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A bi-attribute concave shortest path (BC-SP) problem seeks to find an optimal path in a

bi-attribute network that minimizes a linear combination of two path costs, one of which

is evaluated by a nondecreasing concave function. Due to the nonadditivity of its objective

function, Bellman’s principle of optimality does not hold. This paper proposes a para-

metric search method to solve the BC-SP problem, which only needs to solve a series of

shortest path problems, i.e., the parameterized subproblems (PSPs). Several techniques are

developed to reduce both the number of PSPs and the computation time for these PSPs.

Specifically, we first identify two properties of the BC-SP problem to guide the parametric

search using the gradient and concavity of its objective function. Based on the properties,

a monotonic descent search (MDS) and an intersection point search (IPS) are proposed.

Second, we design a speedup label correcting (LC) algorithm, which uses optimal solu-

tions of previously solved PSPs to reduce the number of labeling operations for subsequent

PSPs. The MDS, IPS and speedup LC techniques are embedded into a branch-and-bound

based interval search to guarantee optimality. The performance of the proposed method is

tested on the mean-standard deviation shortest path problem and the route choice problem

with a quadratic disutility function. Experiments on both real transportation networks and

grid networks show that the proposed method reduces the computation time of existing

algorithms by one to two orders of magnitude.

Key words : bi-attribute concave shortest path; parametric search; interval search;

speedup label correcting
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1. Introduction
1.1. Motivation

The shortest path problem plays a fundamental role in the fields of transportation science, telecom-

munications, logistics, etc. The classical shortest path problem aims at finding an optimal path

with the minimum travel time. However, in practice, usually more than one attributes of paths

influence the optimal routing decisions. Furthermore, a risk-averse decision maker in a stochastic

network considers not only the expected travel time but also the path reliability, such as the travel

time variability. To strike a balance between two different criteria, optimal bicriterion routing deci-

sions need to be made. To this end, this paper studies a bi-attribute concave shortest path (BC-SP)

model of the form: min{h(ν(p))+µ(p) : p∈ P}, where h :R→R is a non-decreasing differentiable

concave function, P is the set of loop-less paths from an origin to a destination and (ν(p), µ(p))

are nonnegative attributes of a path p∈ P .

An important application of the BC-SP model is the mean-standard deviation shortest path

(MSD-SP) problem (Wu and Nie 2011, Khani and Boyles 2015), where h is the square root function,

νij and µij represent the variance and mean of the random travel time of a path p. The MSD-SP

problem seeks to find a reliable path, which minimizes the sum of the mean and weighted standard

deviation of path travel time (Noland and Polak 2002, Zeng et al. 2015, Shahabi and Boyles 2015,

Zhang et al. 2016a).

Besides the MSD-SP problem, the BC-SP model also arises in multi-attribute transportation

networks. For example, as pointed out by Mirchandani and Wiecek (1993), the transportation cost

is usually a non-decreasing concave function of travel distance, and thus considering both travel

time and transportation cost gives rise to a BC-SP problem. Other applications of the BC-SP

model include the traffic equilibrium problem (Gabriel and Bernstein 1997, Zhang et al. 2011), the

multi-agent network problem (Gabriel and Bernstein 2000) and the nonlinear congestion pricing

problem (Lawphongpanich and Yin 2012).

The BC-SP problem belongs to discrete concave minimization problems, which are usually hard

to solve exactly (Tuy 1998). Due to its nonadditivity, Bellman’s principle of optimality does not

hold for the BC-SP problem, i.e., subpaths of optimal paths are not necessarily optimal. In the

remainder of this section, we first review existing solution methods, and then outline the proposed

method and our contributions.

1.2. Literature review

1.2.1. Enumeration Methods The monotonicity of the objective function indicates that

optimal paths of the BC-SP problem are non-dominated (Pareto) paths. A direct method to solve

the BC-SP problem is to generate all non-dominated paths and select the optimal one. Enumerating

all non-dominated paths has been extensively studied as the bicriterion short path (BSP) problem
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since the seminal work of Hansen (1980). Solution methods include the label setting (LS), label

correcting (LC), ranking and two phase methods. LS and LC methods generalize Dijkstra’s and

Bellman-Ford-Moore’s shortest path algorithms to the multi-criteria setting, respectively. Most

recent studies focus on speeding up labeling methods using dominance relations, such as Iori et al.

(2010) (LS), Raith (2010) (LS, LC) and Demeyer et al. (2013) (LS). In addition, Lozano and

Medaglia (2013) and Duque et al. (2015) propose a depth-first labeling method, i.e., the pulse

algorithm. Ranking method utilizes k-shortest path (Climaco and Martins 1982) or near shortest

path algorithms (Raith and Ehrgott 2009). Two phase methods first generate the extreme non-

dominated paths using a parametric analysis and then generate the remainders by LS, LC or

k-shortest paths algorithms (Mote et al. 1991). There are numerous studies on the BSP problem. A

comprehensive overview is beyond the scope of this paper. The reader is referred to recent review

papers, including Raith and Ehrgott (2009), Climaco and Pascoal (2012) and Paixao and Santos

(2013).

The concavity of the objective function further shows that optimal paths of the BC-SP problem

belong to the extreme non-dominated path set, which is a subset of the non-dominated path set.

Therefore, it is sufficient to enumerate the extreme non-dominated paths. Henig (1986) proposes

three methods to generate all extreme non-dominated paths: the sequential parametric analysis

(SPA), the bidirectional parametric analysis (BPA) and dynamic programming (DP). The SPA

method is a customized parametric linear programming method, which iteratively increases a

parameter. The BPA method updates the parameter from both left and right directions. DP uses a

generalized Bellman’s principle of optimality. Recently, Sedeno-Noda and Raith (2015) improve the

SPA method and propose a Dijkstra-like method computing all extreme non-dominated paths. To

solve the MSD-SP problem, Khani and Boyles (2015) propose two iterative labeling (IL) algorithms:

the basic one is similar to the SPA method and the improved one reduces the computation time

by partially updating labels.

1.2.2. Implicit Enumeration Methods Although enumeration methods can solve the BC-

SP problem, Hansen (1980) shows that the number of non-dominated paths may grow exponentially

in n, and Carstensen (1983) further shows that the number of extreme non-dominated paths could

be 2Ω(log2 n), where n is the number of nodes. One approach to reduce the number of enumerations

is to exploit dominance properties. Hutson and Shier (2009) propose a modified labeling algorithm

based on an e-dominance condition for a general bicriterion convex-concave shortest path problem.

Chen et al. (2013) propose multi-criteria LS and A* algorithms based on a fast dominance check

for the MSD-SP problem.

Another implicit enumeration method is the parametric search method, which has been widely

used to solve discrete optimization problems (Tuy 1998). The parametric search method is similar
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to the BPA method, but it only needs to enumerate partial extreme non-dominated paths by

solving a series of parameterized subproblems (PSPs): (Pλ) min{λν(p) + µ(p) : p ∈ P} where λ ∈
[0,+∞). Henig (1986) suggests a branch-and-bound (B&B) based parametric search to find the

optimal non-dominated extreme path. To find the best non-dominated path through an interaction

with decision makers, Current et al. (1990) and Coutinho-Rodrigues et al. (1999) combine the

parametric search with constrained shortest path and k-shortest paths approaches. Xie and Waller

(2012) propose a polynomial time parametric algorithm to approximate non-dominated paths of

the BSP problem. Nikolova (2009) uses the parametric search to solve the BC-SP problem, which

generates new parameters using the perpendicular method (Dial 1979, Henig 1986). Zhang et al.

(2016b) further propose a B&B based interval search algorithm, which utilizes lower bounds on the

objective function over parameter intervals to reduce the number of PSPs. To reduce the number of

PSPs, both Nikolova (2009) and Khani and Boyles (2015) design heuristics to guide the parametric

search. However, optimality of these heuristics can not be guaranteed.

The deficiencies of existing parametric search methods for the BC-SP problem are twofold. First,

they only use a lower bound to speed up the parametric search, and may need to solve a possibly

large number of PSPs. An approach to address this issue is to use the gradient of the objective

function to guide the parametric search. For example, gradient based line search methods have

been proposed to find optimal extreme non-dominated paths of the bi-attribute convex shortest

path problem, where h is a non-decreasing convex function (Henig 1986, Mirchandani and Wiecek

1993, Murthy and Sarkar 1996, Tsaggouris and Zaroliagis 2004). The effectiveness of these methods

depends on the fact that the optimal value of (Pλ) is a unimodal function in λ for the bi-attribute

convex shortest path problem (Henig 1986). However, Mirchandani and Wiecek (1993) show that

the unimodality does not hold for the BC-SP problem. Second, existing parametric search methods

solve each PSP from scratch, and the previously obtained shortest paths have not been used to

speed up the solving process of the subsequent PSPs. The focus of this paper is to present an

efficient parametric search method to overcome these deficiencies.

1.2.3. Other Methods To solve the MSD-SP problem, Shahabi et al. (2013) and Shahabi and

Boyles (2015) propose an outer approximation (OA) method, and Xing and Zhou (2011) propose

a Lagrangian substitution based method. Both methods can handle link travel time correlation.

However, in each iteration, the OA method has to solve a constrained shortest path problem, which

is NP-complete (Garey and Johnson 1979). There exists a duality gap for the second method due

to the non-convex feasible region and objective function.

Approximate solution methods for concave minimization problems have been proposed by

Nikolova (2010). For general bicriterion shortest path problems, where h is a general nonlinear

continuous function, Chen and Nie (2013) approximate the nonlinear function by a piecewise linear

counterpart, and then solve each linear subproblem sequentially.
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1.3. Proposed method

This paper adopts the parametric search method to solve the BC-SP problem. To improve the

efficiency of the parametric search method, we further develop several techniques to guide the

parametric search and design a speedup LC algorithm for the PSPs.

This paper enhances existing parametric search methods by identifying two properties of the

BC-SP problem and proposing efficient parametric search procedures. To obtain these properties,

we reformulate the BC-SP problem as a two-dimensional concave minimization problem in the

ν-µ space and show that there exists an “optimal” parameter such that optimal solutions for the

corresponding PSP are also optimal for the BC-SP problem. Our first property, named monotonic

descent property, indicates that gradient of the objective function can be iteratively used to find

better paths and narrow the range of the optimal parameter. Although gradient has been used

to find locally optimal solutions of concave minimization problems (Tuy 1998), the monotonic

descent property has not been exploited to speed up the parametric search for the BC-SP problem

(Nikolova et al. 2006, Nikolova 2009, Khani and Boyles 2015). A monotonic descent search (MDS)

procedure is further proposed based on this property.

To avoid being trapped in locally optimal paths, we use a bi-directional parametric search strat-

egy and further derive an intersection point property, which shows how the information collected

in one direction can be used to speed up the parametric search in the other direction. Based on

these two properties, an intersection point search (IPS) procedure is proposed. The IPS procedure

is unlikely to be trapped in locally optimal paths, since it terminates only when the search in both

directions finds locally optimal paths with the same objective function value. Our experiments also

show that the IPS procedure solves all the test instances of the MSD-SP problem and the route

choice problem with a quadratic disutility function (RC-QDF) (Chen and Nie 2013, Wu and Nie

2011). Finally, we further embed both the MDS and IPS procedures into a B&B based interval

search algorithm to guarantee global optimality in theory.

Another contribution of this paper is a speedup LC algorithm for the PSPs. Specifically, we show

how to use shortest paths of previously solved PSPs to estimate both upper and lower bounds on

the shortest path length of the subsequent PSPs. The speedup LC algorithm is designed to reduce

the number of labeling operations, and is further embedded into the interval search algorithm. We

show the proposed speedup LC algorithm runs in O(nm) time in the worst case, and experimental

results show that it significantly reduces the computation time for the PSPs.

The major contributions of this paper can be summarized as follows:

1. Two properties of the BC-SP problem are identified. MDS and IPS procedures are proposed

to improve the efficiency of existing parametric search methods.

2. A speedup LC algorithm is proposed to solve the PSPs efficiently.
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3. An interval search algorithm is proposed to guarantee global optimality.

4. Experiments for the MSD-SP and RC-QUF problems show that the proposed method reduces

the computation time of the improved IL algorithm (Khani and Boyles 2015) and OA algorithm

(Shahabi et al. 2013, Shahabi and Boyles 2015) by one to two orders of magnitude.

The remainder of this paper is structured as follows. The next section provides formal formula-

tions of the BC-SP problem. Section 3 presents the proposed parametric search method. Section 4

gives the speedup LC algorithm. Section 5 reports and discusses experimental results. Concluding

remarks and future work are provided in Section 6.

2. Problem Statement

In this section, we first provide a list of notation used in this paper, and then describe the BC-SP

problem and the basic idea of the parametric search method.

2.1. Notation

Network

N set of nodes, where |N |= n,

A set of arcs, where |A|=m,

Ā set of the reversed arcs of A, i.e., Ā= {ji : i∈N,j ∈N, ij ∈A},
s, t the origin and destination nodes in N,

νij, µij two nonnegative attributes of arc ij ∈A,

G(N,A) a directed and connected network composed by N and A,

Gλ(N,A) a parameterized network of G(N,A) with the arc cost λνij +µij, where λ≥ 0,

Gλ(N, Ā) the reversed network of Gλ(N,A),

Problems

(P) the considered bi-attribute concave shortest path problem in G(N,A),

(Pλ) a shortest path problem from s to t in Gλ(N,A),

f∗ the optimal value of the considered problem (P),

Paths

P set of loop-less paths from s to t,

p a loop-less path from s to t, i.e., p∈ P

P ∗ set of optimal paths (solutions) of the considered problem (P),

P λ set of shortest paths from s to t in Gλ(N,A),

pkit a shortest path from i to t in Gλk(N,A), where λk ≥ 0,

Labels

(ν(p), µ(p)) the label of a path p,

H set of labels of paths in P ,

Hn set of non-dominated labels,

He the set of extreme non-dominated labels,

H∗ set of labels of paths in P ∗,

Hλ set of labels of paths in P λ,

(xλ, yλ) a label in Hλ, which corresponds to at least a path in P λ,

dλit the shortest path length from i to t in Gλ(N,A).
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2.2. Problem formulation

Consider a directed and connected network G(N,A) consisting of a set of nodes N (|N |= n) and a

set of arcs A (|A|=m). Suppose that P represents the set of loop-less paths from a specified origin

node s∈N to a specified destination node t∈N . Let (νij, µij) be a pair of nonnegative real-valued

attributes associated with the arc ij ∈ A. A two-dimensional label (ν(p), µ(p)) associated with a

path p∈ P is given by ν(p) =
∑

ij∈p νij and µ(p) =
∑

ij∈p µij. In the following, we simply refer to a

loop-less path as a path.

We are interested in finding a path p∈ P to minimize a bi-attribute concave function, that is,

(P) min
{
h
(
ν(p)

)
+µ(p) : p∈ P

}
,

where h : R → R is a non-decreasing differentiable concave function. An example of the BC-SP

model is the risk-averse MSD-SP problem (Wu and Nie 2011, Khani and Boyles 2015), where

h= θ
√
x (θ ≥ 0), νij and µij represent the variance and mean of the random travel time on each

arc ij ∈A.

We first introduce related notation and definitions. Let H = {(x,y) : x= ν(p), y= µ(p), p∈ P} ⊆

R2 be the set of labels of paths in P and conv(H) be the convex hull of H.

Definition 1. A path p ∈ P dominates another path p′ ∈ P if ν(p) ≤ ν(p′), µ(p) ≤ µ(p′) and

(ν(p), µ(p)) ̸= (ν(p′), µ(p′)).

Definition 2. A path p∈ P and its associated label (ν(p), µ(p)) are said to be non-dominated

if there exists no path p′ ∈ P that dominates p.

Definition 3. A non-dominated path p∈ P and its associated label (ν(p), µ(p)) are said to be

extreme non-dominated if (ν(p), µ(p)) is an extreme point of conv(H), i.e., (ν(p), µ(p)) does not

lie in any open line segment joining two points of conv(H).

LetHn,He ⊆H denote sets of all non-dominated and extreme non-dominated labels, respectively.

It is easy to see that He ⊆Hn and the extreme non-dominated labels lie on the lower-left boundary

of conv(H). Figure 1 gives an illustration of Hn,He and H.

As pointed out by Chen et al. (2013), Bellman’s principle of optimality does not hold for the

BC-SP problem due to the nonadditivity of its objective function. Since the objective function of

(P) is non-decreasing in both ν and µ, to solve the BC-SP problem, it is sufficient to enumerate

all non-dominated paths by solving the so-called bicriterion shortest path problem. However, the

number of such paths may be huge. Instead of enumerating these non-dominated paths, we solve

(P) by a parametric search in the ν-µ space.
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Figure 1 Illustration of label sets.

2.3. Basic idea of parametric search

Let f(x, y) = h(x)+ y. Since f is a concave function over R2, we have

min
p∈P

{
h
(
ν(p)

)
+µ(p)

}
= min

(x,y)∈H
f(x,y) = min

(x,y)∈conv(H)
f(x, y),

where the last equality uses the fact that the concave function f over the compact convex set

conv(H) attains its maximum at an extreme point of conv(H) (Horst et al. 2000), and all extreme

points of conv(H) belong to H.

Therefore, to solve (P), it is sufficient to find an extreme point of conv(H), i.e., an extreme non-

dominated label in He, which solves the following two-dimensional concave minimization problem:

(P1) min{f(x, y) : (x, y)∈ conv(H)} ,

and then any path with this label is an optimal solution of (P).

To solve (P1), this paper considers the following PSPs:

(Pλ) min
(x,y)∈conv(H)

{λx+ y}= min
(x,y)∈H

{λx+ y}=min
p∈P

{λν(p)+µ(p)} , λ≥ 0

where the second equality uses the fact that a linear programming problem attains its minimum

at an extreme point if its minimum exists. Although solving (Pλ) does not necessarily provide an

extreme non-dominated label, we will see that there exists an “optimal” parameter λ∗ such that

optimal solutions for (Pλ∗) are also optimal for (P); see Proposition 1.

To design the parametric search method, we use the following two observations:

(1) Any extreme non-dominated label is an optimal solution of (Pλ) for some λ≥ 0.
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(2) For a fixed value of λ, (Pλ) can be solved by the classical labeling methods as a shortest path

problem with a weighted arc cost λνij + µij on ij ∈A. Therefore, solving (Pλ) not only provides

an extreme non-dominated label, but also the corresponding extreme non-dominated path.

Based on these two observations, Khani and Boyles (2015) design IL algorithms for the MSD-SP

problem, which enumerate all extreme non-dominated paths by varying λ from 0 to ∞. However,

since the number of extreme non-dominated paths could be super-polynomial (Carstensen 1983),

the IL algorithms may be inefficient. To avoid enumerating all the extreme non-dominated paths,

this paper exploits both the gradient and concavity of f to design more efficient parametric search

procedures, and proposes a speedup LC algorithm for (Pλ).

In the following, let P ∗ and H∗ be the set of optimal paths and labels of (P), respectively. Let

P λ and Hλ be the sets of optimal paths and labels of (Pλ), respectively. Let f∗ be the optimal

value of (P).

3. Parametric search method

Khani and Boyles (2015) show that P ∗ ⊆∪λ≥0P
λ and solve the MSD-SP problem by enumerating

paths in ∪λ≥0P
λ. An important question is to find an “optimal” λ∗ such that P λ∗ ⊆ P ∗, and thus any

path in P λ∗
is an optimal solution of (P). The following proposition provides a sufficient condition

for such λ∗. A more general version of the following proposition can be found in Sniedovich (1986).

Proposition 1. For any optimal path p∗ ∈ P ∗ with the label (ν∗, µ∗), let λ∗ = h′(ν∗), where

h′(x) is the derivative of h with respect to x, then P λ∗ ⊆ P ∗ and Hλ∗ ⊆H∗.

Proof: For any p̄∈ P λ∗
with the label (ν̄, µ̄)∈Hλ∗

, from the definition of P λ∗
, we have λ∗ν∗ +

µ∗ ≥ λ∗ν̄ + µ̄, that is, µ∗ − µ̄ ≥ λ∗(ν̄ − ν∗). From the concavity of h, we have that λ∗(ν̄ − ν∗) =

h′(ν∗)(ν̄ − ν∗)≥ h(ν̄)− h(ν∗). Therefore, we have h(µ̄) + ν̄ ≤ h(ν∗) + µ∗ = f∗, that is, p̄ ∈ P ∗ and

(ν̄, µ̄)∈H∗. �
Proposition 1 shows that the “optimal” λ∗ can be selected as the gradient of f at any (ν∗, µ∗)∈

H∗. Although initially H∗ is unknown, an estimation of ν∗ can narrow the range of λ∗. In general,

a lower bound on ν∗ can be given as νL := minp∈P ν(p). An upper bound on ν∗ can be given as

νU := ν(p′), where p′ is an optimal path in P 0. For networks with special structures, bounds on ν∗

may be easily estimated from the value of νij. Due to the concavity of h, h′(ν) is non-increasing in

ν. Therefore, the “optimal” λ∗ lies in the interval [λL, λU ], where λL := h′(νU) and λU := h′(νL).

Proposition 1 also shows that any optimal path p∗ with the label (ν∗, µ∗) has the property:

p∗ ∈ P h′(ν∗). We refer to paths with this property as locally optimal paths, i.e., a path p ∈ P and

its associated label (ν,µ) are said to be locally optimal if p ∈ P h′(ν). In Subsection 3.1 and 3.2,

parametric search techniques are proposed to find locally optimal paths based on the gradient and

concavity of f . In Subsection 3.3, an interval search algorithm is designed to find a globally optimal

path.
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3.1. Monotonic descent search

This subsection gives a monotonic descent search to find locally optimal paths. The following result

is widely used in bicriterion optimization problems (Xie and Waller 2012) and shows that as the

value of λ increases, the corresponding extreme non-dominated label moves from the lower right

to upper left along the lower-left boundary of conv(H).

Lemma 1. If λ2 >λ1 ≥ 0 and (xλi
, yλi

)∈Hλi for i= 1,2, we have xλ1
≥ xλ2

and yλ1
≤ yλ2

.

Proposition 2 shows how to find a locally optimal label from any λ1 ≥ 0 by utilizing the gradient

of f . A locally optimal path can also be obtained by solving the corresponding shortest path

problem.

Proposition 2. For any λ1 ≥ 0 and (xλ1
, yλ1

)∈Hλ1, let λ2 = h′(xλ1
), then

(a) for any (xλ2
, yλ2

)∈Hλ2, we have f(xλ2
, yλ2

)≤ f(xλ1
, yλ1

).

(b) for any (xλ2
, yλ2

) ∈ Hλ2 and (xλ, yλ) ∈ Hλ where min{λ1, λ2} < λ < max{λ1, λ2}, we have

f(xλ2
, yλ2

)≤ f(xλ, yλ).

(c) for any (xλ2
, yλ2

)∈Hλ2, let λ3 = h′(xλ2
). If λ2 ≥ λ1, then λ3 ≥ λ2; otherwise, λ3 ≤ λ2.

Proof: (a) Due to concavity of h, we have

h(xλ2
)≤ h(xλ1

)+h′(xλ1
)(xλ2

−xλ1
) = h(xλ1

)+λ2(xλ2
−xλ1

).

Since (xλ2
, yλ2

)∈Hλ2 , we have λ2xλ2
+ yλ2

≤ λ2xλ1
+ yλ1

, that is, λ2(xλ2
−xλ1

)≤ yλ1
− yλ2

. There-

fore, h(xλ2
)+ yλ2

≤ h(xλ1
)+ yλ1

, that is, f(xλ2
, yλ2

)≤ f(xλ1
, yλ1

).

(b) Without loss of generality, suppose λ2 > λ1. From Lemma 1, we have xλ1
≥ xλ ≥ xλ2

and

yλ1
≤ yλ ≤ yλ2

. Since h is concave, h′(x) is non-increasing in x and thus h′(xλ)≥ h′(xλ1
). Therefore,

we have

h(xλ2
)≤ h(xλ)+h′(xλ)(xλ2

−xλ)≤ h(xλ)+h′(xλ1
)(xλ2

−xλ) = h(xλ)+λ2(xλ2
−xλ).

Since (xλ2
, yλ2

)∈Hλ2 , we have λ2(xλ2
−xλ)≤ yλ−yλ2

. Therefore, h(xλ2
)+yλ2

≤ h(xλ)+yλ, that is,

f(xλ2
, yλ2

)≤ f(xλ, yλ). Using a similar analysis, we also have f(xλ2
, yλ2

)≤ f(xλ, yλ) when λ1 >λ2.

(c) If λ2 > λ1, from Lemma 1, we have xλ1
≥ xλ2

. Due to the concavity of h, λ3 = h′(xλ2
) ≥

h′(xλ1
) = λ2. If λ2 >λ1, similarly we have λ3 ≤ λ2. �

Part (a) of Proposition 2 indicates that the PSP defined by the gradient of f with respect to

(xλ1
, yλ1

) provides a label (xλ2
, yλ2

) superior to (xλ1
, yλ1

). Part (b) of Proposition 2 indicates that

optimal solutions (labels) of P λ with λ in the interval (min{λ1, λ2},max{λ1, λ2}) are inferior to

(xλ2
, yλ2

), and therefore this interval can be skipped in the subsequent parametric search. Part

(c) of Proposition 2 indicates that such parametric search process always generates a monotonic

parameter sequence.
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Figure 2 Illustration of the monotonic descent search.

The pseudocode of the proposed MDS procedure is given in Algorithm 1. In each iteration,

Algorithm 1 either improves the incumbent solution or returns a locally optimal path. Due to the

finiteness of the number of extreme non-dominated paths, Algorithm 1 terminates after a finite

number of iterations. Figure 2 shows an illustration of Algorithm 1, which starts from λ0 and

returns a locally optimal path with the label (xλ1
, yλ1

) after solving three PSPs.

Algorithm 1 Monotonic descent search: MDS(λ0)

Input: λ0 ≥ 0.

Output: λ̄≥ 0, (xλ̄, yλ̄)∈H λ̄, pλ̄ ∈ P λ̄, (xλ0
, yλ0

)∈Hλ0 and pλ0 ∈ P λ0 .

Step 1. Obtain (xλ0
, yλ0

)∈Hλ0 and pλ0 ∈ P λ0 by solving (Pλ0
). Set k= 1.

Step 2. Let λk = h′(λk−1). Obtain (xλk
, yλk

)∈Hλk and pλk ∈ P λk by solving (Pλk
).

Step 3. If λk = λk−1, goto step 4; else, set k= k+1 and goto step 2.

Step 4. Return λ̄= λk, (xλ̄, yλ̄) = (xλk
, yλk

), pλ̄ = pλk , (xλ0
, yλ0

) and pλ0 .

3.2. Intersection point search

The MDS procedure may get stuck at locally optimal paths. To address this issue, this subsection

proposes an IPS procedure using a bi-directional parametric search strategy. The IPS procedure

explores an interval [λl, λu] from both the left and right directions, and the objective function value

information collected in one direction is used to guide the parametric search in the other direction.

We first introduce related notation. Suppose λl ≤ λu, (xλl
, yλl

) ∈Hλl and (xλu , yλu) ∈Hλu . Let

the intersection point of two lines Ll : λlx+ y =Rl and Lu : λux+ y =Ru be (xc, yc), where xc =
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Ru−Rl
λu−λl

, yc =
Rlλu−Ruλl

λu−λl
, Rl = λlxλl

+ yλl
and Ru = λuxλu + yλu . From the definitions of (xλl

, yλl
)

and (xλu , yλu) and Lemma 1, it is easy to see that xλl
≥ xc ≥ xλu and yλl

≤ yc ≤ yλu . Let fup =

min{f(xλl
, yλl

), f(xλu , yλu)}, flow = min{f(xλl
, yλl

), f(xc, yc), f(xλu , yλu)} and the contour line of

f(x,y) at the level fup be C : f(x, y) = fup.

The following proposition gives an intersection point property, which shows how to use the

intersection points of Ll and Lu, Ll and C and Lu and C to narrow the interval [λl, λu].

Proposition 3. Suppose there exists a label (ν∗, µ∗) ∈H∗, such that λ∗ = h′(ν∗) ∈ [λl, λu] and

ν∗ ∈ [xλu , xλl
].

(a) If flow ≥ fup, then fup = f∗

(b) If f(xc, yc)< f(xλl
, yλl

)< f(xλu , yλu), then the rightmost intersection point (xm, ym) of Lu

and C satisfying xm ∈ [xλu , xc] exists, and λ∗ ∈ [λl, h
′(xm)] where h′(xm)≤ λu.

(c) If f(xc, yc)< f(xλu , yλu)< f(xλl
, yλl

), then the leftmost intersection point (xm, ym) of Ll and

C satisfying xm ∈ [xc, xλl
] exists, and λ∗ ∈ [h′(xm), λu] where h′(xm)≥ λl.

Proof: (a) Since fup ≥ f∗, it is sufficient to show flow ≤ f∗, which can be proved using the

concavity of f and the definitions of Hλl and Hλu (Henig 1986).

(b) Let δ(x) = h(x)−λux+Ru−fup = h(x)−λux+Ru−f(xλl
, yλl

). Since δ(xλu) = f(xλu , yλu)−
f(xλl

, yλl
)> 0, δ(xc) = f(xc, yc)−f(xλl

, yλl
)< 0 and δ(x) is continuous, the set of intersection points

of Lu and C, such that xm ∈ [xλu , xc], is nonempty. Denote this set as S = {(x, y) : δ(x) = 0, y =

Ru−λux,xλu ≤ x≤ xc}, which is a closed and bounded set. Thus, the rightmost intersection point

(xm, ym), which is the unique optimal solution of the optimization problem max{x : (x, y) ∈ S},
exists.

Since h′ is non-increasing, to prove λ∗ = h′(ν∗) ≤ h′(xm), it is sufficient to show ν∗ ≥ xm. To

this end, we show that for any path label (ν ′, µ′)∈H satisfying xλu ≤ ν ′ ≤ xm, we have f(ν ′, µ′)≥
f(xλl

, yλl
). In fact, from the definition ofHλu , we have λuν

′+µ′ ≥ λuxλu+yλu . Therefore, f(ν
′, µ′) =

h(ν ′) + µ′ ≥ h(ν ′) + µ̂ = f(ν ′, µ̂) where µ̂ = λuxλu + yλu − λuν
′. Since λuν

′ + µ̂ = λuxλu + yλu , we

have that (ν ′, µ̂) lies on the line segment of Lu between (xλu , yλu) and (xm, ym). From the concavity

of h, we have f(ν ′, µ′)≥ f(ν ′, µ̂)≥min{f(xλu , yλu), f(xm, ym)}= f(xm, ym) = f(xλl
, yλl

).

Finally, we show h′(xm)≤ λu by contradiction. Suppose h′(xm)>λu, then for any x∈ [xλu , xm],

h′(x)≥ h′(xm)>λu. Thus, δ(xm) = δ(xλu)+
∫ xm

xλu
δ′(x)dx= δ(xλu)+

∫ xm

xλu
(h′(x)−λu)dx≥ δ(xλu)>

0, which contradicts with the fact δ(xm) = 0. Using a similar analysis, we can also prove (c). �
Proposition 3 shows that the gradient of f with respect to the intersection point (xm, ym) can

also be used to speed up the parametric search. Figure 3 demonstrates the case when f(xc, yc)<

f(xλl
, yλl

)< f(xλu , yλu). As shown in the proof of Proposition 3, in this case, there exists an optimal

label (ν∗, µ∗), such that xm ≤ ν∗ ≤ xλl
. Thus, we only need to consider parameters in the interval

[λl, h
′(xm)].
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Figure 3 Illustration of the intersection point search when f(xc, yc)< f(xλl , yλl)< f(xλu , yλu).

To use the intersection point property, we need to calculate intersection points of the curve C

and lines Ll or Lu. Such intersection points can be obtained analytically or numerically by a bi-

section search. For the MSD-SP problem with h(x) = θ
√
x (θ≥ 0), the rightmost intersection point

(xm, ym) of Lu and C such that xm ∈ [xλu , xc] is given asxm =

(
θ+
√

θ2−4λuau

)2

4λ2
u

,

ym = Ru −λuxm,

where au = f(xλl
, yλl

)−Ru. The leftmost intersection point (xm, ym) of Ll and C such that xm ∈
[xc, xλl

] is given as xm =

(
θ−
√

θ2−4λlal

)2

4λ2
l

,

ym = Rl −λlxm,

where al = f(xλu , yλu)−Rl.

Algorithm 2 is the pseudocode of the IPS procedure, which calls the MDS procedure as a sub-

procedure. Algorithm 2 takes an interval [λl, λu] as its input, uses a greedy policy to update the

most promising label using the monotonic descent property and then updates the inferior one using

the intersection point property. When Algorithm 2 terminates, it either finds an optimal solution

of (P1) when Solved= true or returns a narrower interval when Solved= false.

The benefits of the proposed IPS procedure are two-fold: (1) the parametric search in one direc-

tion can be speeded up using the information collected in the other direction; (2) the IPS procedure

terminates only when the paths obtained in both directions are locally optimal and have the same

objective function value. As experiments show later, the IPS procedure is able to find optimal

paths for all the test instances.
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Algorithm 2 Intersection point search: IPS([λl, λu], p
λl , pλu , (xλl

, yλl
), (xλu , yλu))

Input: [λl, λu], p
λl ∈ P λl , pλu ∈ P λu , (xλl

, yλl
)∈Hλl and (xλu , yλu)∈Hλu .

Output: Solved, fup, p̄, [λl, λu], p
λl , pλu , (xλl

, yλl
) and (xλu , yλu).

Step 1. If λu ≤ λl, then set Solved= true and goto Step 3;

else if f(xc, yc)≥min{f(xλl
, yλl

), f(xλu , yλu)}, then Solved= true and goto Step 3;

else, set Solved= false and goto Step 2.

Step 2. Parametric search based on recursion:

Case 1: f(xλl
, yλl

)< f(xλu , yλu)

If λl <h′(xλl
), then call MDS(h′(xλl

)), and update λl = λ̄, pλl = pλ̄ and (xλl
, yλl

) = (xλ̄, yλ̄).

Calculate the rightmost intersection point (xm, ym) of Lu and C such that xm ∈ [xλu , xc].

Set λu = h′(xm) and obtain pλu ∈ P λu and (xλu , yλu)∈Hλu by solving (Pλu).

Call IPS([λl, λu], p
λl , pλu , (xλl

, yλl
), (xλu , yλu)).

Case 2: f(xλl
, yλl

)> f(xλu , yλu)

If λu > h′(xλu), then call MDS(h′(xλu)), and update λu = λ̄, pλu = pλ̄ and (xλu , yλu) =

(xλ̄, yλ̄).

Calculate the leftmost intersection point (xm, ym) of Ll and C such that xm ∈ [xc, xλl
].

Set λl = h′(xm) and obtain pλl ∈ P λl and (xλl
, yλl

)∈Hλl by solving (Pλl
).

Call IPS([λl, λu], p
λl , pλu , (xλl

, yλl
), (xλu , yλu)).

Case 3: f(xλl
, yλl

) = f(xλu , yλu)

If λl <h′(xλl
), then call MDS(h′(xλl

)), and let λl = λ̄, pλl = pλ̄ and (xλl
, yλl

) = (xλ̄, yλ̄).

If λu >h′(xλu), then call MDS(h′(xλu)), and let λu = λ̄, pλu = pλ̄ and (xλu , yλu) = (xλ̄, yλ̄).

If f(xλl
, yλl

) ̸= f(xλu , yλu), then call IPS([λl, λu], p
λl , pλu , (xλl

, yλl
), (xλu , yλu));

else calculate the intersection point (xc, yc) and goto Step 3.

Step 3. If f(xλl
, yλl

)≤ f(xλu , yλu), then fup = f(xλl
, yλl

), p̄= pλl ; else, fup = f(xλu , yλu), p̄= pλu .

If fup ≤ f(xc, yc) or λu ≤ λl, then set Solved= true.

Return Solved, fup, p̄, [λl, λu], p
λl , pλu , (xλl

, yλl
) and (xλu , yλu).

3.3. Interval search algorithm

To guarantee global optimality in theory, we further embed the proposed MDS and IPS procedures

into a B&B based interval search algorithm.

A basic version of the interval search algorithm has been proposed in Zhang et al. (2016b).

Each branch of the B&B tree is an interval [λl, λu] with (xλl
, yλl

) ∈ Hλl and (xλu , yλu) ∈

Hλu . From part (a) of Proposition 3, a lower bound on (P1) over this interval is flow =

min{f(xλl
, yλl

), f(xc, yc), f(xλu , yλu)}, where (xc, yc) is the intersection point of Ll and Lu. If this

interval has not been pruned, we divide [λl, λu] into two sub-intervals, [λl, λm] and [λm, λu], where
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Figure 4 Illustration of the modified intersection point search when we know an upper bound fup satisfying

f(xc, yc)< fup <min{f(xλl , yλl), f(xλu , yλu)}.

λm =
yλu−yλl
xλl

−xλu
, using the perpendicular method; see Dial (1979), Henig (1986) and Chen and Nie

(2013).

Algorithm 3 Modified intersection point search: MIPS(fup, p̄, [λl, λu], p
λl , pλu , (xλl

, yλl
), (xλu , yλu))

Input: fup, p̄, [λl, λu], p
λl ∈ P λl , pλu ∈ P λu , (xλl

, yλl
)∈Hλl and (xλu , yλu)∈Hλu .

Output: Solved, fup, p̄, [λl, λu], p
λl , pλu , (xλl

, yλl
) and (xλu , yλu).

Step 1. While fup <min{f(xλl
, yλl

), f(xλu , yλu)}

Calculate the intersection point (xc, yc) of Ll and Lu.

If f(xc, yc)≥ fup, then Solved= true and goto Step 3;

Calculate the rightmost intersection point (xm1, ym1) of Lu and C such that xm1 ∈

[xλu , xc]. Set λu = h′(xm1) and obtain pλu ∈ P λu and (xλu , yλu)∈Hλu by solving (Pλu).

Calculate the leftmost intersection point (xm2, ym2) of Ll and C such that xm2 ∈ [xc, xλl
].

Set λl = h′(xm2) and obtain pλl ∈ P λl and (xλl
, yλl

)∈Hλl by solving (Pλl
).

Step 2. Call IPS([λl, λu], p
λl , pλu , (xλl

, yλl
), (xλu , yλu)).

Step 3. Return Solved, fup, p̄, [λl, λu], p
λl , pλu , (xλl

, yλl
) and (xλu , yλu).

To improve the interval search algorithm, we first observe that the intersection point property

can be further extended to the case when an upper bound fup on (P1) satisfying f(xc, yc)< fup <

min{f(xλl
, yλl

), f(xλu , yλu)} is known. Specifically, using a similar proof as that for Proposition 3,

we have that if there exists a label (ν∗, µ∗)∈H∗, such that λ∗ = h′(ν∗)∈ [λl, λu] and ν∗ ∈ [xλu , xλl
],
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then xm1 ≤ ν∗ ≤ xm2 and h′(xm2) ≤ λ∗ ≤ h′(xm1), where (xm1, ym1) is the rightmost intersection

point of Lu and C such that xm1 ∈ [xλu , xc], and (xm2, ym2) is the leftmost intersection point of Ll

and C such that xm2 ∈ [xc, xλl
]; see Figure 4. This observation enables us to use the incumbent

solution to speed up the parametric search in each interval. Based on this observation, we propose

a modified IPS procedure in Algorithm 3, which either prunes an interval or returns a narrower

interval.

The pseudocode of the interval search algorithm is given in Algorithm 4. In Step 2, the classical

best-first, depth-first and width-first strategies can be used to select the next interval. In Step 3,

Algorithm 4 divides the selected interval into two sub-intervals and calls the MIPS procedure to

narrow each sub-interval using the incumbent objective function value fup. Then, fup is updated

and sub-intervals are added to I if not pruned. Due to the finiteness of the number of paths,

Algorithm 4 returns an optimal path after a finite number of iterations.

Algorithm 4 Interval search algorithm

Step 1. Calculate an initial parameter interval [λL, λU ].

Obtain pλL ∈ P λL and (xλL
, yλL

)∈HλL by solving (PλL
).

Obtain pλU ∈ P λU and (xλU
, yλU

)∈HλU by solving (PλU
).

Call IPS([λL, λU ], p
λL , pλU , (xλL

, yλL
), (xλU

, yλU
)) to get Solved, fup, p̄, [λl, λu], p

λl , pλu ,

(xλl
, yλl

) and (xλu , yλu).

If Solved= true, goto Step 4; else, set I = {[λl, λu]}.

Step 2. If I = ∅, goto Step 4; else, select and remove an interval [λl, λu] from I.

Step 3. Set λm =
yλu−yλl
xλl

−xλu
and obtain pλm ∈ P λm and (xλm , yλm)∈Hλm by solving (Pλm).

Call MIPS(fup, p̄, [λl, λm], p
λl , pλm , (xλl

, yλl
), (xλm , yλm)) to get Solved, f ′

up, p̄
′, [λ′

l, λ
′
u], p

λ′
l ,

pλ
′
u , (xλ′

l
, yλ′

l
) and (xλ′

u
, yλ′

u
).

If f ′
up < fup, then fup = f ′

up and p̄= p̄′. If Sovled= false, set I = I ∪{[λ′
l, λ

′
u]}.

Call MIPS(fup, p̄, [λm, λu], p
λm , pλu , (xλm , yλm), (xλu , yλu)) to get Solved, f ′

up, p̄
′, [λ′

l, λ
′
u],

pλ
′
l , pλ

′
u , (xλ′

l
, yλ′

l
) and (xλ′

u
, yλ′

u
).

If f ′
up < fup, then fup = f ′

up and p̄= p̄′. If Sovled= false, set I = I ∪{[λ′
l, λ

′
u]}.

Goto Step 2.

Step 4. Return fup and p̄.

4. A speedup label correcting algorithm

In the parametric search, a series of PSPs need to be solved. These PSPs are weighted shortest

path problems with similar cost structures in the same network. This section proposes a speedup
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LC algorithm, which utilizes information collected in the process of solving previous PSPs to speed

up the solving process of subsequent PSPs.

The classical LC algorithm solves shortest path problems with arbitrary arc cost cij (ij ∈A) but

no negative cycle. The LC algorithm maintains a list of nodes V , called the candidate node list,

and a distance label di for each node i, which represents an upper bound on the shortest distance

from s to i. It progressively discovers shorter paths from s to every node i ∈ N by iteratively

updating distance labels. Specifically, the LC algorithm initializes V = {s}, ds = 0 and di =+∞ for

i ∈N \ {s}. Then, it selects and removes a node i from V . For each j ∈N satisfying both ij ∈A

and di + cij < dj, it corrects the distance label dj by di + cij and sets V = V ∪ {j}. When V = ∅,

the LC algorithm terminates and returns di for each i ∈ N , which is the shortest distance from

s to i. The computational performance of the LC algorithm is mainly determined by the number

of labeling operations. In the following, we show how to reduce the number of labeling operations

using information collected in the process of solving related shortest path problems.

Consider a parameterized network Gλk(N,A), where the arc cost of ij ∈ A is given as λkνij +

µij. Let pkit be a shortest path from i to t in G(λk). The label of pkit is given as (ν(pkit), µ(p
k
it)),

where ν(pkit) =
∑

lj∈pkit
νlj and µ(pkit) =

∑
lj∈pkit

µlj. The shortest distance from i to t in Gλk(N,A)

is denoted as d
λk
it = λkν(p

k
it) + µ(pkit). The following proposition shows how to use shortest paths

in two “neighbourhood” parameterized networks Gλ1(N,A) and Gλ2(N,A) to estimate upper and

lower bounds on dλit for any λ∈ [λ1, λ2].

Proposition 4. For any λ∈ [λ1, λ2] and i∈N , we have

λνi +µi ≤ dλit ≤min{λν(p1it)+µ(p1it), λν(p
2
it)+µ(p2it)},

where νi =
d
λ2
it −d

λ1
it

λ2−λ1
and µi =

λ2d
λ1
it −λ1d

λ2
it

λ2−λ1
. Furthermore, if λ3 ≤ λ1 ≤ λ≤ λ2 ≤ λ4, then

min{λν(p1it)+µ(p1it), λν(p
2
it)+µ(p2it)} ≤min{λν(p3it)+µ(p3it), λν(p

4
it)+µ(p4it)}, (1)

λνi +µi ≥ λν ′
i +µ′

i, (2)

where ν ′
i =

d
λ4
it −d

λ3
it

λ4−λ3
and µ′

i =
λ4d

λ3
it −λ3d

λ4
it

λ4−λ3
.

Proof: Since both p1it and p2it are valid paths from i to t, it is clear that min{λν(p1it) +

µ(p1it), λν(p
2
it)+µ(p2it)} is an upper bound on dλit. For any path pit ∈ Pit with a label (ν(pit), µ(pit)),

from the optimality of p1it and p2it, we have λ1ν(pit)+µ(pit)≥ dλ1
it and λ2ν(pit)+µ(pit)≥ dλ2

it . There-

fore, a lower bound on dλit can be given by the optimal value of the linear programming problem:

min {λx+ y : λ1x+ y ≥ dλ1
it , λ2x+ y ≥ dλ2

it , (x, y) ∈ R2}. Since λ1 ≤ λ≤ λ2, an optimal solution of

this problem is given as (x∗, y∗) = (νi, µi) and thus λνi +µi ≤ dλit.
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To prove (1), it is sufficient to show λν(p1it) + µ(p1it) ≤ λν(p3it) + µ(p3it) and λν(p2it) + µ(p2it) ≤

λν(p4it) + µ(p4it). From the optimality of p1it, we have λ1ν(p
1
it) + µ(p1it) ≤ λ1ν(p

3
it) + µ(p3it), that is,

µ(p1it)−µ(p3it)≤ λ1(ν(p
3
it)− ν(p1it)). Since λ3 ≤ λ1 ≤ λ, from Lemma 1, we have ν(p3it)≥ ν(p1it) and

thus µ(p1it)−µ(p3it)≤ λ(ν(p3it)−ν(p1it)), that is, λν(p
1
it)+µ(p1it)≤ λν(p3it)+µ(p3it) . Similarly, we can

prove λν(p2it)+µ(p2it)≤ λν(p4it)+µ(p4it).

Note that λν ′
i + µ′

i = min {λx + y : λ3x + y ≥ dλ3
it , λ4x + y ≥ dλ4

it , (x,y) ∈ R2}. Thus, to prove

(2), it is sufficient to show that (νi, µi) is a feasible solution of this minimization problem. Since

λ1νi+µi = dλ1
it , λ1 ≥ λ3 and ν(p1it)≥ νi, we have µi−µ(p1it) = λ1(ν(p

1
it)−νi)≥ λ3(ν(p

1
it)−νi), that is,

λ3νi+µi ≥ λ3ν(p
1
it)+µ(p1it). Due to the optimality of p3it, we have λ3νi+µi ≥ λ3ν(p

1
it)+µ(p1it)≥ dλ3

it .

Similarly, we can prove λ4νi +µi ≥ dλ4
it . �

To use Proposition 4 to reduce the number of labeling operations at node i, we need both p1it

and p2it in advance.For this purpose, in the initialization phase, i.e., Step 1 of the interval search

algorithm, we use the classical LC algorithm to solve two single-origin all-destinations shortest

path problems in the reversed networks Ḡλ1(N, Ā) and Ḡλ2(N, Ā), where λ1 = λL, λ2 = λU and

Ā= {ji : i ∈N,j ∈N, ij ∈ A}. Specifically, solving the single-origin all-destinations shortest path

problem from t to all other nodes in Ḡλk(N, Ā) gives a shortest path pkit from any node i to t in

Ḡλk(N, Ā) (k = 1,2). Therefore, the initialization phase provides the required paths pkit (k = 1,2)

from any node i to t for estimating upper and lower bounds on dλit for any λ∈ [λL, λU ].

The pseudocode of a basic version of the speedup LC algorithm is given in Algorithm 5. Algorithm

5 first estimates a lower bound d̃λit on dλit for each i∈N and an upper bound d̄λst on dλst. In Step 2,

it uses the first-in first-out rule to select the next node. Compared to the classical LC algorithm,

the label of node j gets corrected only when both di+λνij +µij <dj and di+λνij +µij + d̃λjt < d̄λst

are satisfied. The following proposition 5 validates the correctness of Algorithm 5.

Proposition 5. If Gλ(N,A) contains no negative cycle that is reachable from s, Algorithm 5

finds a shortest path p∈ P λ in O(nm) time.

Proof: We use the concept of pass over the queue V to show the correctness of Algorithm 5.

Pass one consists of iterations in Step 3 applied to the node s. The subsequent pass consists of

iterations in Step 3 applied to these nodes that entered V during the preceding pass. Since there

is no negative cycle, Steps 2 and 3 terminate after implementing at most n passes over the queue

V . If dλst = λν(pk
∗

st ) +µ(pk
∗

st ), Algorithm 5 finds a shortest path from s to t in Gλ(N,A) in Step 1;

otherwise, Algorithm 5 finds a shortest path in Steps 2 and 3. Note that each pass requires at most

O(m) operations. Therefore, Algorithm 5 finds a shortest path p∈ P λ in O(nm) time. �
The speedup LC algorithm can be further improved as follows. First, the second part of Propo-

sition 4 shows that tighter lower and upper bounds on dλit can be obtained using shortest paths in
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Algorithm 5 Speedup LC algorithm

Input: λ, λk, p
k
st, (ν(p

k
it), µ(p

k
it) for any i∈N and k= 1,2

Output: p∈ P λ

Step 1. Initialize the queue V = {s}. Set pred[i] =Null, di =+∞ for i∈N and ds = 0.

For each i∈N , calculate (νi, µi) and set d̃λit = λνi +µi.

Set d̄λst = λν(pk
∗

st )+µ(pk
∗

st ) and p= pk
∗

st where k∗ = argmin{λν(p1st)+µ(p1st) : k= 1,2}.

Initialize pred[i] and di for each node i on path pk
∗
. If d̄λst ≤ d̃λst, then goto Step 4.

Step 2. If V = ∅, goto Step 4; else, select and remove a node i from V .

Step 3. For each j ∈N such that ij ∈A

If di +λνij +µij <dj and di +λνij +µij + d̃λjt < d̄λst

Set dj = di +λνij +µij and set pred[j] = i.

If j ̸= t, then set V = V ∪{j};

else, set d̄λst = dj and if d̄λst ≤ d̃λst, then goto Step 4.

Goto Step 2.

Step 4. Return the path p by tracing back pred[t].

the “nearest neighbour” networks. Thus, in Step 1, for each i∈N , known shortest paths from i to

t in the “nearest neighbour” networks should be used to calculate d̃λit and d̄λst. Second, since the

attributes on each arc are nonnegative, then in Step 1, the node i∈N \{s} and its associated arcs

satisfying d̃λit ≥ d̄λst can be removed from the network.

Although the proposed speedup LC Algorithm has the same worst-case computational complex-

ity as the classical LC algorithm, our experiments show that the number of labeling operations can

be greatly reduced and the run time can be speeded up by orders of magnitude.

5. Numerical experiments

In this section, we test the parametric search (PS) method on both real transportation networks

and grid networks by comparison with most recently proposed algorithms. Specifically, we first

compare the performance of the PS method with the improved IL (IIL) algorithm (Khani and

Boyles 2015) and the OA algorithm (Shahabi et al. 2013, Shahabi and Boyles 2015) for the MSD-SP

problem on both real transportation networks and grid networks. Then, we test the performance

of the PS method for the route choice problem with a quadratic disutility function (RC-QDF)

on grid networks by comparison with the IIL algorithm. We describe the experimental setup in

Subsection 5.1 and report experimental results for the MSD-SP problem and the RC-QDF problem

in Subsections 5.2 and 5.3, respectively.
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5.1. Experimental setup

5.1.1. Implementation details of algorithms The depth-first strategy is used to select the

next interval in Step 2 of Algorithm 4. In LC algorithms, we use an adjacency list to represent

the network; see Chapter 22 in Thomas et al. (2001) for details. The first-in first-out queue V

is implemented by a circular array Q of size n. Q has a head and a tail, such that its elements

reside in locations Q[head], Q[head+1], · · · ,Q[tail−1], where we “wrap around” in the sense that

location 1 immediately follows location n in a circular order. We also create a boolean array Flag of

size n, such that for each i∈N , if i is an element of Q, Flag[i] = 1; otherwise, Flag[i] = 0. In Step

2 of Algorithm 5, we select and delete the node i at the head of Q, i.e., i=Q[head], set Flag[i] = 0

and update

head=

{
head+1, if head< n,
1, if head= n.

In Step 3 of Algorithm 5, a node i is inserted into Q[tail] only when Flag[i] = 0, and after this

insertion, we set Flag[i] = 1 and update

tail=

{
tail+1, if tail < n,
1, if tail= n.

With the aid of the circular array Q and the boolean array Flag, it only takes O(1) time to insert

a node into Q or delete a node from Q. The IIL algorithm is coded based on the pseudocode

of Algorithm 2 in Khani and Boyles (2015). Master problems of the OA algorithm are modeled

by YALMIP (Löfberg 2004) and solved by CPLEX 12.6. All algorithms are coded using Matlab

R2013a and tested on a 64 bit PC with an Intel Core i5-4570 CPU and 8 GB RAM.

5.1.2. Test problems The MSD-SP problem is of the form: min
{
θ
√

ν(p)+µ(p) : p∈ P
}
,

where θ > 0, µ(p) and ν(p) represent the mean and variance of the travel time of a path p. The

RC-QDF problem has been considered by Chen and Nie (2013), Wu and Nie (2011). We test the

RC-QDF problem of the form: min
{
θν(p)a−ν(p)

b
+µ(p) : p∈ P

}
, where θ, a, b ≥ 0, and µ(p) and

ν(p) represent two attributes of a path p. To balance the impact of both attributes on the objective

function, we set a = 2νmax and b = 2νmax − νmin, such that 0 ≤ a−ν(p)

b
≤ 1 for any p ∈ P , where

νmax and νmin are upper and lower bounds on ν(p) over p ∈ P . For both MSD-SP and RC-QDF

problems, the value of θ varies from 0.1 to 10 to test its impact on computational performance of

different algorithms.

5.1.3. Data sets Five real transportation networks are considered, including two small size

networks in Anaheim and Chicago Sketch, and three large size networks in Chicago Regional,

Philadelphia and Birmingham City. Data sets of these networks are obtained from Bar-Gera (2016).

For each arc of the test transportation networks, its expected travel time is given by Bar-Gera
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Table 1 Real transportation networks

Networks n m
Anaheim 416 914
Chicago Sketch 933 2,950
Chicago Regional 12,982 39,018
Philadelphia 13,389 40,003
Birmingham City 14,639 33,937

Table 2 Grid networks

Networks w×h n m
G1 20× 50 1,002 3,960
G2 32× 32 1,026 4,032
G3 50× 20 1,002 3,900
G4 20× 500 10,002 39,960
G5 100× 100 10,002 39,800
G6 500× 20 10,002 39,000
G7 20× 5,000 100,002 399,960
G8 320× 320 102,402 408,960
G9 5,000× 20 100,002 390,000

(2016) and the standard deviation of its travel time is generated randomly within 0.15 of its

expected travel time. More details of these networks are given in Table 1.

We also test the proposed method on grid networks, which have been widely used to test bicrite-

rion shortest path algorithms in Matthew and Kevin (2005), Raith and Ehrgott (2009), Chen and

Nie (2013). Besides an origin node s and a destination node t, other nodes of a grid network are

arranged in a rectangular grid with a width w and a height h. Every node has at most four outgoing

arcs (up, down, left and right) to its immediate neighbours. The grid network with a height h and

a width w has n= 2+wh nodes and m= 4wh−2w arcs. To test how the structure of grid networks

impacts the performance of different algorithms, we generate three groups of grid networks. The

grid networks within each group have a similar number of nodes and arcs, but different values of

w and h. Table 2 gives the network structure of these grid networks. Both attributes of each arc

are generated uniformly from {1,2, · · · ,1000}.

In the experiments, for each test network of given size, we construct 20 instances with randomly

generated attributes and origin-destination pairs, and report the average performance of different

algorithms.

5.2. Results for the MSD-SP problem

5.2.1. Real transportation networks

We report computational results of the proposed PS method for the MSD-SP problem on the

real transportation networks with the value of θ varying from 0.1 to 10 in Tables 3 and 4. PS1

and PS2 denote the PS methods using the classical LC algorithm and the speedup LC algorithm,



22

Table 3 Performance of PS1 for the MSD-SP problem on the real transportation networks

PS1 Improvement
Networks θ CPU (s) PSP Label IIL (%) OA (%)
Anaheim 0.1 0.001 3.8 4,046 95.229 99.924

1 0.001 4.0 4,161 93.388 99.899
10 0.001 4.9 3,685 93.800 99.949

Chicago Sketch 0.1 0.005 4.0 8,139 95.215 99.537
1 0.004 4.0 11,392 96.523 99.691

10 0.004 5.6 15,892 95.510 99.984
Chicago Regional 0.1 0.180 3.8 625,099 97.012 98.326

1 0.312 4.3 1,083,221 94.963 98.538
10 0.476 6.0 1,656,838 92.194 99.893

Philadelphia 0.1 0.225 3.2 752,274 95.879 98.327
1 0.388 4.1 1,348,254 93.257 97.186

10 0.506 5.3 1,807,048 90.772 99.748
Birmingham City 0.1 0.346 3.6 1,351,374 92.330 96.779

1 0.591 4.4 2,276,532 87.273 96.387
10 0.697 4.9 2,753,872 85.346 99.700

Table 4 Performance of PS2 for the MSD-SP problem on real transportation networks

PS2 Improvement
Networks θ CPU (s) PSP Label IIL (%) OA (%)
Anaheim 0.1 0.002 3.8 3,591 89.066 99.826

1 0.002 4.0 3,700 90.496 99.854
10 0.001 4.9 1,587 93.800 99.949

Chicago Sketch 0.1 0.010 4.0 6,481 89.941 99.028
1 0.004 4.0 9,298 96.429 99.028

10 0.004 5.6 10,440 96.429 99.987
Chicago Regional 0.1 0.085 3.8 252,189 98.600 99.216

1 0.148 4.3 500,673 97.613 99.307
10 0.176 6.0 585,673 97.115 99.960

Philadelphia 0.1 0.153 3.2 475,869 97.211 98.868
1 0.267 4.1 901,216 95.353 98.060

10 0.285 5.3 1,002,827 94.798 99.858
Birmingham City 0.1 0.157 3.6 575,126 96.527 98.542

1 0.297 4.4 1,147,640 93.607 98.186
10 0.324 4.9 1,254,918 93.196 99.860

respectively. The third to fifth columns give the average CPU time, the number of PSPs and the

total number of labeling operations. The last two columns give the improvement in CPU time made

by PS1 and PS2 in comparison with the IIL and OA algorithms. From Tables 3 and 4, we have the

following observations. First, both PS1 and PS2 reduce the computation time of the IIL and OA

algorithms by one to two orders of magnitude. Second, the average CPU time and the total number

of labeling operations of PS1 can be greatly reduced by using the speedup LC algorithm, especially

for large size problems. Third, for all the test instances, only a very small number (no more than

10) of PSPs need to be solved by both PS1 and PS2. Finally, the impact of θ on the performance
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Table 5 Performance of the speedup LC algorithm for the MSD-SP problem on real transportation networks

LC speedup LC Improvement (%)
Networks θ CPU (ms) Label CPU (ms) Label CPU Label
Anaheim 0.1 0.141 526 0.025 9 82.270 98.377

1 0.141 658 0.067 13 52.719 97.965
10 0.184 924 0.092 68 50.181 92.626

Chicago Sketch 0.1 0.618 1,803 0.200 15 67.638 99.187
1 0.500 1,837 0.050 18 90.000 98.999

10 0.442 2,102 0.115 132 73.962 93.723
Chicago Regional 0.1 38.050 133,723 0.550 23 98.555 99.983

1 45.333 156,835 0.517 95 98.860 99.939
10 58.729 207,019 0.668 770 98.862 99.628

Philadelphia 0.1 38.200 127,256 0.200 41 99.476 99.968
1 66.667 229,889 0.567 93 99.150 99.960

10 77.940 274,998 0.700 1,030 99.102 99.625
Birmingham City 0.1 71.325 276,703 0.400 54 99.439 99.980

1 88.167 340,243 0.517 138 99.414 99.960
10 107.163 420,447 0.723 1,967 99.325 99.532

of the proposed PS method is relatively small. For example, when the value of θ increases by a

factor of 100, the average CPU time of both PS1 and PS2 for all test networks only increases by

a factor of no more than 2.5.

Table 5 gives a detailed comparison of the proposed speedup LC algorithm and the classical

one. Note that in order to use the speedup LC algorithm, PS2 needs to solve two single-origin

all-destinations shortest path problems in the initialization phase. Thus, computational results

reported in Table 5 are calculated based on the computation for PSPs after the initialization phase.

In particular, the third to sixth columns of Table 5 give the average CPU time, and the average

numbers of labeling operations of both the classical and speedup LC algorithms for a PSP after

the initialization phase. The last two columns of Table 5 give the improvement in both CPU time

and the number of labeling operations made by the speedup LC algorithm. Orders of magnitude

improvement is observed, especially for large size problems. Since only no more than 10 PSPs need

to be solved by PS2, the efficiency of PS2 using the speedup LC algorithm is mainly determined

by the computation time for the first two shortest path problems. Therefore, the computation time

of PS2 can be approximated by O((2+ ϵ)nm), where 0≤ ϵ≤ 1.

In addition to experimental results reported in Tables 3, 4 and 5, the IPS procedure finds optimal

paths for all the test instances and no B&B procedure is required.

5.2.2. Grid networks

We proceed to test the performance of the PS method on grid networks. Table 6 reports the aver-

age performance of PS1 and PS2 for the MSD-SP problem on grid networks based on 20 randomly

generated instances when θ = 1. The fifth and ninth columns of Table 6 give the improvement in
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Table 6 Performance of PS1 and PS2 for the MSD-SP problem on grid networks

PS1 PS2
CPU (s) PSP Label Improv (%) CPU (s) PSP Label Improv (%)

G1 0.003 2.9 8,644 97.735 0.002 2.9 5,868 97.910
G2 0.004 3.4 13,476 97.743 0.002 3.4 7,151 98.558
G3 0.005 3.4 18,549 97.331 0.004 3.4 10,932 97.973
G4 0.018 2.4 69,610 99.332 0.019 2.4 58,844 99.273
G5 0.080 3.4 315,616 98.509 0.057 3.4 193,750 98.943
G6 0.529 4.1 2,115,137 99.853 0.258 4.1 1,032,817 98.378
G7 0.235 2.2 646,702 99.853 0.235 2.2 585,993 99.853
G8 4.284 3.8 12,525,145 98.657 2.210 3.8 6,363,157 99.307
G9 61.022 4.0 219,017,852 96.269 32.063 4.0 112,106,563 98.040

Table 7 Performance of the speedup LC algorithm for the MSD-SP problem on grid networks

LC speedup LC Improvement (%)
CPU (ms) Label CPU (ms) Label CPU Label

G1 0.450 1,579 0.049 8 88.889 99.519
G2 0.850 3,297 0.050 12 94.118 99.638
G3 1.100 3,883 0.050 16 95.455 99.579
G4 2.100 8,835 0.100 10 95.238 99.887
G5 15.883 65,373 0.367 39 97.691 99.940
G6 132.033 520,807 0.717 517 99.457 99.901
G7 20.900 58,696 0.300 20 98.565 99.966
G8 1,032.500 3,003,600 3.750 375 99.637 99.988
G9 15,176.400 54,661,882 7.150 8,451 99.953 99.985

computation time made by PS1 and PS2 in comparison with the IIL algorithm. Comparison with

the OA algorithm is not reported here because the IIL algorithm outperforms the OA algorithm.

The first three observations from Table 3 and 4 are still valid for the grid networks, and a greater

degree of improvement in computation time is observed. Table 6 further shows that the network

structure has a significant impact on both the PS method and the IIL algorithm. However, the

increase in the number of PSPs due to the adverse network structure is still relatively small.

Computational performance of Nikolova (2009)’s parametric methods for the MSD-SP problem

on grid networks with a similar experimental setup has been reported in Nikolova (2009). Nikolova

(2009)’s exact PS method needs to solve more than 50 PSPs to find the optimal path in a grid

network with h=w= 250 while on average, our PS method only needs to solve 3.8 PSPs in a grid

network with h=w= 320.

Table 7 gives computational details of the classical and speedup LC algorithms used by PS1 and

PS2. We also observe that the speedup LC algorithm reduces the number of labeling operations

by more than two orders of magnitude for all the test instances. Another observation is that the

speedup LC algorithm has a slower increase in computation time as the network structure becomes

more adverse. For example, when the test network varies from G1, G4 and G7 to G3, G6 and

G9, the CPU time of the classical LC algorithm increases by 144%, 6,187% and 72,514% while
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Table 8 Performance of PS1 and PS2 for the RC-QDF problem on grid networks

PS1 PS2
θ CPU (s) PSP Label Improv (%) CPU (s) PSP Label Improv (%)

G1 0.1 0.004 4.0 10,745 97.283 0.003 4.0 5,381 97.585
1 0.003 4.1 8,446 97.330 0.003 4.1 4,151 97.788

10 0.004 4.1 10,679 97.276 0.003 4.1 5,481 97.588
G2 0.1 0.006 4.0 14,930 96.701 0.003 4.0 6,501 98.237

1 0.004 4.2 10,652 97.746 0.003 4.2 5,580 98.324
10 0.005 4.0 14,704 97.115 0.004 4.0 7,404 97.964

G3 0.1 0.006 4.0 19,499 97.132 0.004 4.0 9,630 98.058
1 0.004 4.3 13,164 98.045 0.003 4.3 6,365 98.610

10 0.007 4.0 21,388 96.922 0.004 4.0 9,496 98.109
G4 0.1 0.035 4.0 106,111 98.808 0.026 4.0 53,630 99.103

1 0.027 4.1 85,867 99.067 0.025 4.1 42,206 99.143
10 0.036 4.0 106,611 98.761 0.029 4.0 53,497 98.987

G5 0.1 0.093 4.0 315,596 98.437 0.057 4.0 161,301 99.042
1 0.062 4.1 209,779 98.939 0.040 4.1 100,901 99.323

10 0.103 4.0 333,123 98.226 0.056 4.0 158,424 99.031
G6 0.1 0.540 4.3 1,980,485 96.885 0.257 4.3 932,838 98.520

1 0.334 4.6 1,241,202 98.061 0.159 4.6 555,460 99.079
10 0.518 4.2 1,898,358 97.041 0.247 4.2 877,859 98.590

G7 0.1 0.439 4.0 1,056,146 99.751 0.284 4.0 528,340 99.839
1 0.343 4.1 851,959 99.793 0.227 4.1 415,395 99.863

10 0.449 4.0 1,060,658 99.737 0.285 4.0 531,930 99.833
G8 0.1 4.087 4.0 10,558,040 98.864 2.036 4.0 5,238,294 99.434

1 2.291 4.1 6,492,409 99.344 1.208 4.1 3,196,203 99.654
10 4.464 4.0 10,679,443 98.761 2.292 4.0 5,366,427 99.364

G9 0.1 62.433 4.7 211,340,810 96.225 26.271 4.7 88,726,983 98.412
1 43.202 5.7 151,397,990 97.426 15.055 5.7 52,635,184 99.103

10 71.759 5.4 240,253,623 95.785 27.028 5.4 88,674,631 98.413

the CPU time of the speedup LC algorithm only increases by 2%, 617% and 2,283%, respectively.

Finally, for all the test instances on grid networks, the IPS procedure can find the optimal paths

without branching.

5.3. Results for the RC-QDF problem

Finally, we test the PS method for the RC-QDF problem on grid networks. Table 8 gives average

computational results of PS1 and PS2 for the RC-QDF problem based on 20 randomly generated

instances. The sixth and tenth columns of Table 8 give the improvement in CPU time made by

PS1 and PS2 in comparison with the IIL algorithm. Comparison with the OA algorithm is not

reported since it does not apply to the RC-QDF problem. From Tables 6 and 8, we observe that

the PS method has similar computational performance for both the MSP-SP problem and the RC-

QDF problem. Specifically, both PS1 and PS2 reduce the computation time of the IIL algorithm

by one to two orders of magnitude, and only a very small number of PSPs need to be solved.

In addition, Table 8 shows that the value of θ has an effect on the computation time of the PS
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Table 9 Performance of the speedup LC algorithm for the RC-QDF problem on grid networks

LC speedup LC Improvement (%)
θ CPU (ms) Label CPU (ms) Label CPU Label

G1 0.1 0.750 2,685.5 0.100 0.3 86.667 99.989
1 0.550 2,061.1 0.100 2.9 81.818 99.861

10 0.800 2,608.8 0.050 3.4 93.750 99.870
G2 0.1 1.300 3,735.2 0.100 0.0 92.308 100.000

1 0.717 2,535.6 0.050 8.5 93.023 99.663
10 1.100 3,676.9 0.000 0.0 100.000 100.000

G3 0.1 1.500 4,876.4 0.050 5.3 96.667 99.891
1 1.033 3,071.0 0.050 19.7 95.161 99.359

10 1.400 5,349.1 0.000 0.0 100.000 100.000
G4 0.1 8.300 26,510.6 0.600 0.0 92.771 100.000

1 6.233 20,929.5 0.633 5.5 89.840 99.974
10 8.600 26,665.6 0.450 0.2 94.767 99.999

G5 0.1 22.750 78,874.2 0.350 0.5 98.462 99.999
1 14.567 51,242.6 0.483 12.3 96.682 99.976

10 25.550 83,300.6 0.350 10.0 98.630 99.988
G6 0.1 125.617 460,481.8 0.450 138.4 99.642 99.970

1 71.842 268,495.1 0.617 345.7 99.142 99.871
10 123.250 450,630.8 0.467 297.1 99.621 99.934

G7 0.1 108.550 263,857.0 3.150 0.1 97.098 100.000
1 82.367 207,797.2 3.183 3.3 96.135 99.998

10 113.400 265,345.9 3.150 0.2 97.222 100.000
G8 0.1 1,018.250 2,639,785.3 3.050 0.3 99.700 100.000

1 556.983 1,582,278.2 3.067 40.2 99.449 99.997
10 1,113.250 2,670,233.5 2.950 0.4 99.735 100.000

G9 0.1 13,260.808 44,925,091.5 7.258 7,193.1 99.945 99.984
1 7,622.408 26,667,920.1 13.300 24,871.6 99.826 99.907

10 13,454.417 44,771,935.8 9.592 11,454.5 99.929 99.974

method. For example, when both attributes have comparable impacts on the objective function,

i.e., θ = 1, the PS method has the best computational performance. However, the impact of the

value of θ is relatively small compared with that of the network structure, and the PS method

still demonstrates a computational advantage over the IIL algorithm for different values of θ and

network structures.

Table 9 validates the effectiveness of the speedup LC algorithm for the RC-QDF problem. Similar

to the results given in Table 7, the speedup LC algorithm significantly reduces the CPU time and

the number of labeling operations of the classical LC algorithm. In addition, Table 9 further shows

that when the value of θ deviates from one, the PSPs become more easier to solve for the speedup

LC algorithm in terms of both the CPU time and the number of labeling operations. Therefore,

the PS method using the speedup LC algorithm is still efficient to solve the RC-QDF problem with

unbalanced weights on the attributes. Finally, the IPS procedure also finds the optimal paths for

all the test instances of the RC-QDF problem without branching.
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6. Conclusions

This paper proposes an effective PS method for the BC-SP problem. The effectiveness of the PS

method relies on the number of PSPs required to be solved, and the computation time for these

PSPs. To reduce the number of PSPs, we exploit the gradient and concavity of the objective

function to speed up the parameter search. A monotonic descent property and an intersection point

property have been identified, and MDS and IPS procedures are proposed. Both procedures also

apply to similar bicriterion concave minimization problems. To reduce the computation time for

PSPs, a speedup LC algorithm is proposed by utilizing optimal paths of previously solved PSPs to

reduce the number of labeling operations for the subsequent PSPs. The speedup LC algorithm also

serves as an effective subroutine to solve PSPs of other PS methods, such as the gradient based

line search for the bicriterion convex minimization problems (Henig 1986, Murthy and Sarkar 1996,

Tsaggouris and Zaroliagis 2004). The proposed MDS, IPS and speedup LC algorithm have been

further embedded into an interval search algorithm to guarantee global optimality.

Experiments on real transportation networks and grid networks have been conducted to val-

idate the effectiveness of the PS method for the MSD-SP problem and the RC-QDF problem.

The proposed method outperforms the most recent exact algorithms, including the IIL algorithm

(Khani and Boyles 2015) and the OA algorithm (Shahabi et al. 2013, Shahabi and Boyles 2015).

Experimental results also show that only a very small number of PSPs need to be solved, and

the computation time for a PSP after the initialization phase is negligible in comparison with

that for the first two PSPs. Therefore, the computation time of the PS proposed method can be

approximated by O((2+ ϵ)nm), where 0≤ ϵ≤ 1.

Although many shortest path problems in the literature (Wu and Nie 2011) are not special case

of the considered BC-SP problem, techniques proposed in this paper may be extended to enhance

existing algorithms for these problems. For example, finding an α-reliable shortest path for risk-

seeking travelers gives rise to the MSD-SP problem with a negative weight, i.e., h(x) = θ
√
x and

θ < 0 (Nie and Wu 2009, Chen et al. 2012). Since h is not concave, optimal paths of such problems

may not be extreme paths, and thus the PS method can not be directly used to solve this problem.

However, when travel times on different links are independent, the problem can be solved by the

two-phase methods (Murthy and Sarkar 1996, Tsaggouris and Zaroliagis 2004), which first find

the best extreme paths by the PS method and then close the gap using an improved label setting

algorithm. Our speedup LC algorithm can be used to reduce the computation time for PSPs in

the first phase. Another extension of the proposed PS method is to solve the MSD-SP problem

in a stochastic network with limited link travel time correlation. By virtue of the polynomial-time

algorithm for the adjacent quadratic shortest path problem proposed by Rostami et al. (2015),

the PSPs for this problem can be solved in polynomial time and thus the proposed PS method
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applies. For the MSD-SP problem with general link travel time correlation, the OA method can

be used to find optimal solutions. Finally, a relevant problem is to find a reliable shortest path in

a stochastic time-dependent network. Existing algorithms are based on the first-order stochastic

dominance property (Chen et al. 2014). However, it is an open question how to define extreme

paths and extend the PS method for this problem. We leave this important extension to future

research.
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