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Parametric Resonance in Electrostatically
Actuated Micromirrors

Attilio Frangi, Andrea Guerrieri, Roberto Carminati, and Gianluca Mendicino

Abstract—We consider an electrostatically actuated
torsional micromirror, a key element of recent optical
microdevices. The mechanical response is analyzed with
specific emphasis on its nonlinear features. We show that
the mirror motion is an example of parametric resonance,
activated when the drive frequency is twice the natural
frequency of the system. The numerical model, solved
with a continuation approach, is validated with very good
accuracy through an extensive experimental campaign.

Index Terms—Continuation approaches, Mathieu equa-
tion, micromirrors, microoptoelectromechanical systems
(MOEMS), parametric resonance.

I. INTRODUCTION

M ICROMIRRORS are emerging as a very successful
component (see, e.g., [1]) within the family of microop-

toelectromechanical systems (MOEMS). MOEMS, in general,
are microelectromechanical systems (MEMS) merged with
microoptics and involve sensing or manipulating optical signals
on a very small size scale, using integrated mechanical, optical,
and electrical systems. Coupling all these technologies is
paving the way to several devices such as, e.g., optical switches,
digital micromirrors and dynamic displays, bistable mirrors,
laser microscanners, optical shutters, microspectrometers, and
microlenses.

Among these, the pico-projector is a response to the emer-
gent need of compact portable devices to project digital images
onto any nearby external viewing surfaces. This optical engine
is composed of three lasers diodes (i.e., red, green, and blue
colors), two micromirrors for the laser beams deflection, and
some passive optical elements like lenses and microfilters. An-
other example is provided by the microscanner for real-time
3-D shape measurement of moving objects. Known devices are
formed using three components: a conventional color CMOS
image sensor camera, an infrared images sensor, an infrared
light projector plus an image processor. The infrared light pro-
jector emits a structured pattern of infrared light, which is re-
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flected back from the scene and is detected by the infrared
image sensor, making it possible to reconstruct a 3-D scene.
The light projector contains an IR laser diode, a line lens, and
a MEMS resonant micromirror device all mounted onto a small
optical bench.

The resonant micromirror is hence an important element for
both applications. A typical example, on which we focus in this
investigation, is depicted in Fig. 1. The device features an elec-
trostatically actuated torsional mirror, similar to that described
in a recent publication [2] on the effects of fluid damping by
ambient air on the large oscillations of the mirror. In this pa-
per, we discuss and simulate the mechanical response of the
torsional mirror responding in its main torsional mode and fi-
nally validate the results with an experimental campaign. We
show that it is based on parametric resonance, which is a known
phenomenon in the nonlinear dynamics of structures. MEMS
and MOEMS provide several pieces of evidence of nonlinear
phenomena, mainly induced by nonlinear terms in the electro-
static or elastic stiffnesses (see, e.g., the extensive literature cited
in [3] and the specific examples for micromirrors in [4]–[6]).
However, in most cases, the devices are still governed by the
classical harmonic resonance. Parametric resonance has been
well understood in many areas of science [3], [7]–[9], includ-
ing the stability of ships, the forced motion of a swing, and
Faraday surface wave patterns on water. Theory predicts that
parametric resonances occur near drive frequencies of 2ω0/n,
where ω0 is the system’s natural frequency and n is any pos-
itive integer. However, in macroscopic systems, only the first
resonance region near 2ω0 can typically be observed, because
of damping and exponential narrowing of the resonance regions
with increasing n. An exception is described in [10], where
the torsional oscillations in a single-crystal silicon MEMS have
been analyzed. Five instability regions have been measured,
due to the low damping, stability, and precise frequency control
achievable in that system.

Microsystems provide several examples of parametric reso-
nance, starting from the pioneering work by Rugar and Grutter
[11]. Applications include mass sensing, parametric amplifica-
tion (see, e.g., also [12]–[21]), and others. In particular, Rhoads
et al. [16] focus on the design of a highly sensitive mass sensor
and use a nonlinear generalized Mathieu equation to model the
problem. Analytical results show that nonlinearity significantly
changes the stability characteristics of parametric resonance. It
is shown that the forms of the nonlinear terms in the damping
coefficient, elastic, and electrostatic stiffness have a strong effect
on the actual response of the modeled device. The system can ex-
hibit not only the typical hardening and softening nonlinearities,
but also mixed nonlinearities, wherein the response branches in
the system’s frequency response bend toward or away from one
another near resonance. In the application of interest herein,
the elastic stiffness is linear and all the nonlinearities are due
to the electrostatic forcing. However, these cannot be approxi-
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Fig. 1. Resonant micromirror: SEM image of the device, layout, and schema of the connections. R stands for rotor (rotating mirror) and S for stator
which is connected to ground.

mated with linear and cubic terms due to the very large opening
angles, and a very accurate numerical procedure is mandatory.

The paper is organized as follows. After introducing the mir-
ror geometry and elaborating the dynamical model in Section II,
the analytical and numerical solution of the governing equation
is discussed in Section III-A. We apply continuation techniques
that permit to simulate all the branches of the response, both
stable and unstable. Continuation codes like AUTO [24] are the
state of the art for these kind of analyses. However, periodic
nonautonomous systems cannot be handled simply. While for
sinusoidal voltages, this difficulty can be easily overcome, for
the square wave with finite ramp speed, the only possibility is to
represent the square wave as a finite sum of sinusoidal compo-
nents [according to its fast Fourier transform (FFT)] inducing
spurious Gibbs oscillations. We have avoided this by develop-
ing an ad-hoc code, which has been benchmarked with AUTO
for the sinusoidal voltage. An extensive experimental campaign,
described in Sections IV and V, validates the modeling phase
for two different types of excitations: pure sinusoid and square
wave, as in real operation.

II. MICROMIRROR DESCRIPTION AND MODELING

The 2-D layout and a scanning electron microscopic (SEM)
image of the micromirror are depicted in Fig. 1. The device has
been fabricated with a dedicated silicon-on-insulator technol-
ogy. The out-of-plane uniform thickness of the monocrystalline
layer is H = 65 μm. The central circular reflecting surface is
attached to the substrate via two coaxial beams acting as tor-
sional springs. Metallization material for the mirror is chosen
to maximize reflection in requested working optical wavelength
range (typically Au for IR and Aluminum for visible light). Four
sets of 33 fingers each are anchored to the trapezoidal regions
directly attached to the mirror. These plates, interdigited with
their stator counterparts, form a comb drive structure providing
the electrostatic actuation mechanism. Sensing of the opening
angle is performed, during operation, via the same comb drive
electrodes. It is worth stressing that, due to symmetry, the elec-
trostatic torque around the torsional axis vanishes for ψ = 0,
i.e., in the rest configuration, ∀V (t). As will be explained next,
this trivial solution becomes, however, unstable for some com-
binations of the input voltage and frequency and triggers the
mirror rotation.

Introducing the reasonable assumption that only the torsional
springs can deform elastically, while the other elements behave
as rigid bodies, the following 1-D model governs the mirror

response in the torsional mode:

Iψ̈ +Bψ̇ +Kψ =
ε0

2
∂C

∂ψ
V 2(t) (1)

where I = 2.375 × 1010 ng· μm2 is the inertia around the
torsional axis; K = 2.704 × 107 μN·μm is the torsional stiff-
ness of the springs; B = 1.448 × 106 μN·μm·μs is a damp-
ing coefficient, and C = ε0Cg is the system capacity, with
ε0 = 8.85 × 10−6 pF/ μm , and Cg , measured in microme-
ters, is a purely geometrical feature that requires numerical
simulations and is commented next. The voltage V is given
in volts, and the time in (1) is measured in microseconds. All
the values are consistent with the MEMS-like system: μs for
time, ng (10−9 g) for mass, μm for length, μN for forces, pC
(10−12 C) for electric charges, and V for voltages. The torsional
eigenfrequency of the mirror is f0 = 5370 Hz. The moment of
inertia I is estimated from the given geometry and K is accu-
rately computed using standard tools of structural mechanics.
On the contrary, the dissipation term is a delicate issue. Due
to the presence of comb–finger actuation and of a large gap
(350 μm ) between the mirror plate and the substrate, the main
contributions to dissipation are from shear flow in the comb
fingers and the transport of mass induced by the large rotation
of the mirror. Preliminary results have been obtained on a similar
structure in [2] applying a state-of-the-art commercial code for
the analysis of fluid–structure interaction and, independently,
the formulation [22] implemented in Coventorware [23]; how-
ever, to increase the accuracy, in the present work, the B value
has been calibrated starting from the known maximum opening
angle of the mirror in operative conditions. A single constant
dissipation coefficient is utilized for all the analyses in this pa-
per, yielding very satisfactory quantitative results (see, however,
the comments to Fig. 14). An extensive numerical campaign is
currently underway in order to improve the predictive capabili-
ties.

A. Capacitance Extraction

A dedicated code based on integral equations has been applied
to compute capacitance for one complete set of comb fingers, as
represented in Fig. 2. The accuracy of the capacitance extraction
phase is crucial for the success of the simulation procedure, and
simple analytical formulas prove insufficient.

The capacitance is a function of the Euler angles of the rigid
mirror. Fig. 3 plots the capacitance C of this set of fingers in
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Fig. 2. Geometrical model of one complete series of interdigited
fingers.

Fig. 3. Plot of the geometrical capacitance Cg (C = ε0Cg ) for one
of the four sets of interdigited fingers. ψ and θ are two Euler angles of
the mirror.

Fig. 4. Derivative of the total geometrical capacitance Cg (C = ε0Cg )
with respect to the torsional angle, for θ = 0.

terms of ψ and θ, where θ, not activated in this investigation,
represents a rotation around the material axis orthogonal to the
current configuration of the mirror surface. Starting from the
data of Fig. 3, the derivative of the total capacitance with respect
to ψ is computed by means of numerical differentiation in the
θ = 0 plane. The results are illustrated in Fig. 4.

Fig. 5. Input voltage: square wave at 5300 Hz, 150 V.

Fig. 6. Power spectrum for the square wave in Fig. 5.

B. Mirror Actuation and Control

In standard working conditions, the mirror is excited near the
resonance peak, and the phase between the driving signal and
the mirror is kept constant by a closed loop. The mirror is driven
with a square wave at 150 V with a typical duration < 25% of
the duty cycle. The square wave has finite ramp rates, which are
typically set at 15 and 30 V/μs for the upward and downward
ramps, respectively. Fig. 5 presents the square wave for a chosen
frequency of 5300 Hz, close to the natural torsional frequency
of the mirror. It is worth stressing, for future discussion, that the
FFT of the square wave contains almost all the multiples of the
fundamental frequency, as evidenced in Fig. 6, illustrating the
power spectrum.

III. ANALYTICAL AND NUMERICAL SIMULATIONS

The electrostatic forcing vanishes for ψ = 0, and the plot
of Fig. 4 can be roughly approximated with a linear term:
(ε0/2)∂C/∂ψ � −Ke

1ψ,Ke
1 > 0, for small ψ. Even if the mir-

ror is excited with a square wave in actual operations, several
experiments with a sinusoidal input are reported in Section IV.
Hence, let us initially focus for simplicity on V = V0 cosωt.
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Fig. 7. Simulated stable and unstable branches for a cubic approxima-
tion of ∂C/∂ψ and V = V0 cos(ωt), V0 = 45 V.

The forcing term in (1) becomes −Ke
1V

2
0 /2(1 + cos 2ωt)ψ and

Iψ̈ +Bψ̇ +
(
K +Ke

1V
2
0 /2 +Ke

1V
2
0 /2 cos 2ωt

)
ψ = 0. (2)

In (2), Ke
1V

2
0 /2 is less than 0.8% of K for V0 = 100 V and

can be safely neglected in our applications. Equation (2) is a
form of the well-known Mathieu equation [14], [16] with zero
dissipation

d2x

dτ 2 + (δ + ε cos 2τ)x = 0 (3)

where τ = ωt, parameter δ stands for ω2
0/ω

2 (without consid-
ering the electrostatic stiffness; see comments above), and ε is
associated with the electrostatic forcing. Although the theoreti-
cal developments are quite involved, the linear Mathieu equation
admits nontrivial solutions only in specific regions of the δ, ε
space, called instability tongues. These tongues emanate from
the ε = 0 axis near drive frequencies corresponding to δ = n2 ,
where n is any positive integer. The region of practical interest
is the tongue emanating from δ = 1. Even though theoretically
there are infinitely many tongues, these almost never show up in
real systems because they get narrow and are strongly reduced in
the presence of dissipation (see, however, [16], where multiple
tongues have been measured). For our purposes, this means that
the physical system produces a nontrivial response only when
the forcing frequency 2ω is equal to twice the eigenfrequency
ω0 of the system.

However, the representation of the electrostatic forcing with
a linear term is only a crude approximation of reality. A cubic
term in V 2 can be added, leading to the generalized nonlinear
Mathieu equation

d2x

dτ 2 + (δ + ε cos 2τ)x− (γ + γ cos 2τ)x3 = 0 (4)

which has been analyzed in [16]. The numerical simulation of
(4) for the mirror parameters and a sinusoidal applied voltage is
plotted in Fig. 7. It has been obtained applying the continuation
approach described in the next section and reducing the dissipa-
tive term by two orders of magnitude for the purpose of compar-
ison. It closely matches the results obtained in [16] for negative
γ3 = λ3 (in that paper notation). It is, however, clear that even
a cubic approximation is realistic only for small angles, and it
will indeed be shown, in Section V, that the real mirror response

differs significantly. Also the approximation with a Gaussian
function [18] does not prove sufficiently accurate for our pur-
poses. Similar conclusions hold if we consider the square wave
forcing of Figs. 5 and 6. The system admits nontrivial solutions
whenever one of the Fourier components of V 2 is close to twice
the natural frequency ω0 of the linear system, i.e., 10 600 Hz
in our case. Several pieces of evidences will be discussed
in Section V.

A. Numerical Continuation

The numerical simulation of (1) can be performed both with
the brute force approach and with a more refined continuation
technique. In the former case, amplitude versus frequency
plots are obtained by direct analysis in time. A sweep over the
frequencies of interest is performed, and for each frequency, a
sufficient number of cycles are simulated by direct integration
to reach a steady state; the amplitude is then recorded, and the
next frequency is addressed, using the final amplitude and phase
of the previous analysis as initial conditions. This is a very
robust technique, which, however, permits to simulate only the
stable branches. On the contrary, the continuation approach [9],
[24] with arc length control is more accurate and general and
is preferred in this work, where a custom implementation of a
simplified formulation has been utilized in order to address also
the square wave excitation. The brute force simulation is only
applied to get a reasonable initialization of the continuation
procedure. The model in (1) is rewritten as a first-order
nonautonomous differential system of equations in terms of the
fictitious time τ = t/T , with T period of the forcing function

y′1 = Ty2

y′2 = −BT
I
y2 − KT

I
y1 − Tε0

2I
∂C

∂ψ
V 2(Tτ). (5)

In (5), the prime denotes differentiation with respect to τ , and
f = 1/T is the continuation parameter. Limiting our attention
to periodic solutions with period T , we require y1(0) = y1(1)
and y2(0) = y2(1). The segment [0-1] is partitioned into
N equal elements and the unknown functions y1 , y2 are
discretized over each element with quadratic Lagrangian shape
functions. Equation (5) is solved with the method of orthogonal
collocation, i.e., it is collocated at the two abscissae of the
Gauss–Legendre orthogonal polynomial in each element. The
unstable branches are followed using the Keller’s pseudo-arc-
length continuation method [9], which imposes that, given
a solution y1 , y2 , f , the increment Δy1 ,Δy2 ,Δf is sought
such that its projection along a specific direction (typically, the
tangent to the y1 , y2 , f manifold) equals a fixed arc length Δs.

IV. EXPERIMENTAL SETUP

The monitoring of the opening angle of the electrostatic mi-
cromirror was obtained through the experimental measurement
of the deflection of a laser beam incident on the device. The
setup scheme for this test is reported in Fig. 8. In particular,
the activation signal was produced by the function generator
“Agilent 33521 A.” He–Ne laser was preferred in order to have
a spot size smaller than the mirror diameter without using other
optical instrumentation for the beam collimation.

An attenuator was positioned in front of the laser to reduce
the laser intensity and not saturate the camera. The mirror is
mounted on an optical alignment bench in order to provide a
45◦ laser beam incidence and reflection angle and a perpendic-
ular projection of the reflected beam on the millimetric target.
The resonant movement of the mirror spans a laser segment,
which is acquired by a camera and processed through a ded-
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Fig. 8. Setup scheme (and photo) used for the dynamical characteri-
zation of the mirror photo of the setup.

Fig. 9. Sinusoidal excitation at 5 kHz, V0 = 45 V; comparison of the
response computed with AUTO [24] (crosses) and with the present
continuation approach.

icated Labview script. An accurate calibration of the camera
was performed in order to obtain the relation between camera
pixels and physical lengths. The mechanical opening angle is
calculated through the following relation: ψmech = 1/2ψopt =
1/2 arctan(L/2d), where L is the distance between the target
and the mirror and d is the laser segment length. The control
software gives the possibility to set the scanning frequency,
range, and step and direction of sweep (up or down).

Fig. 10. Sinusoidal excitation at 5 kHz, V0 = 45 V; experimental up-
ward and downward sweep (discrete symbols) and numerical continua-
tion (continuous line).

Fig. 11. Sinusoidal excitation at 5 kHz, V0 = 55 V; experimental up-
ward and downward sweep (discrete symbols) and numerical continua-
tion (continuous line).

V. COMPARISON OF NUMERICAL AND EXPERIMENTAL DATA

A. Sinusoidal Excitation

In the case of pure tone excitation, the mirror has been actu-
ated with sinusoidal voltages V (t) = V0 cosωt in two different
ranges of frequencies: 2 and 5 kHz. The driving term V 2 con-
tains the term cos 2ωt and the theory recalled in the previous
section predicts that, in the absence of dissipation, a nontrivial
response is obtained in regions of the space ω, V (instability
tongues) emanating from the axis V = 0 at ω = ω0/n, n > 0.
In the 5-kHz case, corresponding to n = 1, the mirror shows the
classical non trivial softening behavior: in this range, indeed, 2ω
is close to 2ω0 . Figs. 10–13 collect all the experimental results
in a broad range of peak voltages V0 (45–90 V). When available,
both the upward and downward experimental sweep have been
plotted, while the data are limited to the latter sweep in the other
cases. Considering that only stable branches can be reproduced
in the experiments, the agreement with numerical data is, in
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Fig. 12. Sinusoidal excitation at 5 kHz, V0 = 70 V; experimental up-
ward and downward sweep (discrete symbols) and numerical continua-
tion (continuous line).

Fig. 13. Sinusoidal excitation at 5 kHz, V0 = 90 V; experimental down-
ward sweep (discrete symbols) and numerical continuation (continuous
line).

general, impressive. For V0 = 45 V (see Fig. 9), the predicted
response has been compared with AUTO [24], which represents
the state of the art for continuation approaches. It is worth re-
calling that the model is almost exact, the only limitation being
the simplified dissipative term Bψ̇. From the comparison with
experimental data, it is apparent that B should be, in general, a
(weak) function of ψ.

The comparison of the results presented above with the plot of
Fig. 7, obtained with a cubic approximation for ∂C/∂ψ, clearly
indicates that an accurate representation of the electrostatic
forcing for large ψ is crucial. Tongues with n > 1 are very nar-
row and difficult to measure experimentally and even simulate
numerically. Moreover, in the presence of important damping as
for the micromirror, tongues with n > 1 exist only for large V .
The experimental data for the maximum amplitude versus input
frequency for the 2-kHz case (i.e., n = 2) and V0 = 90 V are
displayed in Fig. 14. The measured response has a very limited
amplitude and data are noisy. The shape of the curve, however,
is as expected. In order to obtain a nontrivial result, the viscous
coefficient has been lowered by one order of magnitude with

Fig. 14. Sinusoidal excitation at 2 kHz, V0 = 90 V. Continuation
approach (continuous line) and experimental data.

Fig. 15. Square wave excitation at 2 kHz, V0 = 110 V; experimen-
tal downward sweep (discrete symbols) and numerical continuation
(continuous line).

respect to the B utilized for all the analyses of the paper, which
seems coherent with the expectation thatB should be a function
of the opening angle. However, the agreement between the
frequencies and the slope of the curves is totally satisfactory.
This represents one of the few experimental pieces of evidences
available (see, however, [10]) of instability tongues with n > 1.

B. Square Wave Excitation

When the square wave excitation is utilized, curious phe-
nomena occur that could not be explained in the context of the
classical harmonic resonance. When the input frequency is in
the range of 2 kHz, no Fourier component for V 2 equals the tor-
sional eigenfrequency, but the mirror is actually parametrically
driven by the (fifth) Fourier component at 11 kHz, i.e., 2ω0 ,
which is indeed rather small in amplitude. This explains why
the maximum opening angles are limited in Figs. 15 and 16.

Moreover, the hysteresis loop is extremely narrow, which
makes the continuation triacky. It is worth stressing that the
continuation approach only works if the forcing and mirror re-
sponse are periodic, which means that two periods of the square
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Fig. 16. Square wave excitation at 2 kHz, V0 = 130 V; experimen-
tal downward sweep (discrete symbols) and numerical continuation
(continuous line).

Fig. 17. Square wave excitation at 5 kHz, V0 = 110 V; experimen-
tal upward and downward sweep (discrete symbols) and numerical
continuation (continuous line).

wave and five periods of the mirror response must be simu-
lated as one “global” period. Increasing the frequency of the
input square wave, the torsional mode of the mirror is activated
whenever there exists an integer n such that nω � 2ω0 . For in-
stance, at 5 kHz, one has n = 2, and at 10 kHz, n = 1. These
two cases have been investigated numerically and experimen-
tally, the former being the normal operating mode of the mirror.
Figs. 17 and 18 refer to the 5-kHz case. Finally, Figs. 19 and 20
present the comparison when the mirror is actuated with a
square wave (with finite ramp up/down rates) in a frequency
range around 10 kHz. In this case, in the FFT of V 2 , the first
high-energy Fourier component is at 2ω0 and, hence, energeti-
cally activates the mirror response. Even though the V0 voltage
utilized in this case is rather low, the mirror experiences very
large rotations inducing partial failure of the experimental setup,
which limits the validity of experimental data at the peak. It is
worth stressing that the development of the ad-hoc code rapidly
described in Section III-A has been stimulated specifically to

Fig. 18. Square wave excitation at 5 kHz, V0 = 130 V; experimen-
tal upward and downward sweep (discrete symbols) and numerical
continuation (continuous line).

Fig. 19. Square wave excitation at 10 kHz, V0 = 90 V; experimen-
tal downward sweep (discrete symbols) and numerical continuation
(continuous line).

Fig. 20. Square wave excitation at 10 kHz, V0 = 110 V; experimen-
tal downward sweep (discrete symbols) and numerical continuation
(continuous line).
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avoid an approximate representation of the square wave as a
finite sum of sinusoidal components inducing spurious Gibbs
oscillations.

VI. CONCLUSION

In this paper, we have thoroughly analyzed a typical electro-
statically actuated torsional micromirror, and we have validated
the numerical model with an extensive experimental campaign.
The experimental data are reproduced with impressive accu-
racy. Parametric resonance is a well-understood phenomenon in
nonlinear dynamics, and we have shown that the micromirror
operates in this framework. In some cases, the experimental data
appear as smoothed near the numerical peak. This might be due
to the fact that in these cases, the instability tongue is typically
very narrow and experimentally difficult to reproduce; also the
dissipation coefficient injected in the numerical model is naive
since a dependence on the opening angle is neglected. Investi-
gations along these lines are ongoing. The nonlinear behavior of
the main mode is also associated with fancy nonlinear coupling
phenomena with spurious modes of the mirror, which are the
topic of future works.
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