
Proc. Natl. Acad. Sci. USA

Biochemistry
V O ~ . 89, pp. 6090-6093, July 1992

Parametric sequence comparisons
MICHAEL s. WATERMAN?, MARK EGGERTt, AND ERIC LANDERS

?Departments of Mathematics and Molecular Biology, University of Southern California, Los Angeles, CA 90089-1113; and *Whitehead Institute for
Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142

Communicated by Gian-Carlo Rota, January 2, 1992

ABSTRACT Current algorithms can find optimal align-
ments of two nucleic acid or protein sequences, often by using
dynamic programming. While the choice of algorithm penalty
parameters greatly influences the quality of the resulting
alignments, this choice has been done in an ad hoc manner. In
this work, we present an algorithm to efficiently fmd the
optimal alignments for all choices of the penalty parameters. It
is then possible to systematically explore these alignments for

,those with the most biological or statistical interest. Several
examples illustrate the method.

Computer algorithms for DNA and protein sequence com-
parisons have proved increasingly valuable. Unexpected
relationships have been found between sequences, where
some of the best known are between viral and host DNA
(1-3). To study sequence relationships by computer, dynamic
programming was introduced for similarity alignment by
Needleman and Wunsch (4), for distance by Sellers (9, for
best aligning segments by Smith and Waterman (6), for linear
gap weights by Gotoh (7), and for kth best-aligning segments
by Waterman and Eggert (8). There are many other variants,
including alignment with nonoverlapping inversions (9). Re-
cently, rapid data base searches are made by using the
hashing-based approach of Wilber and Lipman (10) and
Lipman and Pearson (11) and by the newly described method
BLAST (12). These useful approaches do not always find
optimal alignments, and dynamic programming-based meth-
ods continue to be used. In fact, hashing-based programs
limit the regions of interest and then apply dynamic program-
ming to these regions. BLAST, on the other hand, locates
alignments with no insertions or deletions (indels). The
subject of this paper is dynamic programming sequence
algorithms with linear alignment score.

One of the central difficulties of dynamic programming
sequence comparison algorithms is the choice of algorithm
penalty parameters-that is, the score given to aligned pairs
of letters and to gaps (also called insertions or deletions). In
some cases, small changes in amino acid weights or in the
indel penalty function create large changes in the resulting
alignments. In other cases, the alignments are very robust to
changes in these algorithm parameters. We feel that there is
no one set of “correct” parameters: parameters that will find
significant matches of one statistical quality are not useful for
another type of matching. We have come, therefore, to
consider sequence comparison for a large set of parameter
values and to study the associated statistical problems of
multiple hypothesis testing. In the work of Waterman and
Gordon (13), the relationship between penalty parameters
and the statistical distribution of the score of the best-
matching segments is studied, along with the multiple hy-
pothesis testing problem.

Ideally, we would like to compute optimal alignments for
the infinite set of all possible parameter values. At first
glance, this would seem to require an infinite number of

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked “advertisement”
in accordance with 18 U.S.C. 51734 solely to indicate this fact.

sequence comparisons and therefore appears to be a com-
pletely unrealistic goal. In a pioneering study, however, Fitch
and Smith (14) were able to find all alignments of two
hemoglobin genes where the penalty for a gap of length k is
w(k) = a + pk, and a and p vary. There are 11 regions or
subsets of parameters that give distinct sets of optimal
alignments. Fitch and Smith arrived at their regions by an
insightful application of the basic alignment procedure, but
they gave no systematic algorithm. In ref. 15, a similar
decomposition of parametric space is given. No one has
taken up the problem of creating an algorithm to automati-
cally delineate such regions of constant optimal alignments.
In this paper, we describe an algorithm to do this.

We begin by formulating Smith-Waterman algorithms for
one- and two-dimensional parameter spaces, but our tech-
nique will succeed for any scoring function linear in the
algorithm parameters. The score H is a function of the
parameters, as we hold the sequences fixed. H has special
properties that are useful to know about. H is piecewise
linear, and on each linear piece there is a unique set of optimal
alignments. In this way, the problem can be seen to be finite.
We approach the problem by intersecting hyperplanes. As a
conceptual and computational device, we employ infinitesi-
mals, much in the sense of the Leibniz infinitesimals of
elementary calculus (16). This gives an efficient algorithm in
the one-dimensional case. Moving to a two-dimensional
parameter space requires introduction of another order of
infinitesimal. The generalization to k-dimensional parameter
spaces is easy to describe but is computationally expensive.

One-Dimension Parameter Sets

First, we present an elementary version of the Smith-
Waterman alignment algorithm (6). Let a = ala2 . . . a, and
b = b lb2 . . . b, be the sequences we compare. The score of
aligning letters a and b is s(a, b) = 1 if a = b and s(a, b) =
- p if a # b . The penalty w(k) for deletion or insertion of k
letters is given by w(k) = 6k. [This is a special case of w(k)
= a + pk.] The algorithm proceeds recursively by finding the
best score H i ending at ai and bj by the equation

The algorithm is initialized by H o , ~ = Hi.0 = 0 for 0 5 i 5
n, 0 I j 5 m. The score of the best segments of a aligned with
b is of course

[21

To further simplify this algorithm, take p = 26 so that the
alignment score is a function of one parameter, A = 6. We
emphasize the dependence on the parameter A by writing H
= H(A). The sequences are held constant and the parameter
varies in what follows.

Next, we establish some elementary properties of H(A).
H ’ (A) is nonpositive, increasing, and piecewise constant.
Clearly, the number of alignments A is finite, and each
alignment A has r identities, sA mismatches, and f A single-

H = H(a, b) = max Hi,j .
I J

6090

Biochemistry: Waterman et al. Proc. Natl. Acad. Sci. USA 89 (1992) 6091

letter indels. Let s = 2sA + tA, the number of misaligned
letters. Therefore S(A) , the score of single alignment A ,
satisfies

S(A) = r - SAP - tAh
= r - (2SA + tA)h
= r - SA.

Therefore,

H(A) = max{r - SA: alignment A } .

The very large but finite number of alignments implies that
H(A) is piecewise linear and continuous.

Since r - SA is decreasing in A, so is H(A). If i = 1, 2, . . .
is the index of the maximizing lines as A increases from 0, ri,
and si. Suppose at Ai < Ai+l, we have

ri - siAi > ri+l - s i+~Ai ,

and

r; - S ; A ~ + ~ < ri+l - s i + l A i + ~ .

It is easy to show si > si+ l and ri > ri+1. We have shown more
than simply that H'(A) = -si is an increasing function of A.
As i increases, not only does the number of unmatched bases,
si, decrease but the number of identities ri also decreases.

The algorithm we now describe calculates all values of
H(A) on (0, m). Recall that Eq. 1 allows us to find H(A) for any
fixed A. A brief sketch of the algorithm is given next. It is easy
to find H(0) and H(m). The line segment through [m, H(m)l is
easy to find, because H(m) = length of longest exact match
between a and b. Since many alignment lines often satisfy
H(0) = r - 90 , it is very useful to choose the one with the
minimum score s. An algorithm to find the minimum s is given
below. Thus, we find the leftmost and rightmost segments of
H(A), 0 I A 5 m. If their intersection (x, y) satisfies H(x) =
y , we know the entire function H(A). Otherwise H (x) > y.
Computing H (x) allows us to find all lines through [x, H(x) l .
Below, we show how to find the line that dominates, to the
left, all these lines. It is part of the final solution H(A). We
continue intersections with our line containing [0, H(0)I until
we have found the line segment L1 of H that intersects at [XI,
H(xl)] with that containing [0, H(O)]. Then, we take [XI, H(xl)]
and L2, the line segment of Hfoundjust before L1, and repeat
the procedure.

The algorithm described above depends on our ability to
find which alignment line through [x, H(x)] is optimal to the
left (or right) of x. To illustrate the problem, Fig. 1 shows the
multiple lines satisfying H(0) = r for a small example with
sequences of length 20. To choose the line dominant for A >
0, we introduce the idea of infinitesimal E. Here think of E >
0 as a small number, so small that any finite multiple remains
smaller than any number that occurs in the algorithms
described above. Our new numbers will have the form u + V E ,
where u, vCR. The idea, for example, is that we will run the
algorithm for A = E and find the line maximizing all those
through [0, H(O)].

Before explicitly describing the infinitesimal version of the
maximum segments algorithm, it is necessary to define a
lexicographic linear order on the numbers u + V E (16). Let x1
= u1 + V ~ E and y2 = u2 + V ~ E . If u1 > u2 then x1 > y2. If u1
= u2 and V I > v2, then x1 > y2. Of course, if u1 = u2, and VI
= v2, then x1 = y2. Thus, the new numbers are linearly
ordered. Also, addition is easily defined XI + y1 = (u1 + u2)
+ (VI + v ~) E . Of course, scalar multiplication is defined by cx1
= (C U I) + (C V 1) E .

For A = u + V E , the algorithm of Eqs. 1 and 2 can be used
to compute H = H(A). It is clear that the algorithm is well

I

0.0 0.2 0.4 0.6 0.8
A

FIG. 1. The eight alignment lines through [O, H(0)I = (0, 10) for
a = gtaaagtcggacaactagct and b = cgcgagtctacgtttggggc. Here A = p
= 6. The dominant line 10 - l l h has 48 alignments, 10 - 12A has 1208
alignments, 10 - 13A has 10,480 alignments, 10 - 14A has 46,076
alignments, 10 - 15A has 115,916 alignments, 10 - 16h has 169,240
alignments, 10 - 17h has 133,412alignments, and 10 - 18h has4398
alignments.

defined: only addition, subtraction, and maximums are in-
volved. This algorithm will be referred to as the infinitesimal
algorithm. Notice that E is never specified and that in this
sense this is symbolic computation. Since the order on
infinitesimals is consistent with the order on reals, it is easy
to show that if H(u + ve) = a + be, then H(u) = a . In this
way, the usual algorithm is a special case of the infinitesimal
algorithm.

Fig. 1 shows several alignment lines through [0, H(O)] for
a one-dimensional problem. Notice that if we move just to the
right of A = 0, to A = E = 0 + le, we can find the optimal line.
The idea then is to run the algorithm for H with the penalty
set slightly larger than 0-that is, at A' = E. The values of
H&') = u + V E , and at A = 0, Hu = u. Just as it is routine
to run the new algorithm, H(A') = H(E) = maXisisn,lsjsm,
H&') is easily calculated. For the length 20 sequences in Fig.
1, H(E) = 10 - l l ~ . The infinitesimal algorithm for H and the
scalar algorithm for H are consistent, as can be seen by H(0)
= 10. The eight lines in Fig. 1 represent 520,288 distinct
alignments. It i s this multiplicity of alignments that motivates
the development of the infinitesimal algorithm. Otherwise,
we would just directly calculate all alignments at a given
parameter point.

1

P

FIG. 2. From P = (p, 6) we obtain P1 = P + V 1 ~ 1 , and then P2
= P1 + V2e2, where V1 and V2 are orthogonal.

6092 Biochemistry: Waterman et al.

I
0

P

FIG. 3. The two-dimensional algorithm applied to two random
DNA sequences of length 400.

Our use of the infinitesimal algorithms is not limited to the
purely lexicographic. Below, it will be of interest to calculate
the rightmost point of an alignment interval. One way is to
proceed as described above, begin at 00, and intersect toward
the required point. To bound away from 00, look at a trace-
back through the infinitesimal matrix that produces an opti-
mal line. This alignment must remain optimal throughout the
interval. Take the maximum value of E that will allow all these
choices to remain the same. This value can be used instead
of 01, and this is an arithmetic use of infinitesimals.

Two Dimensions and Beyond

Next, we face the task of finding all alignment scores for the
two-dimensional (p , A) parameter space. In the one-
dimensional parameter space, [A, H(A)] is a piecewise linear,
convex function, while in the two-dimensional parameter
space H(@, A) is a piecewise linear, convex surface in
three-dimensional space. Recall that our alignment scores
satisfy

S(A) = r - sp - t A , 131

where r = number of identities, s = number of mismatches,
and t = number of indels. The functionflp, A) = r - sp - t A
is referred to as an alignment hyperplane. The simplicity of
our one-dimensional algorithm does not carry over here
because of the increase in dimension. It is necessary to
introduce another order of infinitesimal and to impose a linear
order on our new numbers. Then, we derive a technique to
find the unique optimal alignment hyperplane adjacent (to the
left or right) to any infinitesimal vector from a given point (p,
A). This algorithm is the basis of our method to find all convex
polygons in (p, A) space, where the interior has a unique
optimal alignment hyperplane.

First, we extend our numbers to include two orders of
infinitesimals, EI and ~ 2 . Let x = UI + V I E I + W I E Z and y =
u2 + v2cl + ~ 2 ~ 2 . If UI > u2, then x > y. If u1 = u2 and V I >
v2 then x > y. If u1 = u2, V I = v2, and W I > w2, then x > y.
Of course if u1 = u2, V I = v2, and w1 = w2, then x = y. As
before, no finite multiple of EI can exceed UI # 0, and no finite
multiple of can exceed ~ 1 . Addition and subtraction are
defined in the obvious way.

6
18

(

,

6

C

Proc. Natl . Acad. Sci. U S A 89 (1992)

A

1
Y

6

6

Y

P
6

FIG. 4. The two-dimensional algorithm applied to two immuno-
globulin protein sequences, LlHUNM or FABVH is a A chain V-I
region sequence (103 residues) and GlHUNM or FABVL is a heavy
chain V-I1 region sequence (117 residues). (A) Algorithm applied
to parameters a and p: w(k) = y + 6k. The 15 polygons in this
quadrant are shown. Algorithm applied to 2 0, subtracted from
each element in the PAM 250 matrix and 6, where w(k) = 6k. Some
of the 72 polygons in this quadrant are shown. (C) Algorithm ap-
plied to p 2 0 (as in B) and constant gap cost y. where w(k) = y
for all k 2 1. Some of the 242 polygons in this quadrant are
shown.

Biochemistry: Waterman et al. Proc. Natl. Acad. Sci. USA 89 (1992) 6093

Our basic algorithm finds the unique optimal alignment
hyperplane in the direction (a, b) from (p, A). While the
surface is in three-dimensional space, we are in the two-
dimensional parameter space. We are allowing a point to
represent the vector from (0,O) to that point. It is possible that
the (a, 6) direction coincides with an intersection of optimal
alignment hyperplanes. To ensure uniqueness we must move
a small distance perpendicular to (a, b) that is in direction
(-b , a) or (b, - a) . The direction (a, b) is of length &l(a2 +
b2)1/2, while the directions (-b , a) or (6, -a) are of length

(p*, A*) = (I*., A) + ~ i (a , b) + ~2(-b, a) , [41

+ b2)l l2 . Therefore, the parameters are

or

(p*, A*) = (p., A) + ~ i (a , b) + &2(br -a)-

See Fig. 2 for a graphic representation of the parameters.
To find the convex polygons of constant alignment hyper-

plane in (0, m) x (0, m), think of the parameter space as a
rectangle with four edges and four vertices. Begin at a vertex
VO, vo = (0, 0), say. From vo, use the basic two-dimensional
algorithm along the line L in the counterclockwise direction
(say). Initially, L is the line from (0, 0) to (a, 0). The
two-dimensional algorithm can find the alignment hyperplane
fo(p, A) = ro - sop .- fd immediately adjacent to vo in this
direction. The goal IS to trace out the convex polygon in (p,
A) associated with this hyperplane, with vertex/edge labels
(VO, eo, V I , el . . . , v, = vo). By a method similar to the
one-dimensional algorithm, it is easy to find the vertex v1 of
the first corner point on line L. To find edge e l , determine the
alignment hyperplane f1 adjacent to the line beyond v1 on L.
The intersection I = fonfi, which is a line, has optimal
alignment hyperplane f2 immediately adjacent and counter-
clockwise. Iffi =fo then 1 is the equation of the line containing
the edge e l . Otherwise, intersect fo and f2, repeating the
process until the intersection contains e l . The process is
repeated along e2 and continued until v, = VO.

Having traced out the vertices and edges of one of the
convex polygons of constant-alignment hyperplane, it can be
removed from (0, m)2. The procedure is repeated at a vertex
on the boundary of the remaining figure until all convex
polygons have been characterized.

How expensive is the method we have described? On the
average, assume we do q iterations to locate a vertex on a line
and (iterations to find the line adjacent to the vertex. We do
not have theoretical estimates of q and 5, but they do not
appear to grow with n = sequence length. If llPill= q#{edges}
+ (#{vertices} for a polygon Pi, then the complexity of our
method is O(nmHIIPill). Clearly, we have not implemented the
most efficient method, and we hope that a method can be
established to run in time O(nm#polygons).

To extend our methods to higher-dimensional parameter
spaces is of course possible. For k-dimensional parameter
spaces, we need E = (~ 1 , ~ 2 , . . . , Ek), where &k < & k - l < . . .
< ~ 1 . It is routine to describe the relevant vectors that
generalize (4).

Practical Implementation

We have coded the one- and two-dimensional algorithms.
Actually, we can use any two of three parameters: one
mismatch and two indel parameters. We illustrate the two-
dimensional algorithm by two random DNA sequences of
length 400 with a uniform distribution on {A, C, G, T}. The

results are shown in Fig. 3, where each planar region indi-
cates a region of constant optimal hyperplane. As we saw in
Fig. 1, a large number of alignments can go into a hyperplane,
but the optimal hyperplane itself is unique. On the lines of
intersection, of course, two or more hyperplanes are optimal.

We then applied the algorithm to the alignment of protein
sequences, defining an appropriate three-dimensional param-
eter space. Amino acid comparisons were based on the
Dayhoff matrix PAM250 with a variable offset, D - p =
(d i j -p = (dc - p) and the gap penalty w(k) = y + 6k. We
studied two immunoglobulin sequences-namely , the variable
domains of the light and heavy chains of the Fab antibody,
which we chose because Barton and Sternberg previously
(17) studied the effect of different gap penalties on the
alignment of these protein domains. Fig. 4 gives three two-
dimensional views of this parameter system.

The protein comparison problem indicates a need for future
research. Our methods handle two-dimensional systems, and
with some patience a three-dimensional system can be stud-
ied with the current software. It might become practical to
automate three-dimensional problems. However, the Day-
hoff matrix has 210 parameters. This is far beyond the
practical limits of our methods, and entirely new ideas must
be devised for such problems. The current software allows us
to systematically study the relationships between penalty
parameters and the biological significance of the resulting
optimal alignments for the first time.

Note Added in Proof. Since completing the above work, it has come
to our attention that Gusfield et al. (18) have also considered
parametric sequence comparison.

This work was supported by grants from the National Institutes of
Health and the National Science Foundation.

1. Weiss, T. (1983) Nature (London) 304, 12.
2. Doolittle, R. F., Hunkapiller, M. W., Hood, L. E., Devare,

S. G., Robbins, K. C., Aaronson, S. A. & Antoniades, H. M.
(1983) Science 221, 275-276.

3. Naharro, G., Robbins, K. C. & Reddy, E. P. (1964) Science
223,63-66.

4. Needleman, S. B. & Wunsch, C. D. (1970) J . Mol. Biol. 48,
443-453.

5 . Sellers, P. (1974) SIAM J . Appl. Math. 26, 787-793.
6. Smith, T. F. & Waterman, M. S. (1981) J . Mol. Biol. 147,

7. Gotoh, 0. (1982) J . Mol. Biol. 162, 705-708.
8. Waterman, M. S. & Eggert, M. (1987) J . Mol. Biol. 197,

9. Schoniger, M. & Waterman, M. S. (1992) Bull. Math. Biol. 54,

10. Wilber, W. J. & Lipman, D. J. (1983) Proc. Natl. Acad. Sci.
USA 80, 726-730.

11. Lipman, D. J. & Pearson, W. R. (1985) Science 227, 1435-
1441.

12. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman,
D. J. (1990) J . Mol. Biol. 214, 1-8.

13. Waterman, M. S. & Gordon, L. (1990) in Computers & DNA,
eds. Bell, G. I. & Marr, T. G. (Addison-Wesley, New York),

14, Fitch, W. & Smith, T. F. (1983) Proc. Natl. Acad. Sci. USA 80,

15. Gotoh, 0. (1990) Bull. Math. Biol. 52, 359-373.
16. Keisler, J. H. (1976) Foundations of Infinitesimal Calculus

(Prindle, Weber & Schmidt, Boston).
17. Barton, G. J. & Sternberg, M. J. E. (1987) Protein Eng. 1,

18. Gusfield, D., Balasubramanian, K. & Naor, D. (1992) Proceed-
ings of the Third Annual ACM-SZAM Symposium on Discrete
Algorithms, January 1992, pp. 432-439.

195-197.

723-728.

521-536.

pp. 127-135.

1382-1386.

89-94.

