
Research Article

Parametric Sensitivity Analysis for Importance Measure on
Failure Probability and Its Efficient Kriging Solution

Yishang Zhang, Yongshou Liu, and Xufeng Yang

Institute of Aircra� Reliability Engineering, Department of Engineering Mechanics, Northwestern Polytechnical University,
Xi’an 710129, China

Correspondence should be addressed to Yishang Zhang; cloth1169@163.com

Received 27 May 2014; Revised 23 September 2014; Accepted 23 September 2014

Academic Editor: Shaomin Wu

Copyright © 2015 Yishang Zhang et al.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�emoment-independent importance measure (IM) on the failure probability is important in system reliability engineering, and it
is always in�uenced by the distribution parameters of inputs. For the purpose of identifying the in�uential distribution parameters,
the parametric sensitivity of IM on the failure probability based on local and global sensitivity analysis technology is proposed.
�en the denitions of the parametric sensitivities of IM on the failure probability are given, and their computational formulae are
derived.�e parametric sensitivity nds out how the IM can be changed by varying the distribution parameters, which provides an
important reference to improve or modify the reliability properties. When the sensitivity indicator is larger, the basic distribution
parameter becomes more important to the IM. Meanwhile, for the issue that the computational e�ort of the IM and its parametric
sensitivity is usually too expensive, an active learning Kriging (ALK) solution is established in this study. Two numerical examples
and two engineering examples are examined to demonstrate the signicance of the proposed parametric sensitivity index, as well
as the e�ciency and precision of the calculation method.

1. Introduction

Uncertainties existing in engineering analysis and design
are inherently unavoidable in nature associated with the
manufacturing error, material property, loads, and so forth.
Fortunately, reliability analysis and sensitivity analysis are
now available to deal with the uncertainty existing in design
variables to improve the performance of a mechanical or
structural system [1–3]. Reliability analysis aims at predicting
the failure probability (or reliability) of the structure under
the e�ects of random uncertainties. On the other hand, sensi-
tivity analysis focuses on the contribution of each uncertainty
or distribution parameters of the input variables [4–7]. It
is reasonable and practicable to obtain reliability sensitivity
analysis for quantifying and ranking the e�ects of random
uncertainties on the failure probability. In this paper, the
reliability sensitivity analysis is concerned.

Sensitivity analysis (SA) is the study of how the output
response of a model (numerical or otherwise) is a�ected
by the input uncertainty, which can be classied into two
groups: local SA and global SA [8]. �e local SA investigates

how small variation of the distribution parameters near a
reference point changes the output value. �e classical local
SA is dened as the partial derivative of the output with
respect to the distribution parameters of inputs [9]. �e
global SA, also named as importance measure (IM), gives
consideration to measure the e�ect of the output uncertainty
on the uncertainty of the input parameters, covering their
variation range space as opposed to local SA using partial
derivatives.

Saltelli and Marivoet [10] and Helton and Davis [11]
proposed the nonparametric techniques (input-output cor-
relation), but this method lacks model independence. With
the advantage of “global, quantitative and model free,” the
variance-based importancemeasures are gaining the increas-
ing attention of practitioners and have been used exten-
sively for quantitative analysis [12–16]. However, Borgonovo
addressed the following fact: “the premise of variance-based
GSA technique that the variance is su�cient to identify
the variability of model output is not always true” [17].
�e “moment-independent” importance measures have been
presented [6, 16–19]. �ey are also global, quantitative,
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model-free, and additionally moment-independent, thus
attracting more and more attention of practitioners recently.
Generally speaking, in reliability analysis, researchers o�en
pay the most attention to the failure probability. With this
respect, Cui et al. [6] introduced a moment-independent
importance measure of the basic variable on the failure
probability which was further developed by Li et al. [20].

�is moment-independent importance measure on fail-
ure probability is applied to quantify the average e�ect of the
basic variables on the reliability of the model and obtain the
importance ranking.�e IM on the failure probability can be
used in the priordesign stage for variables screening when a
reliability design solution is yet identied and the postdesign
stage for uncertainty reduction a�er an optimal design has
been determined. Uncertain inputs inherent in most engi-
neering problems are assumed as random variables obeying
probabilistic distributions. Obviously, system reliability and
reliability IM on failure probability are decided by distribu-
tion parameters. One can directly change the input’s IMs by
controlling or modifying some input’s distribution parame-
ters; namely, changing the input’s distribution parameters can
also in�uence the failure probability, which would facilitate
its use under various scenarios of design under uncertainty,
for instance, in reliability-based design. It is necessary to fur-
ther recognize e�ects of the distribution parameters within
system reliability on the importance ranking. At present, Cui
et al. [7] dened the parametric sensitivities to illustrate the
in�uences of the distribution parameters on the importance
measures.

Combined with the local SA technique of input param-
eters, the e�ects of the distribution parameters on the IM
on failure probability can be introduced, by which IMs
of the inputs can be controlled or modied by changing
the distribution parameters. �is can provide important
guidance for robust design, reliability-based design, and
reliability-based optimization in engineering. However, its
solution still relies on the corresponding method for failure
probability and the computation of the derivative operation
on failure probability existing in the parametric sensitivity of
IM.

�e Monte Carlo simulation (MCS) procedure is easy
to implement and is available for computing the parametric
sensitivity of IM based purely on model evaluation [15, 21],
but it has to face the problem of “curse of computational
cost” for the problem with small failure probability (10−3–
10−4 or smaller). �us, to deal with this problem, the Kriging
approach is widely used for deterministic optimization prob-
lems [22] and reliability analysis [23] has been intensively
investigated. Furthermore, an advanced Kriging method,
named active learning Kriging (ALK), has been proved to
be highly e�cient in reliability analysis problems [24–26].
�is work would employ the ALK method to compute the
parametric sensitivity of IMon failure probability. In theALK
method, theKrigingmodel is updated by adding new training
points to the design of experiment (DOE) in iterations by
active learning until the Kriging model satises necessary
accuracy.�e computational e�ciency of theKrigingmethod
can be validated by several numerical and engineering
examples.

�e remainder of this work is organized as follows.
Section 2 reviews the denition of the moment-independent
importance measure of the basic variable on the failure
probability. And the parametric sensitivity of IM on failure
probability is rstly presented. In Section 3, the established
ALK solution can e�ectively solve the problem that the
computational cost of the parametric sensitivity of IM relies
on small failure probability.�e e�ectiveness of the proposed
parametric sensitivity of IMs and e�ciency of the ALK
method are demonstrated by several examples in Section 4.
�e discussions and conclusions are given at the end of this
paper.

2. Definition of the Parametric Sensitivity of
IM on Failure Probability

2.1. Review of the Importance Measure on the Failure Prob-
ability. Consider a probabilistic reliability model � =�(�1, �2 ⋅ ⋅ ⋅ ��), where �(�1, �2 ⋅ ⋅ ⋅ ��) is the performance
function, � is the model output, and X = {�1, �2 ⋅ ⋅ ⋅ ��} is
the �-dimensional vector of random input variableswith joint
probability density function (PDF) �X(x). Denote ��� by the
unconditional failure probability; that is, ��� = �{�(�) ≤ 0}.
When the 
th input variable�� is xed at one given value, the
conditional failure probability ���|X� can be obtained.

Based on the idea of the moment-independent impor-
tance analysis, the importance measure of basic variable X�
on the failure probability is dened by Cui et al. [6] as

�X� = 12�X�
[��������� − ���|X� ������]

= 12 ∫
+∞

−∞

��������� − ���|X� ������ �X� (x�) �x�,
(1)

where X� represents a random basic variable �� or a set of
random basic variables (��1 , ��2 ⋅ ⋅ ⋅ ���), where 1 ≤ 
1 ≤
2 ⋅ ⋅ ⋅ 
� ≤ �. �[⋅] is the operator of expectation.

As the absolute value in (1) is di�cult to compute, it
is transformed into square operation by Li et al. [20]. �e
modied version of importance measures on the failure
probability can be expressed as follows:

��
X�
= � [��� −���|X� ]2

= ∫+∞
−∞

(��� − ���|X�)
2�X� (x�) �x�.

(2)

In the reliability analysis, the failure domain of this
structure system is dened as

� = (x : � (x) < 0) . (3)

Suppose the indicator function of this failure domain is
given as ��(x); that is,

�� (x) = {1 � (x) < 0,0 � (x) > 0. (4)
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�en, the unconditional failure probability and condi-
tional failure probability on�� can be expressed as

��� = ∫ ⋅ ⋅ ⋅ ∫ �� (x) �X (x) �x = � (�� (x)) , (5)

���|�� = ∫ ⋅ ⋅ ⋅ ∫ �� (x) �X (x | ��) �x = � (�� (x | ��)) . (6)

Here,�X(x | ��) is the conditional joint PDF on ��. According
to the probability theory, �X(x | ��) is dened as

�X (x | ��) = �X (x)�	� (��) , (7)

where �	�(��) is the PDF of ��.
2.2. �e Parametric SA of IM on Failure Probability. For the
in�uential distribution parameter, it is signicant to identify
how it in�uences IM on failure probability. We suppose that
each input only depends on one distribution parameter in
order to simplify the notation in the following.

As stated above, �
	� (
 = 1, 2 ⋅ ⋅ ⋅ �) is the �th distribution

parameter of input �� which in�uences the unconditional
failure probability ��� , but not the conditional failure prob-
ability ���|X� . It is also noticed that �
	� ∈ �
−	� is not the
distribution parameter of input ��, but it still in�uences��� and ���|X� . �−	� is a vector containing all distribution

parameters of the input variables but ��. �e contributions

of distribution parameter �
	� on ��� and ���|X� can be shown

in Figure 1.
To analyze the e�ect of changing the �th parameter�
	� (
 = 1, 2 ⋅ ⋅ ⋅ �) of input��, the sensitivity derivative of the

IM on failure probability ��
X�
can be dened as

���	���
	�
= �∫
+∞
−∞ (��� − ���|��)2�	� (��) �����
	�

= ∫+∞
−∞

[
[2 (��� − ���|�� ) ⋅

������
	�
+ (��� − ���|�� )2 ��	� (��)��
	�

1�	� (��)]]�	� (��) ���.
(8)
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Figure 1: In�uence of the distribution parameter on the ��� and���|X� .

To analyze the e�ect of changing the �th parameter �
	� ∈
�
−	� of input on ��X� , the derivative of the IM can be dened
as

���	���
	�
= �∫
+∞
−∞ (��� − ���|��)2�	� (��) �����
	�

= ∫+∞
−∞

[
[2 (��� − ���|�� ) ⋅ (

������
	� −
���|����
	� )

]
]�	� (��) ���.

(9)

To compute the above formula, the derivatives of ��� and���|X� contribution with respect to the distribution parameter

of input can be given by

������
	� = ∫ ⋅ ⋅ ⋅ ∫
��
�� (x) ��X (x)��
	�

1�X (x)�X (x) �x

= �( �� (x)�X (x)
��X (x)��
	� ) ,

������
	� = ∫ ⋅ ⋅ ⋅ ∫
��
�� (x) ��X (x)��
	�

1�X (x)�X (x) �x

= �( �� (x)�X (x)
��X (x)��
	� ) ,

(10)

���|����
	� = ∫ ⋅ ⋅ ⋅ ∫
��
�� (x) ��X (x | ��)��
	�

1�X (x | ��)�X (x | ��) �x

= �( �� (x)�X (x | ��)
��X (x | ��)��
	� ) .

(11)
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Here, the e�ects of the distribution parameters on the IMs
of input variables can be known, combining local and global
sensitivity analysis technology. One can directly optimize
the inputs’ IMs by controlling or changing some inputs’
distribution parameters. It can provide useful information for
robust design, reliability-based design, and reliability-based
optimization.

In computing the parametric sensitivity of IM, the deriva-
tive of the ��� and ���|X� with respect to the distribution

parameters must be calculated. �e performance function
expression is characterized by complex implicit limit state
functions in most engineering problems, so the derivative of
the ��� and ���|X� is without a denite analytic expression.

�e Monte Carlo simulation (MCS) method can be used
for computing the parametric sensitivity of IM. �is method
has the advantages of high-accuracy and usability based
on model evaluation. However, for problems with small
failure probability (10−3–10−4 or smaller), only a very small
portion of samples will drop into the failure domain. �e
computational cost is unacceptable for failure probability and
the derivative of the ��� and ���|X� . For the latter problem, an

active learning Kriging method combining MCS is proposed
in the next section.

3. The Active Learning Kriging
Method for the Parametric Sensitivity of
IM on Failure Probability

Section 2 tells us that the key point in estimating the global
reliability sensitivity indices is to provide the failure proba-
bility ��� , the unconditional failure probability ���|X� , and the
derivative of ��� and ���|X� to the distribution parameters. In

practice, there are many engineering problems characterized
by complex implicit performance functions, so the compu-
tational cost of double-loop MCS method becomes larger
especially for nite element (FE) model. To solve this prob-
lem, the solution of ALKmethod is employed to approximate
the implicit performance function and improve the e�ciency
greatly using few training points. Generally speaking, Kriging
metamodel is combined by a linear regression component
and a stochastic process. It is an interpolation technique
based on the statistical theory and has been used to construct
the input and output (I/O) systems. �e Kriging models are
performed with the toolbox DACE, which is a MATLAB
toolbox developed by Lophaven et al. [27].

3.1. KrigingMetamodel. �epresent Krigingmodel expresses
the unknown function &(x) as [22]

& (x) = � (x,�) + ' (x) , (12)

where �(x, *) is the deterministic part which gives an
approximation of the response in mean. �e second part'(�) is the realization of stochastic process, which provides
the approximation of the local �uctuation so that the whole

model interpolates exactly. �is part shows the following
statistical characteristics:

� [' (�)] = 0, (13)

Var [' (�)] = -2, (14)

Cov [3 (��) , 3 (�
)] = -2 [7 (��, �
)] . (15)

�e mean of this component is zero, the variance is -2,
and (14) denes its covariance between two points in space.
In (15), �� and �
 denote two arbitrary points; 7(��, �
) is the
correlation function of �� and �
.

Several types of correlation function 7(��, �
) can be
used, and, in this study, the Gaussian function can be
formulated as

7 (��, �
) = EXP(− �dv∑
�=1
�� �������� − �
������2) , (16)

where �dv is the dimension of random input variables, ��� and�
� denote the ?th component of training samples �� and �
,
respectively, and �� is the correlation parameter to ensure
that the metamodel is �exible enough to approximate the
true function, which is usually obtained by an optimization
process.

A set of � experimental samples is denoted by x =[x1, x2, . . . , x��]�, where x� is the 
th training point, and

responses Y = [@1, @2, . . . , @��]� is the corresponding
response to x. �e predicted value A�(x) and predicted

variance -2�(x) of the objective function &(x) at an unknown
point x are

A� (x) = ��*̂ + C� (x) 7−1 (� − �*̂) . (17)

In (17), 7 denotes a D × D correlation matrix by 7�,
 =7(��, �
); C�(x) = [7(x, x1), 7(x, x2), . . . , 7(x, x��)]� is the
correlative relations between unknown point x and sample

points x = [x1, x2, . . . , x��]�; the unknown parameters *̂ can
be expressed as

*̂ = (��7−1�)−1 ��7−1�. (18)

�e Kriging variance -2�(x) is dened as the minimum
square error between true response&(x) and estimated value&̂(x) and is expressed as follows:

-2� (x) = -2� (1 + F� (��7−1�)−1 F − C� (x) 7−1C (x)) , (19)

where F = ��7−1C(x) − �; the unknown parameters -2� can
be expressed as

-�2 = (� − 1*̂)
� 7−1 (� − 1*̂)
� . (20)

However, at a given unknown point X, the predicted
value A�(X) is not the true value of &(X) and there exist

some uncertainties. -2�(x) demonstrates uncertainty of the
predictor value; it also provides an important index to
adjudge the tting accuracy and enables quantifying the
uncertainty of predictions with an easy approach.
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3.2. �e ALK Method and the Solution for the Parametric

Sensitivity of IM ���	� . �e ALK method has been applied

to di�erent elds in engineering, like e�cient global opti-
mization (EGO) [22], probabilistic analysis (PRA) [24–26],
and reliability-based design optimization [28]. In the ALK
method, the learning function plays an important role in
constructing the active learning Kriging model [26]. A new
Kriging model is updated by adding a new training point
to the design of experiment (DOE) in subsequent iterations
by active learning until the Kriging model satises necessary
accuracy. According to the indicator function of this failure
domain in (5), we only need to focus on the sign of the
performance function in the reliability analysis.

For the uncertainty of predicted value A�(X), there may
exist some risk that the value of &(X) is positive (&(X) > 0)
even if predicted value is negative (A�(X) < 0). So, the points
owing a high potential risk to cross the predicted separator&(X) = 0 have to be added to the DOE and evaluated by
the real performance function.�ese potentially “dangerous”
points determining the precision of the failure probability
are in the region: close to the limit state, have high Kriging
variance or both. To identify them, a new learning function
named the expected risk function (ERF) is proposed in our
recent work [29].

First, if A�(X) < 0, we dene an indicator tomeasure such
potential risk as

7 (X) = max [(& (X) − 0) , 0] . (21)

As shown in Figure 2(a), 7(X)measures the shi� of value
of &(X) to be positive and the larger the value of 7(X) is, the
more risky the sign of&(X) is to be changed from negative to
positive.

Covering the range (&(X) > 0) to calculate the mean of7(X), the ERF for the case A�(X) < 0 is obtained as follows:

� (7 (X)) = � (max [(& (X) − 0) , 0])
= ∫+∞
0

&G(& − A�-� )�&
= -�G(A�-�) + A�Φ(

A�-�) ,
(22)

where A� and -� are the predicted value and variance in (17)
and (19) and Φ(⋅) and G(⋅) are the cumulative distribution
function (CDF) andPDFof the standard normal distribution.

If A�(X) > 0, as shown in Figure 2(b), we dene an
indicator to measure such potential risk as

7 (X) = max [(0 − & (X)) , 0] . (23)

And the ERF for the case A�(X) > 0 is obtained as follows:
� (7 (X)) = � (max [(0 − & (X)) , 0])

= ∫+∞
0

&G(& + A�-� )�&
= -�G(A�-�) − A�Φ(

A�-�) .
(24)

0
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G�G
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Figure 2: Risk of the sign of &(X) to be wrongly predicted in a
Kriging model: (a) the sign of &(X) is negative; (b) the sign of &(X)
is positive.

�e ERF is employed to measure the potential possibility
that the sign of the limit state function in a pointX is changed
from positive to negative (or negative to positive) in the
Kriging model. �e point maximizing ERF should be added
to the initial set of training points in DOE.

�eALK-based solution for the parametric sensitivity can
be simply divided into ve steps and provided as follows.

Step 1. For a model @ = �(x), generate K samples x� =(�1�, �2� ⋅ ⋅ ⋅ ���) (L = 1, 2 ⋅ ⋅ ⋅ K) of the input variables by PDF�X(x) using Sobol’s low-discrepancy samples. One can refer
to Sobol [15] for more details. A � ×K dimension matrixX is
formed and shown as

X = (x1, x2, . . . , x�)� = [[[
�1,1 ⋅ ⋅ ⋅ ��,1... d

...�1,� ⋅ ⋅ ⋅ ��,�
]]
]
, (25)

where the 
th column of matrix X represents the generated
random realizations for input variable ��.
Step 2. Construct an active learning Kriging model as fol-
lows.

(a) �e samples x� in Step 1 are set as candidate points.
Randomly choose some training points in the sam-
ples x� and evaluate the corresponding performance
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function. In the initial step, only a dozen of points in
the DOE are enough according to our experience.

(b) Construct the Kriging model, compute the ERF of
candidate points by (22) and (24), and judge whether
it is smaller than the given tolerance. If so, the active
learning process can stop and turn to Step 3 directly.
If the stopping condition is not satised, it should go
to Step 2(c) to add new training point.

(c) Add the point with max value of ERF to the DOE and
loop back to Step 2(b).

Step 3. Based on the active learning Kriging model, the
corresponding K values of Kriging predictions y� =A�(x�) (L = 1, 2 ⋅ ⋅ ⋅ K) are obtained. Compute the values
I�� (L = 1, 2 ⋅ ⋅ ⋅ K) of the indicator function of this failure

domain and ��� = ∑��=1 ���/K. Using the same active learning

Kriging model, ����/��
	� and ����/��
	� can be computed

combining the reliability sensitivity analysis method by (10).

Step 4. By xing the (
, L)th component (��,�) of X, generateQ samples k


��	 = (�1
, . . . , ��−1,
, ���, ��+1,
 ⋅ ⋅ ⋅ ��
) (� =1, 2 ⋅ ⋅ ⋅Q) according to the conditional PDF �X(x | ���), and

the corresponding Q values of Kriging predictions y
��,	 =A�(k
��,	)(� = 1, 2 ⋅ ⋅ ⋅Q) can be obtained based on the same

active learningKrigingmodel.With theseQ samples y
��	 (� =1, 2 ⋅ ⋅ ⋅Q), the ���|��	 of conditional on ��� can be obtained as

���|��	 = ∑
�

=1 �
�|��	Q . (26)

At the same time,���|�� /��
	� can be computed combining the

reliability sensitivity analysis method by (11).

Step 5. �e IM ��	� can be calculated according to the deni-

tion of (2); ��� , ���|��	 , ����/��
	� , ����/��
	� , and ���|�� /��
	�
have been computed in Steps 3 and 4. Substituting them

into (8) or (9), the parametric sensitivity of IM ���	� can be

computed.

It can be seen that a large number of samples must be

taken for providing precise estimates when calculating IM ��
and its parametric sensitivity with Monte Carlo method. In
the second step of ALKprocedure, one only needs to compute
the limit state function values using themetamodel instead of
original model; thus, this procedure can further improve the
e�ciency without loss of precision, especially for the nite
element model (FEM).

In the next section, we introduce two numerical exam-
ples and two engineering examples for demonstrating the
e�ciency and precision of the calculation procedure and

illustrating the engineering signicance of the IM �� and its
parametric sensitivity.

Table 1: Computational results of the importance measure ���� in
Example 1.

Method
Importance measure ���� �e numbers of

function evaluations�1 �2
MC 0.00492 0.00537 2 × 104 × 104
ALK 0.00476 0.00548 12 + 36

Error 0.0033 0.0052

4. Examples

4.1. Numerical Examples

Example 1. �e mathematical problem in Example 1 is mod-
ied from [25], which behaves nonlinearly around the limit
state function. �e nonlinear performance function is given
as

� (�1, �2) = sin(5�12 ) − (�21 + 4) (�2 − 1)20 + 2, (27)

where the basic variables �1 and �2 are independent and
follow normal distributions �1 ∼ K(1.5, 1) and �2 ∼K(2.5, 1), respectively.

�e estimates of the importance measure on the failure
probability ��	� computed by the MCS and ALK procedures

and the error in each estimate are reported in Table 1. �e
numbers in the last column are the evaluation numbers of
the performance function when calculating ��	� . �e results

of their parametric sensitivities are computed using the same
active learning Kriging model and listed in Table 2.

As revealed by Tables 1 and 2, the results computed
by the ALK procedure are precise enough compared with
those computed by the MCS procedure. �e results of MCS
procedure can be seen as the accurate results. Compared with
the tremendously large computational cost (2 × 104 × 104
samples) of Monte Carlo method, the ALK method only
begins with 12 training points, while 36 points whose sign of
response has the largest potential risk to bewrongly predicted
are added into the initial DOE. Additionally, Figure 3 gives
iteration history of the true values of the 36 training points
for Example 1 by the ALK method. �e sign of the candidate
points (the samples inMCS procedure) is estimated using the
ALK model. Compared with the true sign of the candidate
points using originality performance function, there are only
8 candidate points whose signs of responses are wrongly
predicted.�is can be linked to Figure 4 in which it shows the
sign of the response at eachMonte Carlo sampling point. It is
seen that most of the added points are located in the vicinity
of the limit state function. Consequently, thismethod certies
a correct approximation of the response using a minimum
number of calls to the performance function.

From the results in Table 1, it is noted that there is no
di�erence between the rankings of the basic variables on
failure probability by the MCS and ALK procedures, namely�2 > �1, which illustrates that the ALKmethod is meaningful
and reasonable. �erefore, �2 should be paid more attention
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Table 2: �e parametric sensitivities of the importance measure ���� in Example 1.

Parametric sensitivity of IM Method A�1 -�1 A�2 -�2����1����
MC 0.00821 0.0179 0.00940 0.00610

ALK 0.00858 0.0183 0.00947 0.00624

����2����
MC 0.00741 −0.00301 4.594e−4 −3.576e−4
ALK 0.00752 −0.00293 4.648e−4 −3.470e−4
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Figure 3: Iteration history of the true value of added training points
for Example 1 by ALK.

to in the reliability analysis on failure probability. Results
shown in Table 2 point out the in�uences of varying some
variables’ distribution parameters to the IMs on the failure
probability. �e uncertainty of IMs ���� on failure probability

can be improved through modifying or controlling the
distribution parameters of the variables indirectly.

Example 2 (Ishigami Function). Ishigami function [30] is a
commonly used example in importance measure analysis [6,
20]. It can be written as follows:

� = sin�1 + Wsin2�2 + X�43 sin�1, (28)

where the basic variables �1, �2, and �3 are independent and
uniformly distributed in [��� , ��� ] (
 = 1, 2, 3), ��� = −Z,
and ��� = Z. �e values of constants are set as W = 5 andX = 0.1. �e estimates of the importance measure on failure
probability ��	� and the results of their parametric sensitivities

are listed in Tables 3 and 4, respectively.

As revealed by Tables 3 and 4, the computational cost

of Monte Carlo method (3 × 108 samples) is tremendously
large, which illustrates that our model is computationally
challenging.�e ALKmethod begins with 12 training points,
while 44 points are added into the initial DOE to satisfy
the accuracy. We plot the tendency of the true values of

Table 3: Computational results of the importance measure ���� in
Ishigami function.

Method
Importance measure �����1 �2 �3

MC (6 × 104 × 103) 0.0474 0.0263 0.0107

ALK (6 × 104 × 103) 0.0475 0.0261 0.0110

Error 0.0053 0.0076 0.028
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Figure 4: Sign of the response at each sample predicted for
Example 1 by ALK.

the training points for Ishigami function computed by ALK
method in Figure 5. �is validates the high e�ciency of
the ALK method. �e importance ranking of the basic

variables on failure probability obtained by ��	� is �1, �2, and�3. �erefore, �1 should be paid more attention to in the
reliability analysis on failure probability. Results shown in
Table 4 point out the in�uences of varying some variables’
distribution parameters to the IMs on the failure probability.

From Examples 1 and 2, it can be found that the impor-
tance of a variable to failure probability is not just a�ected
by the distribution parameters of this variable but a�ected
by those of the rest of input variables, and sometimes the
latter may even play a more important role than the former.
Surely, the engineering examples in Sections 4.2 and 4.3
are also following the fact. Accordingly, it is necessary to
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Table 4: �e parametric sensitivities of the importance measure ���� in Ishigami function.

Parametric sensitivity of IM Method ��1 ��1 ��2 ��2 ��3 ��3����1����
MC −7.826e−3 7.826e−3 1.513e−2 −1.513e−2 1.513e−2 −1.513e−2
ALK −7.752e−3 7.752e−3 1.537e−2 −1.537e−2 1.537e−2 −1.537e−2

����2����
MC 8.422e−3 −8.422e−3 −4.402e−3 4.402e−3 8.422e−3 −8.422e−3
ALK 8.418e−3 −8.418e−3 −4.398e−3 4.398e−3 8.418e−3 −8.418e−3

����3����
MC 3.425e−3 −3.425e−3 3.425e−3 −3.425e−3 −1.896e−3 1.896e−3

ALK 3.479e−3 −3.479e−3 3.480e−3 −3.479e−3 −1.914e−3 −1.914e−3
Table 5: Statistical properties of random variables for roof truss.

Random variable ^ (N/m) _ (m) `� (m2) `� (m2) �� (Pa) �� (Pa)
Mean A� 20000 12 9.82 × 10−4 0.04 1 × 1011 1.2 × 1010

Coe�cient of variation Cov� 0.07 0.01 0.06 0.12 0.06 0.06
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Figure 5: Iteration history of the true value of added training points
for Ishigami function by ALK.

nd out all the factors that may a�ect the importance
measures according to the failure probability, and parametric
sensitivities on IMs provide a way to solve this problem.

Except for that, Table 4 also shows an important property
as all the variables of themodel are uniform variables; namely,
the numerical values of two parametric sensitivities of the IM
are equal, and their signs are opposite.�is property result of
the parametric sensitivity of the IM is decided by (8) and (9).
For the uniform variable, the signs of (1/�X(x))(��X(x)/��	�)
are opposite.

4.2. Roof Truss. In order to test the applicability of the
proposed method for problems with more random variables
and expressed in a more engineering way, the roof truss
is selected as example. �e truss is simply illustrated as in
Figure 6.�e top chord and the compression bars of the truss
are reinforced by concrete and the bottom chord and the

tension bars are all made of steel. Assume the truss bears
uniformly distributed load ^, which can be transformed into
nodal load � = ^_/4. �e perpendicular de�ection of truss
peak node C Δ� can be calculated using the knowledge of
structural mechanics and

Δ� = ^_22 ( 3.81`��� +
1.13`���) , (29)

where `� and `� are the cross-sectional areas of the
reinforced concrete and steel bars, respectively, �� and �� are
the corresponding elastic moduli of reinforced concrete and
steel, and _ is the length of the truss as Figure 6 shows. �e
distribution parameters of the independent normal random
basic variables are given in Table 5.

Considering the safety of the truss, the perpendicular
de�ection Δ� should satisfy the constraint Δ� ≤ 0.03m.
Hence, the structural performance function can be given as
follows:

� (�) = 0.03 − Δ� = 0.03 − ^_22 ( 3.81`��� +
1.13`���) . (30)

For this highly nonlinear example, the computational
results of the importance measure on failure probability
measures by ALK and MCS are listed in Tables 6 and 7.
In addition, the IMs on the failure probability by the state
dependent parameter (SDP)method in literature [20] are also
listed for comparison in Table 6. �e MCS procedure takes6 × 107 samples. �e SDP method needs only 1024 model
runs for calculating the importance measures. However, the
Kriging method needs to call the performance function only
72 times. �e ALK method begins with 12 training points,
and 60 points are added into the initial DOE using ALK.�e
tendency of the true values of the training points for roof
truss by ALK method is plotted in Figure 7. Compared with
the SDP method, the proposed method has obtained a more
accurate result and lower computational cost.

Additionally, it can be seen from Table 6 that the e�ects
of the basic variable of ^ on the failure probability are notable
and the in�uences of basic variables sectional area`� and`�
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Table 6: Computational results of the importance measure ���� for roof truss.
Method

Global reliability sensitivity indices ����^ _ `� `� �� ��
MC (6 × 104 × 103) 0.05714 0.00483 0.02431 0.01148 0.00664 0.01329

ALK (69) 0.05684 0.00471 0.02425 0.01151 0.00665 0.01328

SDP (1024) 0.05044 0.00436 0.02749 0.01334 0.00691 0.01231
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Figure 6: Schematic diagram of a roof truss.

on the failure probability are relatively smaller, whereas elastic
moduli �� and �� and the length _ are the least in�uential
ones which can attract less attention. In engineering, param-
eters of the load ^ and the length _ are more easily controlled
or modied than other inputs, so the paper especially pays

attention to their parametric sensitivities of IM ��	� .
Due to space limitation, Table 7 lists the parametric

sensitivities of basic variables IM on the failure probabil-
ity. Taking IM ��� for example, the distribution param-

eters of the load ^ are relatively higher than those of
the length _. �us, it can be seen that changing those
parameters with high parametric sensitivity has more in�u-
ences on the IM of the corresponding variables than other

parameters. �e parametric sensitivity of ��	� is valuable

in the reliability engineering because it can provide indi-
rect information for reliability design and reliability-based
optimization.

4.3. A Planar 10-Bar Structure. A planar 10-bar structure
shown in Figure 8 is investigated. �e horizontal bars have
the same length c = 1m. �e diagonal bars and the vertical

members have the same length √2c. �e cross-sectional

area of 10 bars is denoted by ` = 0.001m2. �e elastic
modulus of all bars is � = 100GPa. �1 = 80KN and�2 = 10KN are the external loads subjected to joints 4 and
2, respectively. Joint 2 is also subjected to a horizontal load�3 = 10KN. �e input variables are all normally distributed,
and their coe�cient of variance is 0.05. We assume the
displacement of node 3 in vertical direction not exceeding3mm as the constrain condition.�e limit state function can
be constructed, � = 3mm − |�2|, where �2 is an implicit
function of the basic random variables. As shown in Figure 9,
the nite element model can be obtained in Ansys 11.0. �e

results of the importance measures �� of inputs are listed in
Table 8. To identify the in�uential distribution parameters,
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Table 7: �e parametric sensitivities of the importance measure ���� for roof truss.
Parametric sensitivity of IM Method

_ ^A� -� A� -���������
MC 2.361e−6 −1.369e−6 2.241e−5 5.221e−5

ALK 2.384e−6 −1.378e−6 2.256e−5 5.240e−5

����
����
MC −0.432 −0.285 −4.947 −4.053
ALK −0.428 −0.271 −4.956 −4.057

���������
MC −28.546 −7.802 −3.235e2 −1.324e2
ALK −27.611 −8.096 −3.312e2 −1.387e2

Table 8: Computational results of the importance measure ���� in 10-bar structure.

Method
Global reliability sensitivity indices ����` � _ �1 �2 �3

MC (6 × 104 × 103) 0.0449 0.0382 0.0401 0.0242 0.00282 2.249e−4

ALK (69) 0.0443 0.0371 0.0396 0.0245 0.00265 2.411e−4
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Figure 7: Iteration history of the true value of added training points
for a roof truss by ALK.

the computational results of parametric sensitivity are shown
in Table 9.

FromTables 8 and 9, it can be seen that the computational
results of Monte Carlo method and ALK method are in
good agreement. �e MCS procedure takes 6 × 107 samples
and its results can be seen as the accurate results, but the
computational cost of Monte Carlo method is tremendously
large especially for FEM. �e ALK method only needs to
call the nite element model 93 times to satisfy the accuracy.
�e e�cient Kriging method begins to get convergence at 12
training points, and 81 points are added into the initial DOE
using ALK. �e true values of the added training points for
roof truss by the ALK method are shown in Figure 10. �e
ALK method can also improve the computational e�ciency

impressively and ensure acceptable accuracy for the implicit
nite element model.

As revealed in Table 8, the ranking of IM not to exceed

as 3mm the constrain condition �� is as follows: the basic
variables of `, _, and � on the failure probability are notable;
the in�uences of basic variable �1 on the failure probability
are less; and the in�uences of basic variables �2 and �3 on
the failure probability are very small, which are even near
zeros. From Table 9, the distribution parameters A�, -�,A�, and -� are the most in�uential ones on the IMs. �us,
it can be seen that changing those parameters with high
parametric sensitivities has more in�uences on the IM of the
corresponding variable than other parameters. In the sight
of this structural design, we need to pay more attention to
the distribution parameters with high parametric sensitivity.
In order to obtain the IM on failure probability results,
especially for the high ranking IM, the important distribution
parameters to them must be given precisely. To do this,
it is necessary to collect the information and improve the
understanding of the distribution parameters.

5. Conclusions

�is paper investigates the in�uence of the distribution
parameters on the IM on failure probability. It is noted
that the IM of basic variable not only is in�uenced by
its distribution parameters but also is in�uenced by other
basic variables’ distribution parameters. By further devel-
oping the presented moment-independent IM on failure
probability, the parametric sensitivity of IM is rst presented
according to the derivative theory; thus, how the in�uential
distribution parameters in�uence the in�uential IM can be
made clear. Meanwhile, we can decrease the variability of
the IM on failure probability by collecting the information
and improving the understanding of those most in�uential

parameters. �e parametric sensitivity of ��	� is valuable

in reliability engineering because it can provide direct
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Table 9: �e parametric sensitivities of the importance measure ���� in 10-bar structure.

Basic variable ���
��������

��������
��������

MC ALK MC ALK MC ALK

` A� −236.763 −240.579 19.812 19.820 17.774 17.756-� 1235.778 1232.543 −1.637 −1.625 −1.471 −1.457
_ A� 0.230 0.241 0.223 0.220 −1.759e−2 −1.788e−2-� −0.408 −0.412 −0.384 −0.397 −1.956e−2 −2.012e−2
� A� −1.843e−10 −2.316e−10 1.477e−11 1.546e−11 −2.304e−12 −2.277e−12-� −4.231e−10 −6.186e−10 −3.714e−13 −4.827e−13 −4.034e−12 −5.259e−12
�1 A� 2.186e−5 2.492e−5 2.127e−6 2.111e−6 2.620e−6 2.581e−6-� −3.262e−5 −3.641e−5 −3.208e−5 −3.496e−5 −3.207e−6 −3.834e−6
�2 A� 6.210e−6 7.434e−6 5.812e−6 5.792e−6 7.420e−6 6.834e−6-� −3.174e−5 −3.412e−5 −3.986e−5 −3.796e−5 −3.528e−5 −3.419e−5
�3 A� −1.641e−6 −1.624e−6 −1.574e−6 −1.657e−6 −1.871e−6 −1.862e−6-� −2.631e−7 −2.942e−7 −1.876e−6 −1.748e−6 2.576e−7 2.124e−7
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Figure 9: �e nite element model of the planar 10-bar structure.

and useful information for reliability design and reliability-
based optimization.

�e computation of the IM on failure probability and its
parametric sensitivity is o�en feasible by the MCS, but the
computational cost of MCS method is tremendously large

with small failure probability (10−3–10−4 or smaller). For
dealing with this problem, the ALK method is employed to
calculate the IM and its parametric sensitivity. It can be seen
by the numerical and engineering examples that the ALK
method is more e�cient than MC method. To ensure the
computational accuracy, the large number of training points
used in the traditional Kriging method is essential.�anks to
the existence of active learning process, the points whichmay
greatly a�ect themetamodel’s tting accuracy can be precisely
selected, which can make the Kriging metamodel more
accurate and the additional computational cost is acceptable.
It is noticed that a small quantity of points in the inter-
esting region are added to construct the Kriging predictor
model until the Kriging model satises necessary accuracy.
�e computational results of several examples demonstrate
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Figure 10: Iteration histories of the true value of added training
points for 10-bar structure.

that the proposed method is validated to be rational and
e�cient.
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