G(t′)φ, (8)

where φ = [x ẋ]T , and

G(t′) =

(
0 12

− (A − 2p1Q cos 2t′) 0

)
(9)
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is π-periodic. Linearly independent solutions to the
Floquet problem may be written as a fundamental ma-
trix solution Φ(t′) with the initial condition Φ(0) = 14:

Φ̇(t′) = G(t′)Φ(t′). (10)

It can be shown that solutions to equation (10) are sta-
ble if the eigenvalues λn of Φ(t′ = π) satisfy |λn| ≤ 1.
Further, we define characteristic exponents βn such that
λn = eβnπ, with the result that stable solutions x1,2(t′) to
equation (7) may be written in the form [56]

x1,2(t′) = e±βt′
∞∑

n=−∞
b2ne

2int′ . (11)

On the stability borders, equation (11) provides one lin-
early independent solution that is periodic; a second is
non-periodic and grows linearly with time. In construct-
ing the linear stability diagram, we use two complemen-
tary approaches: a matrix continued fraction approach
based on references [44,45] determines the stability bor-
ders analytically, while a numerical integration of equa-
tion (10) to obtain the characteristic multipliers λn deter-
mines the stable or unstable character of the respective
diagram regions.

By substitution of the Floquet ansatz (11) into equa-
tion (7), we obtain a third-order recurrence relation for
the Fourier coefficients b2n:
[
A + (β + 2in)2 I

]
b2n−p1Q (b2n+2 + b2n−2) = 0. (12)

We define the ladder operators S±
2nb2n = b2n±2 as:

S±
2n =

{
A + [β + 2i (n+ 1)]2 I − p1QS±

2n±2

}−1

p1Q,

(13)
and by repeated re-substitution of these ladder operators
into the recursion relation (12) for n increasing and de-
creasing from zero, we obtain a tri-diagonal matrix-valued
continued fraction relating the parameters A, Q, and β:

(
A + β2I − p2

1Q
{[

A + (β + 2i)2 I − . . .
]−1

+
[
A + (β − 2i)2 I − . . .

]−1
}
Q

)
b0 = 0. (14)

In order to obtain a non-trivial solution for b0, the deter-
minant of the matrix-valued continued fraction (14) must
vanish. Since on the stability borders one linearly inde-
pendent solution is periodic, it suffices to set β = {0,±i}
in equation (14) and truncate the continued matrix in-
version, determining the stability borders in terms of the
dimensionless driving amplitude p1 and the driving fre-
quency Ω. Empirically, a truncation at S±

4 proves to be
sufficient for accurate results. The resulting stability for
particular values of Ω and p1 is then shown in the linear
stability diagram of Figure 1 for three characteristic val-
ues of the trap anisotropy λ. Our results indicate that for

(a)

(b)

(c)

Fig. 1. Linear stability diagrams from solving two coupled
Mathieu equations for the unstable (case 1) and stable (case 2)
equilibrium positions of a cylindrically-symmetric BEC for
three values of the trap anisotropy λ: (a) λ = 0.2 (a cigar-
shaped BEC), (b) λ = 1 (spherical BEC), and (c) λ = 2.6
(pancake-shaped BEC). White regions correspond to unsta-
ble solutions, darkest shaded regions to stable solutions, and
lightly shaded regions correspond to marginally stable solu-
tions – regions where only one of two available collective oscil-
lation modes is stable.

the unstable (stable) equilibrium position, the largest re-
gion of stability (instability) occurs for a pancake-shaped
BEC, i.e., for λ > 1.

As a special case the stability borders for the isotropic
condensate follow from the 3D spherically symmetric ver-
sion of equation (3) and are given by a separate continued
fraction, obtained by an analogous process for a single
inhomogeneous Mathieu equation. The resulting stability
diagrams are shown in Figure 2. The isotropic case allows a
direct analogy between the condensate and the parametri-
cally driven pendulum: the pendulum too is described by
a single Mathieu equation, however the inhomogeneous
term in the equation of motion for the BEC corresponds
to a direct periodic driving in phase with the parametric
driving. It was shown in reference [54] that a periodic inho-
mogeneity has no effect on the stability borders for a single
Mathieu equation, so Figure 2 is simply a transformation
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Fig. 2. Linear stability diagrams from solving a single Math-
ieu equation for (a) unstable and (b) stable equilibria of a 3D
spherically symmetric BEC. Shaded and white regions indi-
cate stable and unstable solutions, respectively. The presence
of a stable region in (a) indicates that an originally unstable
equilibrium might be stabilized by parametric excitation.

of the standard Ince-Strutt stability diagram for the para-
metrically driven pendulum [42], for the relevant experi-
mental parameters of the BEC.

While the results of linear stability analysis for the
coupled Mathieu system are qualitatively similar to those
for the single equation, there are a number of notable
changes between Figures 1 and 2. First, for the coupled
Mathieu equations, there exist a set of stability regions
not attainable by the analytic method used here. These
are displayed without black borders in Figure 1, and cor-
respond to the so-called “combined resonances” of the sys-
tem [51,53]. These regions are attainable by numerical sta-
bility analysis of the Mathieu equations [53,56,57], which
was used to generate the colored background regions of
Figure 1. It is notable in Figure 1 that these anomalous
regions are not present for λ = 1.

A second and important difference from the single to
the coupled Mathieu equations is the appearance of a new
region, shaded white and issuing from Ω/ωρ ≈ 10 in Fig-
ure 1 for λ = 1, case 1. This region is identified with
the instability of the quadrupole collective mode, which
does not appear in a one-dimensional analysis. This result
implies that a three-dimensional analysis might result in
further changes to the linear stability diagram of Figure 1
for λ = 1, case 1.

4 Nonlinear numerics

As the underlying equations of motion (4) are inher-
ently nonlinear, a linear analytic stability analysis alone
is not sufficient to fully investigate the phenomenon of
parametric resonance. Therefore, we have also performed
a detailed numerical stability analysis by integrating the
equations of motion (4) over a long time-period using a
Runge-Kutta-Verner 8(9) order algorithm, incrementing
through pairs (p1, Ω) and recording divergent solutions
to obtain the corresponding stability diagram. The corre-
sponding results are shown in Figure 3 for the same three
values of the trap anisotropy λ as in Figure 1.

(a)

(b)

(c)

Fig. 3. Nonlinear stability diagrams for the unstable (left) and
stable (right) equilibria of a cylindrically-symmetric BEC, for
three values of the trap anisotropy λ: (a) λ = 0.2 (a cigar-
shaped BEC), (b) λ = 1 (spherical BEC), and (c) λ = 2.6
(pancake-shaped BEC). Shaded and white regions indicate sta-
ble and unstable solutions, respectively.

The results for the originally stable equilibrium u0+

show both qualitative and even quantitative similarity
to the linear stability analysis of Figure 1, i.e., a simi-
lar tonguelike structure of unstable regions issuing from
certain points on the vertical axis. The originally unsta-
ble equilibrium u0− also shows qualitative similarity to
the linear analysis of Figure 1, however the region of sta-
bility begins only for much larger modulation frequency
Ω and dimensionless driving amplitude p1. These results
are both reasonable, as the linear stability analysis is only
valid for small oscillations – corresponding to large (p1, Ω)
for equilibrium u0+ and small (p1, Ω) for equilibrium u0−.
Furthermore, in contrast to Figure 1, we find in the non-
linear stability diagram of Figure 3 that stability is more
easily achieved for a cigar-shaped BEC, i.e., for λ < 1.

Further comparison of the linear and nonlinear stabil-
ity diagrams of Figures 1 and 3 shows the possibility of
both simultaneous stability of the equilibrium positions,
and even the possibility of a complete reversal of the sta-
bility characteristics. In the latter case, the smaller equi-
librium position would become the only stable width of the
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condensate, which should be experimentally observable.
A final observation, applicable to the originally unstable
equilibrium in both linear and nonlinear cases, is the ex-
istence of a minimum driving amplitude pmin

1 necessary to
stabilize the condensate. The value pmin

1 = u0(5u4
0 − 1) ≈

0.17p0 is exactly attainable for the linear analysis of the
isotropic condensate, and in Figure 1 is approximately in-
dependent of λ in the considered range [0.2,2.6]. For the
nonlinear analysis, pmin

1 ≈ 1.2p0 is also approximately in-
dependent of λ. This feature will have implications for
an experiment, as in conjunction with the width of the
Feshbach resonance, it dictates the minimum modulation
of the applied magnetic field necessary to stabilize the
condensate.

We note that any stability diagram depends on the
particular choice for the time-averaged dimensionless in-
teraction strength p0. The concrete results in Figures 1–3
were obtained for the particular value p0 = 0.9pcrit

0 (λ). As
p0 approaches pcrit

0 (λ), we generically observe a growth of
the stable (unstable) regions in case 1 (2).

5 Conclusions

Finally, we conclude that our proof-of-concept investiga-
tion has unambiguously shown that the phenomenon of
parametric resonance should also be experimentally ob-
servable in terms of changed stabilities for the equilibrium
configurations of a three-dimensional BEC in a harmonic
trap with a periodic modulation of the attractive interac-
tion. However, due to the intrinsic nonlinear nature of the
underlying GP mean-field theory, a linear analysis, like
in the Paul trap, is not sufficient to quantitatively study
the stability diagram. Thus, in order to achieve a destabi-
lization (stabilization) of a stable (unstable) BEC equilib-
rium in an experiment, a corresponding numerical nonlin-
ear analysis is indispensable. Regardless, a linear stability
analysis provides an intuitive and qualitative understand-
ing of the physics of parametric resonance in BECs.

In the present letter we have focused our attention
upon a periodic modulation of the s-wave scattering
length around a slightly negative value, which restricts
the number of particles in a BEC to the order of a few
thousand [58,59]. However, the phenomenon of paramet-
ric resonance might be more important for dipolar BECs,
where in addition to a repulsive short-range and isotropic
interaction, also a long-range and anisotropic dipolar in-
teraction between atomic magnetic or molecular dipoles is
present. Provided that the dipolar interaction is smaller
than the contact interaction, a stable dipolar BEC does
exist. But a larger dipolar strength leads to mutual exis-
tence of both a stable and an unstable dipolar BEC [60]
whose stability might be changed via a periodic mod-
ulation of the harmonic trap frequencies or the s-wave
scattering length. In that context it might also be of inter-
est to estimate how quantum fluctuations, which are non-
negligible for a larger dipolar interaction strength [61,62],
change the stability diagram. The case for dipolar Fermi
gases is probably even more interesting from the point of
view of parametric resonance, as for any dipolar strength

a stable equilibrium coexists with an unstable one [63,64].
Thus, parametric resonance may offer a simple efficient
approach for realizing equilibria of dipolar quantum gases
whose properties have so far not yet been explored.
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Yukalov, V.S. Bagnato, Phys. Rev. A 78, 063412 (2008)

28. P.G. Kevrekidis, G. Theocharis, D.J. Frantzeskakis, B.A.
Malomed, Phys. Rev. Lett. 90, 230401 (2003)

29. S.E. Pollack, D. Dries, R.G. Hulet, K.M.F. Magalhães,
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B 46, 065303 (2013)
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