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1. Review of Resonance

For a damped, mass-spring
system:

mẍ + µẋ + σx = f(t)
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I. Unforced or Natural Oscillations, f(t) ≡ 0:

(a) Undamped system, µ = 0: (b) Damped system, µ > 0:

sustained oscillations with

natural frequency

ωo =
√

σ
m

decaying oscillations with

natural frequency

ωo =

√

σ
m − µ2
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II. Externally-forced Oscillations:

The system is subjected to an external periodic force
(modeled as a separate term in the DE)

mẍ + µẋ + σx = Fo cos ωt

Resonance occurs when forcing is close to the natural frequency
=⇒ amplitude of resulting oscillations grows when undamped (µ = 0)

(a) Undamped, non-resonant
(µ = 0, ω 6= ωo):

(b) Undamped, resonant
(µ = 0, ω = ωo):

persistent, mixed-frequency oscillations unstable, unbounded oscillations
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(c) With damping (µ > 0) — “real” systems:

• oscillations are bounded, transient dies out, and forcing persists

• resonance appears as a peak in max. amplitude, only if µ2 < 1
2
σ2
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III. Internal forcing:

Oscillations can also be excited via periodic variation in a system parameter:

mẍ + µẋ + σ(t)x = 0

σ(t) periodic: σ(t) = σ(t+ T ) =⇒ Hill’s equation (1886)

special case: σ(t) = σo(1 + 2ε cosωt) =⇒ Mathieu equation (1868)

Compare:
• Solution can become unstable whether or not µ = 0 !

=⇒ called parametric resonance

• The system responds at frequency 1
2 ω [ Why? ]

• Internal forcing can also stabilize systems that are otherwise
unstable

e.g., inverted pendulum with gravitational
modulation
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A Heuristic Look at Parametric Resonance

Take m = 1, µ = 0, and treat the periodic term as a forcing term:

ẍ + ω2
ox = −2εω2

o(cos ωt)x

where ω2
o = σo.

First solve the homogeneous problem:

ẍ+ ω2
ox = 0 =⇒ x(t) = A cos(ωot− ϕ)

Substitute into the right hand side:

ẍ+ ω2
ox = −2Aεω2

o cosωt cos(ωot− ϕ)

= −Aεω2
o

{

cos
[
(ω + ωo)t− ϕ

]
+ cos

[
(ω − ωo)t− ϕ

]
}

Resonance ensues if ω − ωo = ωo or ωo = 1
2 ω

response
frequency = 1

2

(
forcing

frequency

)
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Examples of Parametric Resonance

• Springs or pendula with moving supports

• RLC circuits with periodically-varying inductance or capacitance

• A child pumping a swing [Curry, 1976]

• Solar surface heating generating atmospheric convection cells or patterned
ground formation [McKay, 1998]

• Surface waves in fluids and granular materials =⇒ Faraday instability
[Faraday, 1831; Benjamin & Ursell, 1954]

• Two-fluid interfaces [Kumar & Tuckerman, 1994]

• Bubble oscillations and sonoluminescence [Brenner, Lohse & Dupont, 1995]

• Many problems in aerodynamics involving wing stability and flutter (but
wing oscillations are small and have no influence on the flow)

There are many examples in fluids, but almost no analysis for fluid-structure
interaction problems.
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Faraday Waves

�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�
�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�✁�

✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂
✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂✁✂

ω

F (t) = mg(1 + 2ε cosωt)

Faraday (1831) observed that:

• regular, symmetric patterns arise on the surface

• waves oscillate with twice the period of the parametric forcing

Stripes (1-fold symmetry) Squares (2-fold symmetry) Hexagons (3-fold symmetry)

Source: Dept. of Physics, University of Toronto

http://mobydick.physics.utoronto.ca/faraday.html

University of Washington – Nov. 2, 2004 10

http://mobydick.physics.utoronto.ca/faraday.html


Some Results from Floquet Theory

For homogeneous, periodic, linear systems:

ẋ = A(t) · x, where A(t) ∈ R
n×n, x(t) ∈ R

n (*)

and A(t+ T ) = A(t), for some T > 0.

Floquet Theorem (Bloch Theorem in solid state physics):

Every fundamental matrix solution X(t) of (*) has the form:

X(t) = eBt · P (t)

where P (t+ T ) = P (t) and B = constant.

Corollary: Any solution of
(*) is a linear combination of
functions of the form: eγt · p(t)

✏
✏

✏
✏

✏
✏

✏
✏

✏✏✶

❍
❍

❍
❍

❍
❍❥

“Floquet” or

characteristic exponent, γ ∈ C

a polynomial with

T-periodic coefficients
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2. Floquet Analysis of the Mathieu equation
ẍ + µẋ + σo(1 + 2ε cos ωt)x = 0

• Cannot have a solution x(t) = A cosωt+B sinωt

• Instead, the ω–periodic term excites all Fourier modes with
frequencies nω, n = 1, 2, . . .

=⇒ Look for solutions of the form (details in [Nayfeh & Mook, 1979])

x(t) = eγt

∞∑

n=−∞

cneinωt where γ = α + iβ

α governs stability: β is the frequency
(consider only 0 ≤ β ≤ 1

2
ω):

α > 0 −→ unstable β = 0 −→ harmonic
α < 0 −→ stable β = 1

2
ω −→ subharmonic

α = 0 −→ stability boundary 0 < β < 1
2 ω −→ decaying solutions

(ignore these)
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Substitute

x(t) =
∞∑

n=−∞
cne

(γ+inω)t into ẍ+ µẋ+ σo(1 + 2ε cosωt)x = 0

Interested only in the stability boundary where α = 0 (i.e., γ = 0 + iβ):

∞∑

n=−∞
cne

i(β+nω)t







−(β + nω)
2
+ iµ(β + nω) + σo







1 + ε
(

e
iωt

+ e
−iωt

)

︸ ︷︷ ︸
shifts n by ±1













= 0



Substitute

x(t) =
∞∑

n=−∞
cne

(γ+inω)t into ẍ+ µẋ+ σo(1 + 2ε cosωt)x = 0

Interested only in the stability boundary where α = 0 (i.e., γ = 0 + iβ):

∞∑

n=−∞
cne

i(β+nω)t







−(β + nω)
2
+ iµ(β + nω) + σo







1 + ε
(

e
iωt

+ e
−iωt

)

︸ ︷︷ ︸
shifts n by ±1













= 0

=⇒ [σo − (β + nω)2 + iµ(β + nω)]cn + εσo(cn−1 + cn+1) = 0 (**)

Aim: To find real values of ε:

• split (**) into real and imaginary parts,

• let cn = crn + icin, and . . .
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define ~c = [. . . , crn−1, c
i
n−1, c

r
n, c

i
n, . . . ]

T so (**) can be written in matrix form:







. . .
0 0 An −Bn 0 0
0 0 Bn An 0 0

. . .






~c+ εσo







. . .
1 0 0 0 1 0
0 1 0 0 0 1

. . .






~c = 0
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define ~c = [. . . , crn−1, c
i
n−1, c

r
n, c

i
n, . . . ]

T so (**) can be written in matrix form:







. . .
0 0 An −Bn 0 0
0 0 Bn An 0 0

. . .







︸ ︷︷ ︸
D

~c+ εσo







. . .
1 0 0 0 1 0
0 1 0 0 0 1

. . .







︸ ︷︷ ︸
E

~c = 0

where An = σo − (β + nω)2 and Bn = µ(β + nω).

More compactly:

(−σoD−1E)~c =

(
1

ε

)

~c,

An infinite-dimensional eigenvalue problem with
eigenvalues 1

ε
, and

eigenvectors ~c.
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Details:

• Cut off at a finite N , i.e.,
∞∑

−∞
−→

N∑

−N
(since cn → 0 as |n| → ∞)

• Apply “reality conditions”:

� c−n = c∗n, if β = 0 (harmonic)
� c−n = c∗n−1, if β = 1

2 ω (subharmonic)

to eliminate all cn with n < 0 =⇒ a (2N + 2)× (2N + 2) linear system

• Parameter values:
µ, ω: given

α = 0: for stability boundaries
β = 0, 1

2
ω: for harmonic/subharmonic cases

N = 15: chosen so that |cn| ≪ 1 for all |n| > N

ε: comes from solving the eigenvalue problem
σo: is a free parameter

Basic Idea: for each σo, we obtain 2N + 2 values of ε
. . . pick the positive, real ones.
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Stability of the Mathieu equation
ẍ + µẋ + σo(1 + 2ε cos ωt)x = 0

Ince-Strutt Diagram (ω = 2, µ = 0):
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σ
0

ε 
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 ε=1/2

ω=2, µ=0

1 4 9 16 25

un
st
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e
un
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ab

le

... = harmonic (β = 0)

... = subharmonic (β = 1
2 ω)

• Eigenvalues divide the plane
into stable and unstable regions
=⇒ tongues of instability

• ε ≤ 1
2 are “physical” eigenvalues

• ε = 0 gives natural modes,
σo = n2
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Stability of the Mathieu equation
ẍ + µẋ + σo(1 + 2ε cos ωt)x = 0
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5
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σ
o

ε 
σ o

 ε=1/2

ω=2, µ=0.0, 0.6

 ε=1/2

Increase damping further to µ = 0.6
=⇒ no more physical instabilities
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Stability of the Mathieu equation
ẍ + µẋ + σo(1 + 2ε cos ωt)x = 0

5 10 15 20 25 30
0

5

10

15

20

σ
o

ε 
σ o

 ε=1/2

ω=2,  µ=0.0, 0.6, 2.0

 ε=1/2 ε=1/2

Increase damping to µ = 2.0

[ movie ]

Note:

• even small perturbations (ε ≈ 0) can lead to instability if µ is small enough

• damping has a stabilizing influence
=⇒ the ω = 2 problem is stable if µ ' 0.6
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3. Immersed Boundaries

Move on to fluid-structure interaction problems ...

“Life is . . . fiber-reinforced fluid.”

– C. S. Peskin (1999)

Biological fibers, and surfaces constructed of fibers, immersed in fluid:

• heart and blood vessels

• worms and leeches

• flagellae and cilia

• plant cells (esp. wood)

• microtubules and actin filaments

• suspensions of proteins, DNA, polymers, etc.
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Example: The Heart

Peskin and McQueen (2000): Simulations of the beating heart

Source: http://www.psc.edu/science/Peskin/Peskin.html

[ movie0 ] [ movie1 ] [ movie2 ] [ movie3 ]
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Fiber Architecture of the
Heart Muscle Wall

[Dissected pig heart: Carolyn Thomas, 1957]
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The Immersed Boundary Model

Simplifying assumptions:

• 2D fluid with a single, impermeable, elastic membrane (or fiber)

• fiber has zero volume and mass, and is neutrally buoyant

• fluid lies both inside and outside the fiber

• domain is periodic

• in 3D, surfaces are built from an interwoven mesh of fibers



The Immersed Boundary Model

Simplifying assumptions:

• 2D fluid with a single, impermeable, elastic membrane (or fiber)

• fiber has zero volume and mass, and is neutrally buoyant

• fluid lies both inside and outside the fiber

• domain is periodic

• in 3D, surfaces are built from an interwoven mesh of fibers

Ω Γ

Ω = fluid domain

p(~x, t) = fluid pressure

~u(~x, t) = fluid velocity

Γ = fiber

s = arclength parameter
~X(s, t) = fiber position
~U(s, t) = fiber velocity
~F (s, t) = fiber force density = σ∂2

s
~X (“springs”)
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Dynamic interaction between fluid and fiber:

• the fiber exerts a singular force on adjacent fluid particles:

ρ (∂t~u+ ~u · ∇~u) = µ∆~u−∇p +

∫

Γ

~F (s, t) δ(~x− ~X(s, t)) ds

∇ · ~u = 0

(Navier-Stokes equations with a singular force)



Dynamic interaction between fluid and fiber:

• the fiber exerts a singular force on adjacent fluid particles:

ρ (∂t~u+ ~u · ∇~u) = µ∆~u−∇p +

∫

Γ

~F (s, t) δ(~x− ~X(s, t)) ds

∇ · ~u = 0

(Navier-Stokes equations with a singular force)

• fiber moves at the fluid velocity – the no slip condition:

∂t ~X = ~u( ~X(s, t), t) =

∫

Ω

~u(~x, t) δ(~x− ~X(s, t)) d~x

=⇒ interactions are mediated by delta functions!

An alternate formulation eliminates delta functions in favour of
jump conditions =⇒ immersed interface method [Leveque & Li, 1994]
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Previous Work
1. A linear stability analysis for unforced fibers, initially deformed and then

released [JS & Wetton, 1995]:

• unconditionally stable (α > 0)

• dependence of solution on parameters (Re, σo) is non-trivial

2. A nonlinear stability analysis for a passive circular membrane in an inviscid
fluid [Cortez & Varela, 1997]

Question:
What happens when a fiber is pulsed periodically

(like a heart muscle fiber)?

3. A related problem [Wang, 2003]:

• Floquet-type analysis for buckling instabilities in a headbox, assuming
small deformations

• flow oscillations drive the structure BUT the structure has no effect on
the fluid
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4. Stability Analysis for Immersed Boundaries

Investigate the stability of a perturbed
circular fiber with periodically-varying
stiffness

σ(t) = σo(1 + 2ε cosωt)

(X  ,X  )r θ

θ

r=1

r



4. Stability Analysis for Immersed Boundaries

Investigate the stability of a perturbed
circular fiber with periodically-varying
stiffness

σ(t) = σo(1 + 2ε cosωt)

(X  ,X  )r θ

θ

r=1

r

Simplifications:

• Assume small perturbations about r = 1

• Linearize the Navier–Stokes equations =⇒ Stokes’ equations

• Convert to stream function & vorticity: u, v −→ ψ, ξ

• Integrate the Navier-Stokes equations across the fiber
=⇒ eliminates δ–functions in favour of jump conditions
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The Stream Function–Vorticity Formulation
Inner (r < 1) and outer (r > 1) solutions both obey:

∆ψ = −ξ

∂tξ =
µ

ρ
∆ξ

Immersed boundary equation:

∂t ~X = (∂θψ,−∂rψ)|r=1

Jump conditions, with [[·]] .= (·)|r=1+ − (·)|r=1−:

[[ψ]] = 0, [[ξ]] =
p2σo
iωµ

(ψ(1) − ∂rψ(1))

[[∂rψ]] = 0, [[∂rξ]] =
p2(p2 − 1)σo

iωµ
ψ(1)

Boundary conditions:

ψ and ξ bounded as r → ∞
periodic matching at θ = 0 and 2π
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Floquet–type solutions:

For ξ (and ψ):

ξ(r, θ, t) = eipθ︸︷︷︸
periodic
in θ

∞∑

n=−∞
ξn(r) e(γ+inω)t

︸ ︷︷ ︸
same as before

For Xr (and Xθ):

Xr(θ, t) = eipθ
∞∑

n=−∞
Xr
n e

(γ+inω)t

Substitute and obtain a Bessel equation for ξn:

z2ξ′′n(z) + zξ′n(z) + (z2 − p2)ξn(z) = 0

where z
.
= −(Ωn r)

2 and Ωn
.
=

√

ρ(γ + inω)

µ
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Solution: can be written in terms of Bessel functions, Jp and Hp:

ξn(r) =

{
anHp(iΩnr), if r > 1 (outer)

bnJp(iΩnr), if r < 1 (inner)

and ψn(r) =

{
combinations of Jp, Hp, r

−p and rp

. . .

Applying jump conditions yields the two equations:

0 = i

{

µ2

σo
Ω

3
n

[

Hp(iΩn)

Hp−1(iΩn)
−

Jp(iΩn)

Jp+1(iΩn)

]

+ ip

}

X
r
n

+

{

µ2

σo
Ω

3
n

[

Hp(iΩn)

Hp−1(iΩn)
+

Jp(iΩn)

Jp+1(iΩn)

]

− ip
2

}

X
θ
n

+ iεp
(
X
r
n−1 −X

r
n+1

)
− εp

2
(

X
θ
n−1 −X

θ
n+1

)

0 = i

{

µ2

σo
Ω

4
n

[

2 −
Hp+1(iΩn)

Hp−1(iΩn)
−
Jp−1(iΩn)

Jp+1(iΩn)

]

+ 2p(p
2 − 1)

}

X
r
n

+
µ2

σo
Ω

4
n

[

Hp+1(iΩn)

Hp−1(iΩn)
−
Jp−1(iΩn)

Jp+1(iΩn)

]

X
θ
n + 2εp(p

2 − 1)
(
X
r
n−1 −X

r
n+1

)

View as a linear system in the unknowns
[
Re(Xr

n), Im(Xr
n), Re(X

θ
n), Im(Xθ

n)
]
!
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After some messy algebra, obtain another eigenvalue problem

(−D−1E)~c =

(
1

ε

)

~c

where D and E are infinite, real matrices consisting of 4 × 4 blocks.

Basic Idea (same as for the Mathieu equation):

• Cut off at finite N

• Look for stability boundaries, γ = 0 and 1
2iβ

• Parameter space is now the p–ε plane (σo is scaled out)

• Results are reported in terms of the nondimensional parameters

κ =
σo

ρω2
oR2

and ν =
µ

ρωoR2

Question:
Are there regions of instability for physically-reasonable

parameter values?
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Stability Diagrams for the Forced Problem

Case I: Case II:
κ = 0.04, ν = 0.00056 κ = 0.4, ν = 0.001

p = 4 mode is unstable p = 2 mode is unstable
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Compile the minimum ε over a range of κ and ν:

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

0.3

0.5

1

2

5

stiffness, κ

v
is

co
si

ty
, ν

Contours of eigenvalues, ε

ε=1/2

Stable

Unstable

A straight–line fit to the ε = 1
2 stability boundary yields

ν = 0.0389 · κ0.626

(. . . interesting . . . can this be explained?)

Next, compare to both computations and previous analyses . . .
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Natural modes – unforced problem

• consider a fiber with no forcing, ε = 0

• take the n = 0 mode

• the eigenvalue equations reduce to a single dispersion relation

The decay rate and frequency can be compared to direct numerical simulations

10
−6

10
−4

10
−2

0

0.5

1

1.5

2

2.5

3

ν2
/κ

Decay rate

−
α/

κ1
/2

p = 2
p = 3
p = 4

10
−6

10
−4

10
−2

0

1

2

3

4

5

6

ν2
/κ

Frequency

β/
κ1

/2
ω

N
(2)

ω
N

(3)

ω
N

(4) p = 2
p = 3
p = 4

This represents an exact (asymptotic) solution that can be used to
validate 2D computations!!!
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Natural modes – small ν limit

In the limit as ν → 0, we obtain

Decay rate: α = 0

Frequency: β = ωN
√
κ where ωN(p) = p

√

(p2 − 1)/2.

=⇒ matches the inviscid analysis of [Cortez & Varela, 1997]



Natural modes – small ν limit

In the limit as ν → 0, we obtain

Decay rate: α = 0

Frequency: β = ωN
√
κ where ωN(p) = p

√

(p2 − 1)/2.

=⇒ matches the inviscid analysis of [Cortez & Varela, 1997]

Asymptotic expansion of the dispersion relation in ν yields:

Decay rate: α ∼ − p

2
√

2
ω

1/2
N κ1/4

√
ν

Frequency: β ∼ ωN
√
κ− p

2
√

2
ω

3/4
N κ1/4

√
ν

=⇒ matches the viscous analysis of [JS & Wetton, 1995]
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5. Numerical Simulations

“Usual” implementation of the immersed boundary method [Peskin, 1977]

• second order centered differences in space

• split step projection method

• delta function approximation reduces spatial accuracy to first order

• first order and explicit in time

Notice: small discrepancies between analysis and numerics owing to

• artificial dissipation from the numerical scheme

• numerical errors from the first order time–stepping

We have also run fully second-order simulations using the blob projection
method [Cortez & Minion, 2000]
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Unforced fiber simulations

Fiber is initially perturbed with a p–mode of magnitude 0.05

Case I: κ = 0.04, ν = 0.00056, p = 4

Initial Amplitude of p = 4 mode
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Forced fiber simulations

Fiber is initialized and forced with the same resonant p–mode

Case I: κ = 0.04, ν = 0.00056, p = 4

Amplitude of p = 4 mode Vary parameters
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Case II: κ = 0.5, ν = 0.001, p = 2

Amplitude of p = 2 mode Vary Parameters
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Energy Transfer from Resonant Modes

Because of numerical errors, the fiber motion is not a pure p–mode

• most of the energy remains in the resonant mode

• Even p: small perturbations appear in all np–modes

• Odd p: asymmetry leads to a small “drift” or p = 1 mode

=⇒ all p-modes are excited! [ sin(p± q) = sin p cos q ± cos p sin q ]

Case I, initialized with p = 3 mode Energy transfers to the resonant p = 4 mode
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Application to Atrial Fibrillation

Parameter Units Human heart 3D numerics

normal fibrillated (Peskin-McQueen)

ρ g/cm3 1.0 1.0 1.0

µ g/cm s 0.04 0.04 1.0

σo g/cm s2 1000? 1000? 1000?

ωo rad/s (bt/min) 6.3 (60) 18.3 (170) 7.3 (70)

R cm 3.2 3.2 3.2

κ = σo
ρω2R2 – 2.47 0.29 1.83

ν = µ

ρωR2 – 0.00062 0.00021 0.013
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• Most studies of atrial fibrillation point to electrophysiological causes.

• Our analysis suggests a possible fluid–mechanical contribution to fibrillation
through feedback into propagation of electrical signals (?)

However, we still don’t expect instabilities to develop in normal hearts!
Possible explanations:

• nonlinearities tend to stabilize:

� the fiber, introducing a rest length Ro 6= 0
� the fluid, moving to higher Reynolds number

• 3D effects are missing:

� added stability of an interwoven fiber mesh
� thickness of the heart wall
� a heart beat is actually a spiral wave, not a homogeneous pulse
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Application to Cochlear Mechanics
The cochlea is a spiral-wound, fluid-filled tube, which propagates waves along
the basilar membrane (BM):

Recent research aims to explain the amazing sensitivity of the BM to sound
waves in the presence of large viscous damping:

• (experiments) outer hair cells change length in response to shearing

• modulates the stiffness of the BM

• introduces a mechanical feedback that amplifies BM motions
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Cochlea and basilar membrane

Outer hair cell Organ of Corti
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Parameter Units Cochlea

ρ g/cm3 1.0

µ g/cm s 0.01

σo g/cm s2 1000

ω rad/s 1000+

R cm 0.2

κ = σo
ρω2R2 – 0.025

ν = µ

ρωR2 – 0.00025 10
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• Current models of cochlear mechanics focus on mechanical resonance
[Martin et al., 2000], [Nobili et al., 1998]

• Our analysis suggests that fluid-mechanical feedback may also play a
significant role

• BUT we’re still missing 3D effects, nonlinearities in BM stiffness, and
coupling to mechanical effects
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6. Summary

• performed a Floquet analysis of a parametrically-forced immersed boundary

• derived an analytical (leading-order, asymptotic) solution which can be
used to validate 2D numerical simulations – the first such exact solution!

• matched results with previous analyses of the unforced problem in the
small-viscosity limit

• identified parameter ranges in which forced fiber dynamics are unstable

Warning:
(for people simulating active, biological interfaces)

watch out for parametric resonances, which can easily
be mistaken for numerical instabilities!

• suggested possible parametric resonance in biological systems such as the
human heart and cochlea
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Future Work

• a 3D numerical study of forced immersed boundaries

• spatially-varing stiffness, σ(θ, t) =⇒ simulates spiral wave propagation

• extend to fiber spring force with non-zero resting length, Ro:

~f(s, t) = σ ∂2
s
~X =⇒ ~f(s, t) = σ ∂s

[

∂s ~X
(

1 − Ro

/
∣
∣
∣∂s ~X

∣
∣
∣

)]

• “step–function” forcing

σ

t is better than

σ

t

• optimal control of forced immersed boundaries, with application to
pacemaker design

=⇒ external forcing f(t) = A cos Ωt, with Ω a control parameter
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