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The Brownian dynamics of an optically trapped water droplet are investigated across the transition from

over- to underdamped oscillations. The spectrum of position fluctuations evolves from a Lorentzian shape

typical of overdamped systems (beads in liquid solvents) to a damped harmonic oscillator spectrum

showing a resonance peak. In this later underdamped regime, we excite parametric resonance by

periodically modulating the trapping power at twice the resonant frequency. The power spectra of position

fluctuations are in excellent agreement with the obtained analytical solutions of a parametrically

modulated Langevin equation.
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Parametric resonance provides an efficient and straight-

forward way to pump energy into an underdamped har-

monic oscillator [1]. If the resonance frequency of an

oscillator is dependent upon a number of parameters,

modulating any of these at twice the natural oscillation

frequency parametrically excites the resonance. Such be-

havior leads to surprising phenomena in the macroscopic

world (pumping a swing, stability of vessels, surface waves

in vibrated fluids) [2,3]. On the microscopic scale, where

stochastic forces become important, one refers to

Brownian parametric oscillators [4]. The parametric driv-

ing of Brownian systems has been shown to be at the origin

of some peculiar behaviors such as the squeezing of ther-

mal noise in Paul traps [5]. Parametrically excited oscil-

lations have also been reported in a single-crystal silicon

microelectromechanical system [6]. What makes paramet-

ric resonance useful is that it is easier to modulate a system

parameter rather than to apply an oscillating driving force.

Moreover, for finite but low damping rates, one never

reaches a stationary state with the damping forces dissipat-

ing the input power, and, consequently, the amplitudes of

oscillations diverge. Optically trapped microparticles con-

stitute a beautiful example of a Brownian damped har-

monic oscillator, and they are becoming an increasingly

common tool for the investigation of different fields of

basic and applied science [7]. Pumping mechanical energy

into optically trapped particles could open the way to many

applications. In optical tweezers, even though it is easy to

periodically modulate the laser power, parametric excita-

tion is usually ineffective because of the heavy damping

action of the surrounding fluid.

It has been reported that modulating the laser power at

the parametric resonant frequency in an overdamped sys-

tem increased the amplitude of fluctuations [8,9]. However,

these results have been difficult to reproduce and are in

contrast to the predictions of the Langevin equation [10–

12].

In this Letter, we demonstrate how parametric resonance

can be excited in optically trapped water droplets sus-

pended in air. We measure power spectra of position fluc-

tuations and find an excellent agreement with the

theoretical expectations based on Langevin dynamics.

Besides providing a resolution of a still-controversial issue,

our results are the first study of the dynamics of trapped

particles in a gas-damped tweezers system, a configuration

that is finding wider applications in the study of aerosol

droplets and associated atmospheric chemistry [13].

The dynamics of an optically trapped droplet is de-

scribed by the Langevin equation [14]:

 �x�t� ��2
0
x�t� � �0 _x�t� � ��t�; (1)

where �2
0
� k=m is the angular frequency of the oscillator

depending on trap stiffness k and particle mass m. �0 �
6��a=Ccm is the viscous damping due to the medium

viscosity � and depending on particle radius a and mass m.

To correct Stokes’ law for finite Knudsen number effects,

we introduced the empirical slip correction factor Cc, with

a 5.5%–1.6% reduction in drag for 3–10 �m diameter

droplets, respectively [15].

The stochastic force �, due to thermal agitation of

solvent molecules, is generally assumed to have a white

noise power spectrum:

 S��!� �
�0KBT

�m
: (2)

By Fourier transforming (1) and using (2), we can easily

obtain the power spectrum of position fluctuations [16]:

 Sx�!� �
KBT

k

1

�

�2
0
�0

�!2 ��2
0
�2 � �2

0
!2

: (3)
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The ratio �0=�0 depends only slightly on particle size

and, in solvents with waterlike viscosities, is always

greater than 1 (the system is overdamped) up to power

levels of some tens of watts. For typical trapping powers of

order 10 mW in water, �0=�0 is typically >10. As a result,

only those frequencies smaller than �0, and hence much

smaller than �0, have a significant amplitude in the power

spectrum. Under these conditions, we can therefore neglect

!2 with respect to �2
0

in the first term of the denominator

in (3) and obtain the usual Lorentzian power spectrum

characterized by !�2 tails [16]. Such an overdamped

condition precludes the possibility of exciting significant

oscillations either directly or parametrically. To probe

oscillations in the liquid-damped regime, we would need

to be able to increase typical trap power by 4 orders of

magnitude. A more feasible route is to reduce viscosity by

2 orders of magnitude, which can be readily obtained by

trapping particles in air whose viscosity is approximately

1=55 of water (� � 1:8� 10�5 Pa s) [15].

Our optical tweezers are based around an inverted mi-

croscope with a high numerical aperture oil immersion

microscope objective (1.3 NA, 100� ). The continuous

wave laser is a Nd:YAG, frequency doubled to give 0–2 W

of 532 nm light. To couple the beam into the air medium, a

single cover slip is rested over the objective on a thin oil

layer. In a method similar to Refs. [17,18], a water aerosol

is produced using a nebulizer (3:4–6:0 �m) and injected

into a sample chamber 30 mm in diameter and 10 mm

deep, sealed by the cover slip. This isolates the droplets

from convective air currents and create a near-saturated

atmosphere within which the droplet size is stable. To

obtain a saturated atmosphere, we decrease the vapor

pressure of the droplets by adding salt to the water. In

such conditions, the droplet quickly reaches an equilibrium

size between condensation and evaporation and has a size

stability within 2% over the trapping time [19]. After a few

seconds, a droplet in the range of 4–7 �m is trapped at the

beam focus; see Fig. 1. For our laser powers, this gives a

trap resonance frequency in the vicinity of 2 kHz, and we

can maintain the trap for 40 min. For particles trapped in

fluid, a laser power of 10 mW is typical; however, to

maximize the stiffness of our traps (and hence �0), we

use powers of 100 smW. Despite this, we calculate a

temperature increase of less than 1 K due to laser heating

[17]. Though this does not significantly enhance evapora-

tion, temperature gradients across the droplet, due to non-

uniform heating, could initiate thermal Marangoni effects.

However, being concerned with the center of mass dynam-

ics occurring in the kilohertz region, none of these rela-

tively slow phenomena disturbs the high frequency

dynamics. A quadrant photodetector, placed in the back

focal plane of the condenser lens, receives the light trans-

mitted through the droplet. By measuring the imbalance of

the light collected by the quadrants, the lateral displace-

ment of the droplet is deduced with a bandwidth of several

kilohertz and a precision of better than 5 nm [20]. The

stability of our system allows a series of power spectra to

be obtained from the same droplet while scanning one

parameter. The three reported experimental protocols

(Figs. 1–3) will refer to three independently trapped

droplets.

The power spectra of the measured displacement, for

two different trap powers, are shown in Fig. 1. It is clear

how the particle dynamics changes from an overdamped

Lorentzian spectrum with a high frequency roll-off pro-

portional to !�2 to an underdamped regime with a faster

roll-off !�4 and the appearance of a resonance peak near

1 kHz (more clearly seen in Fig. 2, which is plotted on a

linear scale). The emergence of such a peak arises from the

FIG. 1. The measured power spectra of trapped aerosol parti-

cle at two different powers. At lower power (black circles), it is

overdamped, and the mean squared amplitude of the high

frequency motion decays as !�2. At higher powers (white

circles), the aerosol is underdamped, and the mean squared

amplitude decays as !�4. Gray lines show the calculated slopes

�2 and �4. The inset shows an optical image of a trapped

aerosol particle.

FIG. 2. The measure power spectrum of a trapped water drop-

let for no modulation of the laser power (white circles) and

modulation at 3.9 kHz (�1 ’ 2�0) (black circles). The peak is

higher and narrower on the resonant condition, thus indicating

parametric excitation. The solid line below the black circles is

the predicted spectrum from (11).
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fact that the inertial terms in (1) are no longer negligible.

As a consequence, an average trajectory starting away

from the equilibrium position crosses the equilibrium po-

sition with a finite velocity. In this situation, the parametric

resonance is excited by modulating the strength of the

trapping potential. Ideally, the potential is made shallower

when the particle traverses the equilibrium position and

steeper again when the particle is far from the equilibrium

position. This is maximally efficient when we modulate the

potential at twice the natural oscillation frequency �0. To

consider this model in quantitative terms, we can rewrite

(1) in the presence of a parametrically modulated external

potential:

 �x�t� ��2
0
�1� gf�t��x�t� � �0 _x�t� � ��t�; (4)

 f�t�T � � f�t�; �1< f�t�< 1; (5)

where 0< g< 1 measures the strength of modulation. By

Fourier transforming (4), we obtain
 

��!2 ��2
0
� i!�0�x̂�!�

��2
0
g

X1

k��1

akx̂�!� k�1� � �̂�!�; (6)

where ak is the coefficient of the k2�=T � k�1 fre-

quency component of the Fourier series expansion of

f�t�. It is clear from Eq. (6) how parametric modulation

introduces a coupling between all of those frequencies

differing by an integer number of �1. We now introduce

the vectors Xn�!� � x̂�!� n�1� and Rn�!� �

�̂�!� n�1� and write the recursive relations:

 ���!� n�1�
2 ��2

0
� i�!� n�1��0�Xn�!�

��2
0
g

X1

k��1

akXn�k�!� � Rn:

(7)

To obtain the power spectrum Sx�!�, for each frequency

! we compute X0�!�. This is coupled to all other compo-

nents in the array Xn. However, the strength of the coupling

will decay for large jnj, so that we can limit ourselves to a

finite number of components and write the matrix equation

for the array X�!� � �X�N�!�; . . . ; XN�!��:

 G�1�!�X�!� � R�!�; (8)

with
 

G�1
nk �!� � ���!� n�1�

2 ��2
0
� i�!� n�1��0��nk

��2
0
gak�n: (9)

By matrix inversion, we obtain the power spectrum as
 

hX	
0
�!�X0�!

0�i �
XN

k;n��N

G	
0k�!�G0l�!

0�hR	
k�!�Rn�!

0�i

�
�0KBT

�m

XN

n��N

jG0n�!�j2��!�!0�; (10)

and from the definition of power spectrum:

 Sx�!� �
�0KBT

�m

XN

k��N

jG0k�!�j2: (11)

If �0 and �0 are known, we can use (11) to predict the

power spectrum of a droplet in a modulated trap. The white

circles in Fig. 2 show the measured power spectrum for a

water droplet trapped with constant laser power. The pres-

ence of the peak suggests that we are in an underdamped

regime. By fitting these data to Eq. (3), we can deduce the

resonant frequency �0=2� � 2:0 kHz and the damping

term �0 � 6:8 kHz for our experimental conditions. The

fitted value of �0 corresponds to the Stokes drag on an

aerosol droplet of radius 3:4 �m. We then apply the

square-wave modulation of the trapping power adjusted

to give the same average power as before, �1 ’ 2�0 and

g � 0:4. The black circles in Fig. 2 show the correspond-

ing power spectrum of the motion. As expected, the reso-

nance is excited, matching closely the expected behavior

obtained by applying the measured parameters �0, �0, �1,

g to Eq. (11), supporting our interpretation of a parametric

excitation of the resonance. Using these parameters with

(11), we can make further predictions about the dynamics

that can be verified by our observations. One comparison is

the predicted and observed form of the power spectra as a

function of the modulation frequency, both above and

FIG. 3. Evolution of position power spectra on varying the

modulation frequency �1. Parametric excitation of oscillations

is evident at the parametric resonance condition �1=�0 � 2.

The solid lines are the theoretical predictions from (11). The

vertical gray line indicates �0=2� � 2:3 kHz.
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below the parametric resonance condition; see Fig. 3.

Again, there is an excellent agreement between the ob-

served and predicted particle motions. In particular, the

parametric excitation of oscillations manifests as a narrow-

ing of the peak (or a reduced apparent damping �, defined

as the full width at half maximum), occurring when mod-

ulating at twice �0. Close to parametric resonance, a shift

in peak position �p is also apparent. Both of these signa-

tures confirm our interpretation of the system as being a

Brownian parametric oscillator; see Fig. 4.

We recognize that our observations relate to the study of

the lateral motion of the trapped droplets. In keeping with

other work, we note from examination of the video images

that the axial movement of the trapped droplet occurs on

much longer time scales, corresponding to frequencies in

the subkilohertz region. This slow axial dynamics is re-

sponsible for the low frequency component of the spectra

in Fig. 3. This reflects the comparatively weak axial trap-

ping, possibly arising from aberrations associated with

nonoptimized objectives. It may be possible to use dough-

nut or Laguerre-Gaussian beams having zero on-axis in-

tensity and improved axial trapping [21].

We have reported the first observation of a parametri-

cally excited resonance within a Brownian oscillator. The

demonstration of this effect within optical tweezers was

made possible by relying on the low viscosity of air to

lightly damp the motion of a trapped aerosol droplet. The

detailed observed dynamics matches closely the power

spectra predicted from a parametrically modulated

Langevin equation.
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FIG. 4. (a) Peak full width at half maximum as a function of

modulation frequency. The solid lines are the theoretical pre-

dictions from (11). (b) Peak position shift as a function of

modulation frequency. �p0 is the peak position in the absence

of modulation.
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