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ABSTRACT Current algorithms can find optimal align- 
ments of two nucleic acid or protein sequences, often by using 
dynamic programming. While the choice of algorithm penalty 
parameters greatly influences the quality of the resulting 
alignments, this choice has been done in an ad hoc manner. In 
this work, we present an algorithm to efficiently fmd the 
optimal alignments for all choices of the penalty parameters. It 
is then possible to systematically explore these alignments for 

,those with the most biological or statistical interest. Several 
examples illustrate the method. 

Computer algorithms for DNA and protein sequence com- 
parisons have proved increasingly valuable. Unexpected 
relationships have been found between sequences, where 
some of the best known are between viral and host DNA 
(1-3). To study sequence relationships by computer, dynamic 
programming was introduced for similarity alignment by 
Needleman and Wunsch (4), for distance by Sellers (9, for 
best aligning segments by Smith and Waterman (6), for linear 
gap weights by Gotoh (7), and for kth best-aligning segments 
by Waterman and Eggert (8). There are many other variants, 
including alignment with nonoverlapping inversions (9). Re- 
cently, rapid data base searches are made by using the 
hashing-based approach of Wilber and Lipman (10) and 
Lipman and Pearson (11) and by the newly described method 
BLAST (12). These useful approaches do not always find 
optimal alignments, and dynamic programming-based meth- 
ods continue to be used. In fact, hashing-based programs 
limit the regions of interest and then apply dynamic program- 
ming to these regions. BLAST, on the other hand, locates 
alignments with no insertions or deletions (indels). The 
subject of this paper is dynamic programming sequence 
algorithms with linear alignment score. 

One of the central difficulties of dynamic programming 
sequence comparison algorithms is the choice of algorithm 
penalty parameters-that is, the score given to aligned pairs 
of letters and to gaps (also called insertions or deletions). In 
some cases, small changes in amino acid weights or in the 
indel penalty function create large changes in the resulting 
alignments. In other cases, the alignments are very robust to 
changes in these algorithm parameters. We feel that there is 
no one set of “correct” parameters: parameters that will find 
significant matches of one statistical quality are not useful for 
another type of matching. We have come, therefore, to 
consider sequence comparison for a large set of parameter 
values and to study the associated statistical problems of 
multiple hypothesis testing. In the work of Waterman and 
Gordon (13), the relationship between penalty parameters 
and the statistical distribution of the score of the best- 
matching segments is studied, along with the multiple hy- 
pothesis testing problem. 

Ideally, we would like to compute optimal alignments for 
the infinite set of all possible parameter values. At first 
glance, this would seem to require an infinite number of 
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sequence comparisons and therefore appears to be a com- 
pletely unrealistic goal. In a pioneering study, however, Fitch 
and Smith (14) were able to find all alignments of two 
hemoglobin genes where the penalty for a gap of length k is 
w(k) = a + pk, and a and p vary. There are 11 regions or 
subsets of parameters that give distinct sets of optimal 
alignments. Fitch and Smith arrived at their regions by an 
insightful application of the basic alignment procedure, but 
they gave no systematic algorithm. In ref. 15, a similar 
decomposition of parametric space is given. No one has 
taken up the problem of creating an algorithm to automati- 
cally delineate such regions of constant optimal alignments. 
In this paper, we describe an algorithm to do this. 

We begin by formulating Smith-Waterman algorithms for 
one- and two-dimensional parameter spaces, but our tech- 
nique will succeed for any scoring function linear in the 
algorithm parameters. The score H is a function of the 
parameters, as we hold the sequences fixed. H has special 
properties that are useful to know about. H is piecewise 
linear, and on each linear piece there is a unique set of optimal 
alignments. In this way, the problem can be seen to be finite. 
We approach the problem by intersecting hyperplanes. As a 
conceptual and computational device, we employ infinitesi- 
mals, much in the sense of the Leibniz infinitesimals of 
elementary calculus (16). This gives an efficient algorithm in 
the one-dimensional case. Moving to a two-dimensional 
parameter space requires introduction of another order of 
infinitesimal. The generalization to k-dimensional parameter 
spaces is easy to describe but is computationally expensive. 

One-Dimension Parameter Sets 

First, we present an elementary version of the Smith- 
Waterman alignment algorithm (6). Let a = ala2 . . . a, and 
b = b lb2 .  . . b, be the sequences we compare. The score of 
aligning letters a and b is s(a, b )  = 1 if a = b and s(a, b )  = 
- p  if a # b .  The penalty w(k) for deletion or insertion of k 
letters is given by w(k) = 6k. [This is a special case of w(k) 
= a + pk.] The algorithm proceeds recursively by finding the 
best score H i  ending at ai and bj by the equation 

The algorithm is initialized by H o , ~  = Hi.0 = 0 for 0 5 i 5 
n, 0 I j 5 m. The score of the best segments of a aligned with 
b is of course 

[21 

To further simplify this algorithm, take p = 26 so that the 
alignment score is a function of one parameter, A = 6. We 
emphasize the dependence on the parameter A by writing H 
= H(A). The sequences are held constant and the parameter 
varies in what follows. 

Next, we establish some elementary properties of H(A). 
H ’ ( A )  is nonpositive, increasing, and piecewise constant. 
Clearly, the number of alignments A is finite, and each 
alignment A has r identities, sA mismatches, and f A  single- 

H = H(a, b) = max Hi,j .  
I J  
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letter indels. Let s = 2sA + tA, the number of misaligned 
letters. Therefore S(A) ,  the score of single alignment A ,  
satisfies 

S(A)  = r - SAP - tAh 
= r - (2SA + tA)h 
= r - SA. 

Therefore, 

H(A) = max{r - SA: alignment A } .  

The very large but finite number of alignments implies that 
H(A) is piecewise linear and continuous. 

Since r - SA is decreasing in A, so is H(A). If i = 1, 2,  . . . 
is the index of the maximizing lines as A increases from 0, ri, 
and si. Suppose at Ai < Ai+l, we have 

ri - siAi > ri+l - s i+~Ai ,  

and 

r; - S ; A ~ + ~  < ri+l - s i + l A i + ~ .  

It is easy to show si > si+ l  and ri > ri+1. We have shown more 
than simply that H'(A) = -si is an increasing function of A. 
As i increases, not only does the number of unmatched bases, 
si, decrease but the number of identities ri also decreases. 

The algorithm we now describe calculates all values of 
H(A) on (0, m). Recall that Eq. 1 allows us to find H(A) for any 
fixed A. A brief sketch of the algorithm is given next. It is easy 
to find H(0) and H(m). The line segment through [m, H(m)l is 
easy to find, because H(m) = length of longest exact match 
between a and b. Since many alignment lines often satisfy 
H(0) = r - 90 ,  it is very useful to choose the one with the 
minimum score s. An algorithm to find the minimum s is given 
below. Thus, we find the leftmost and rightmost segments of 
H(A), 0 I A 5 m. If their intersection (x, y) satisfies H(x)  = 
y ,  we know the entire function H(A). Otherwise H ( x )  > y. 
Computing H ( x )  allows us to find all lines through [x, H(x) l .  
Below, we show how to find the line that dominates, to the 
left, all these lines. It is part of the final solution H(A). We 
continue intersections with our line containing [0, H(0)I until 
we have found the line segment L1 of H that intersects at [XI, 
H(xl)] with that containing [0, H(O)]. Then, we take [XI, H(xl)] 
and L2, the line segment of Hfoundjust before L1, and repeat 
the procedure. 

The algorithm described above depends on our ability to 
find which alignment line through [x, H(x) ]  is optimal to the 
left (or right) of x. To illustrate the problem, Fig. 1 shows the 
multiple lines satisfying H(0) = r for a small example with 
sequences of length 20. To choose the line dominant for A > 
0, we introduce the idea of infinitesimal E.  Here think of E > 
0 as a small number, so small that any finite multiple remains 
smaller than any number that occurs in the algorithms 
described above. Our new numbers will have the form u + V E ,  
where u, vCR. The idea, for example, is that we will run the 
algorithm for A = E and find the line maximizing all those 
through [0, H(O)]. 

Before explicitly describing the infinitesimal version of the 
maximum segments algorithm, it is necessary to define a 
lexicographic linear order on the numbers u + V E  (16). Let x1 
= u1 + V ~ E  and y2 = u2 + V ~ E .  If u1 > u2 then x1 > y2. If u1 
= u2 and V I  > v2, then x1 > y2. Of course, if u1 = u2, and VI 
= v2, then x1 = y2. Thus, the new numbers are linearly 
ordered. Also, addition is easily defined XI + y1 = (u1 + u2) 
+ (VI + v ~ ) E .  Of course, scalar multiplication is defined by cx1 
= ( C U I )  + ( C V 1 ) E .  

For A = u + V E ,  the algorithm of Eqs. 1 and 2 can be used 
to compute H = H(A). It is clear that the algorithm is well 
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FIG. 1. The eight alignment lines through [O, H(0)I = (0, 10) for 
a = gtaaagtcggacaactagct and b = cgcgagtctacgtttggggc. Here A = p 
= 6. The dominant line 10 - l l h  has 48 alignments, 10 - 12A has 1208 
alignments, 10 - 13A has 10,480 alignments, 10 - 14A has 46,076 
alignments, 10 - 15A has 115,916 alignments, 10 - 16h has 169,240 
alignments, 10 - 17h has 133,412alignments, and 10 - 18h has4398  
alignments. 

defined: only addition, subtraction, and maximums are in- 
volved. This algorithm will be referred to as the infinitesimal 
algorithm. Notice that E is never specified and that in this 
sense this is symbolic computation. Since the order on 
infinitesimals is consistent with the order on reals, it is easy 
to show that if H(u + ve) = a + be, then H(u)  = a .  In this 
way, the usual algorithm is a special case of the infinitesimal 
algorithm. 

Fig. 1 shows several alignment lines through [0, H(O)] for 
a one-dimensional problem. Notice that if we move just to the 
right of A = 0, to A = E = 0 + le, we can find the optimal line. 
The idea then is to run the algorithm for H with the penalty 
set slightly larger than 0-that is, at A' = E.  The values of 
H&') = u + V E ,  and at A = 0, Hu = u. Just as it is routine 
to run the new algorithm, H(A') = H(E) = maXisisn,lsjsm, 
H&') is easily calculated. For the length 20 sequences in Fig. 
1, H(E) = 10 - l l ~ .  The infinitesimal algorithm for H and the 
scalar algorithm for H are consistent, as can be seen by H(0) 
= 10. The eight lines in Fig. 1 represent 520,288 distinct 
alignments. It i s  this multiplicity of alignments that motivates 
the development of the infinitesimal algorithm. Otherwise, 
we would just directly calculate all alignments at a given 
parameter point. 

1 

P 

FIG. 2. From P = (p,  6) we obtain P1 = P + V 1 ~ 1 ,  and then P2 
= P1 + V2e2, where V1 and V2 are orthogonal. 
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FIG. 3. The two-dimensional algorithm applied to two random 
DNA sequences of length 400. 

Our use of the infinitesimal algorithms is not limited to the 
purely lexicographic. Below, it will be of interest to calculate 
the rightmost point of an alignment interval. One way is to 
proceed as described above, begin at 00, and intersect toward 
the required point. To bound away from 00, look at a trace- 
back through the infinitesimal matrix that produces an opti- 
mal line. This alignment must remain optimal throughout the 
interval. Take the maximum value of E that will allow all these 
choices to remain the same. This value can be used instead 
of 01, and this is an arithmetic use of infinitesimals. 

Two Dimensions and Beyond 

Next, we face the task of finding all alignment scores for the 
two-dimensional (p ,  A) parameter space. In the one- 
dimensional parameter space, [A, H(A)] is a piecewise linear, 
convex function, while in the two-dimensional parameter 
space H(@,  A) is a piecewise linear, convex surface in 
three-dimensional space. Recall that our alignment scores 
satisfy 

S(A)  = r - sp - t A ,  131 

where r = number of identities, s = number of mismatches, 
and t = number of indels. The functionflp, A) = r - sp - t A  
is referred to as an alignment hyperplane. The simplicity of 
our one-dimensional algorithm does not carry over here 
because of the increase in dimension. It is necessary to 
introduce another order of infinitesimal and to impose a linear 
order on our new numbers. Then, we derive a technique to 
find the unique optimal alignment hyperplane adjacent (to the 
left or right) to any infinitesimal vector from a given point (p, 
A). This algorithm is the basis of our method to find all convex 
polygons in (p, A) space, where the interior has a unique 
optimal alignment hyperplane. 

First, we extend our numbers to include two orders of 
infinitesimals, EI  and ~ 2 .  Let x = UI + V I E I  + W I E Z  and y = 
u2 + v2cl + ~ 2 ~ 2 .  If UI > u2, then x > y. If u1 = u2 and V I  > 
v2 then x > y. If u1 = u2, V I  = v2, and W I  > w2, then x > y. 
Of course if u1 = u2, V I  = v2, and w1 = w2, then x = y. As 
before, no finite multiple of EI  can exceed UI # 0, and no finite 
multiple of can exceed ~ 1 .  Addition and subtraction are 
defined in the obvious way. 
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FIG. 4. The two-dimensional algorithm applied to two immuno- 
globulin protein sequences, LlHUNM or FABVH is a A chain V-I 
region sequence (103 residues) and GlHUNM or FABVL is a heavy 
chain V-I1 region sequence (117 residues). (A) Algorithm applied 
to parameters a and p: w(k) = y + 6k.  The 15 polygons in this 
quadrant are shown. Algorithm applied to 2 0, subtracted from 
each element in the PAM 250 matrix and 6, where w(k)  = 6k. Some 
of the 72 polygons in this quadrant are shown. (C) Algorithm ap- 
plied to p 2 0 (as in B )  and constant gap cost y. where w(k)  = y 
for all k 2 1. Some of the 242 polygons in this quadrant are 
shown. 
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Our basic algorithm finds the unique optimal alignment 
hyperplane in the direction (a, b) from (p, A). While the 
surface is in three-dimensional space, we are in the two- 
dimensional parameter space. We are allowing a point to 
represent the vector from (0,O) to that point. It is possible that 
the (a, 6 )  direction coincides with an intersection of optimal 
alignment hyperplanes. To ensure uniqueness we must move 
a small distance perpendicular to (a, b) that is in direction 
( -b ,  a) or (b, - a ) .  The direction (a, b) is of length &l(a2 + 
b2)1/2, while the directions ( -b ,  a) or (6,  -a) are of length 

(p*,  A*) = (I*., A) + ~ i ( a ,  b) + ~2(-b,  a) ,  [41 

+ b2)l l2 .  Therefore, the parameters are 

or 

(p*,  A*) = (p., A) + ~ i ( a ,  b) + &2(br -a)- 

See Fig. 2 for a graphic representation of the parameters. 
To find the convex polygons of constant alignment hyper- 

plane in (0, m) x (0, m), think of the parameter space as a 
rectangle with four edges and four vertices. Begin at a vertex 
VO, vo = (0, 0), say. From vo, use the basic two-dimensional 
algorithm along the line L in the counterclockwise direction 
(say). Initially, L is the line from (0, 0) to (a, 0). The 
two-dimensional algorithm can find the alignment hyperplane 
fo(p, A) = ro - sop .- fd immediately adjacent to vo in this 
direction. The goal IS to trace out the convex polygon in (p,  
A) associated with this hyperplane, with vertex/edge labels 
(VO, eo, V I ,  el . . . , v, = vo). By a method similar to the 
one-dimensional algorithm, it is easy to find the vertex v1 of 
the first corner point on line L. To find edge e l ,  determine the 
alignment hyperplane f1 adjacent to the line beyond v1 on L. 
The intersection I = fonfi, which is a line, has optimal 
alignment hyperplane f2 immediately adjacent and counter- 
clockwise. Iffi =fo then 1 is the equation of the line containing 
the edge e l .  Otherwise, intersect fo and f2, repeating the 
process until the intersection contains e l .  The process is 
repeated along e2 and continued until v, = VO. 

Having traced out the vertices and edges of one of the 
convex polygons of constant-alignment hyperplane, it can be 
removed from (0, m)2. The procedure is repeated at a vertex 
on the boundary of the remaining figure until all convex 
polygons have been characterized. 

How expensive is the method we have described? On the 
average, assume we do q iterations to locate a vertex on a line 
and ( iterations to find the line adjacent to the vertex. We do 
not have theoretical estimates of q and 5, but they do not 
appear to grow with n = sequence length. If llPill= q#{edges} 
+ (#{vertices} for a polygon Pi, then the complexity of our 
method is O(nmHIIPill). Clearly, we have not implemented the 
most efficient method, and we hope that a method can be 
established to run in time O(nm#polygons). 

To extend our methods to higher-dimensional parameter 
spaces is of course possible. For k-dimensional parameter 
spaces, we need E = ( ~ 1 ,  ~ 2 ,  . . . , Ek), where &k < & k - l <  . . . 
< ~ 1 .  It is routine to describe the relevant vectors that 
generalize (4). 

Practical Implementation 

We have coded the one- and two-dimensional algorithms. 
Actually, we can use any two of three parameters: one 
mismatch and two indel parameters. We illustrate the two- 
dimensional algorithm by two random DNA sequences of 
length 400 with a uniform distribution on {A, C, G, T}. The 

results are shown in Fig. 3, where each planar region indi- 
cates a region of constant optimal hyperplane. As we saw in 
Fig. 1, a large number of alignments can go into a hyperplane, 
but the optimal hyperplane itself is unique. On the lines of 
intersection, of course, two or more hyperplanes are optimal. 

We then applied the algorithm to the alignment of protein 
sequences, defining an appropriate three-dimensional param- 
eter space. Amino acid comparisons were based on the 
Dayhoff matrix PAM250 with a variable offset, D - p = 
(d i j -p  = (dc - p) and the gap penalty w(k) = y + 6k. We 
studied two immunoglobulin sequences-namely , the variable 
domains of the light and heavy chains of the Fab antibody, 
which we chose because Barton and Sternberg previously 
(17) studied the effect of different gap penalties on the 
alignment of these protein domains. Fig. 4 gives three two- 
dimensional views of this parameter system. 

The protein comparison problem indicates a need for future 
research. Our methods handle two-dimensional systems, and 
with some patience a three-dimensional system can be stud- 
ied with the current software. It might become practical to 
automate three-dimensional problems. However, the Day- 
hoff matrix has 210 parameters. This is far beyond the 
practical limits of our methods, and entirely new ideas must 
be devised for such problems. The current software allows us 
to systematically study the relationships between penalty 
parameters and the biological significance of the resulting 
optimal alignments for the first time. 

Note Added in Proof. Since completing the above work, it has come 
to our attention that Gusfield et al. (18) have also considered 
parametric sequence comparison. 
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