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Parametric simulation 
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The energy transmission through micropolar fluid have a broad range implementation in the field 
of electronics, textiles, spacecraft, power generation and nuclear power plants. Thermal radiation’s 
influence on an incompressible thermo-convective flow of micropolar fluid across a permeable 
extensible sheet with energy and mass transition is reported in the present study. The governing 
equations consist of Navier–Stokes equation, micro rotation, temperature and concentration 
equations have been modeled in the form of the system of Partial Differential Equations. The 
system of basic equations is reduced into a nonlinear system of coupled ODE’s by using a similarity 
framework. The numerical solution of the problem has been obtained via PCM (Parametric 
Continuation Method). The findings are compared to a MATLAB built-in package called bvp4c to 
ensure that the scheme is valid. It has been perceived that both the results are in best agreement with 
each other. The effects of associated parameters on the dimensionless velocity, micro-rotation, energy 
and mass profiles are discussed and depicted graphically. It has been detected that the permeability 
parameter gives rise in micro-rotation profile.

Abbreviations
x, y  Velocity component
U0 = bx  Stretching velocity
�  Coupling parameter
Nr  Inertia coefficient
M  Permeability parameter
Sc  Schmidt number
R  Thermal radiation
Pr  Prandtl number
Sr  Soret number
G  Microrotation parameter
Du  Dufour number
Cf  Skin friction
Nux  Nusselt number
Shx  Sherwood number
Re  Reynold number
PCM  Parametric continuation method
BVP  Boundary value problem
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PDE  Partial differential equation
ODE  Ordinary differential equation
f (η), g(η)  Dimensionless velocity
φ(η)  Dimensionless concentration
θ(η)  Dimensionless temperature
bvp4c  Matlab built-in package

The transfer of heat along thin film flow of micropolar fluid has a great impact on research in the field of electron-
ics and especially the exchange of heat inside the circuits of electronic devices, due to uncountable applications 
described  in1. To maximize and improve the allowance of heat transfer of patterns flow, extension in the surface 
flow has been highly effective. Heat transmission is extremely important in industries such as vehicles, textiles, 
and machines, as well as in the design of all industrial equipment, such as jets, army emanations, spacecraft, 
turbines of various power generation, and nuclear power  plants2. To examine the impacts of radiations on the 
boundary layer of fluids is not an easy job to deal. The phenomenon of heat transfer was explained by  Cengel3, 
in the encyclopedia of energy engineering and technology. Khoshvaght et al.4 explored the dynamics of flow 
and heat exchange on Sinusoidal-Corrugated tubes computationally. The Micro polar fluid was first introduced 
by  Eringe5, who explains the micro-rotation effects on the micro-structures because the theory presented by 
Navier and stokes does not explains, precisely the properties associated with polymeric fluids, colloidal fluids, 
suspension and solutions, liquids containing crystals and fluids with additives.  Stokes6 presented a theoretical 
approach to fluid flow with micro characteristics. Researchers are studying the effects of radiations on bound-
ary layer of fluids over plates, The thermal radiations effect on micropolar conducting fluid across a uniform 
expanding surface is reported by Abo-Eldahab et al.7. Micropolar fluids with heat transition across a permeable 
medium under the consequences of radiations are discussed by Abo-Eldahab8. Ramesh et al.9 used chemical 
processes and activation energy effects to transmit the flow, heat, and mass transfer characteristics of a hybrid 
nanofluid across parallel surfaces. The consequences of viscous resistance on the boundary of the flow, with 
inertia force and heat transfer in a constant porosity was addressed by Reddy et al.10. Jyothi et al.11 and Kumar 
et al.12 examined the free convective flow of Maxwell nanofluid across a stretched sheet. The skin friction factor 
for the Maxwell component is larger than for the Newtonian fluid, and the local Nusselt number is lower for linear 
radiation and higher for non-linear radiation. Soundalgekar et al.13 explains the stream and exchange of warm 
over a ceaselessly moving plate. Gorla et al.14 investigated the steady heat propagation in micro polar fluid using 
similarity techniques. The convection micropolar fluid flow and heat propagation characteristics over a vertical 
surface are studied by Rees et al.15. Gireesha &  Ramesh16 used the Runge–Kutta–Fehlberg order approach to 
analyse the heat of a generalised Burgers nanofluid over a stretched sheet. Ramesh et al.17 investigated the dusty 
fluid’s 2D boundary layer flow across a stretched sheet. The rate of heat transmission is calculated and presented 
for a variety of parameter values.

Electromagnetic radiation known as thermal radiation is in the wavelength range of 0.1 to 100 um produced 
by all matter at a non-zero temperature. It covers a portion of the ultraviolet spectrum as well as all infrared and 
visible light. At elevated heat (over 1000 K) and following material implosion, when some objects are in clear 
view of heated debris situated below, radiation heat transmission across parallel sheets becomes significant. 
Because there aren’t any suitable radiative heat exchange models, the energy transition across the plates will be 
 inaccurate18. Mahanthesh and  Mackolil19 investigate the heat propagation of a nanofluid over a plate surface by 
using quadratic thermal radiation. According to the findings, the density variation with energy differences has 
huge importance in thermal processes such as solar collectors. Kumar et al.20. utilised a computational model 
that included thermal radiation, magnetic field and viscous dissipation to simulate the heat transmission and 
nanofluid flow along vertical infinite plate. It was realized that improving the value of the radiation constant 
enriches the energy and velocity profiles. Khader and  Sharma21 examined the effects of non-uniform heat source 
and thermal radiation on MHD micropolar fluid flow over a shirking sheet. It has been discovered that the incre-
ment in thermal radiation coefficient and micro-polar constant enhances the fluid velocity.

Complex boundary value equations that cannot be resolved are common in the engineering industries. For 
many systems that are routinely addressed by other computational models, convergence is susceptible to the 
relaxation constants and starting strategy. The PCM’s objective is to investigate the method’s universal applicabil-
ity as a sustainable solution to nonlinear  issues22. The 3D irregular fluid and heat dispersion over the surface of a 
rough stretchy spinning disc was highlighted by Shuaib et al.23. In addition to the influence of external magnetic 
field, the fluid has been investigated. Shuaib et al.24 found the property of an ionic transitional boundary layer 
flow across a revolving disc. Wang et al.25 Khan reported a parametric continuation algorithm-based stability 
assessment of nonlinear systems for engineering disciplines. They also investigated the bifurcation that occurs 
while solving nonlinear IVPs with distinct features and developed an algorithm for determining the bifurcation 
points in real time.

In our study, we explored the heat exchange in a micropolar fluid with the impacts of radiation across a per-
meable medium. The problem has been arranged in the form of PDEs (Navier Stokes, energy and concentration 
equation). The PDEs system has been diminished into the system of ODEs using similarity framework. Which 
are numerically solved via PCM technique. For this purpose, the modeled equations are tackled numerically by 
using two different numerical techniques, predictor corrector method and bvp4c method. The obtained conclu-
sions are compared and discussed with the help of graphs, which shows reasonable settlement with each other.
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Mathematical formulation
Considered the micropolar fluid flow across a stretched plate with velocity U0 = bx, . The uniform stretching 
rate is specified by b > 0, along the x-direction. Let d, be the thickness of the surface. The medium is assumed to 
be permeable over an infinite horizontal sheet in the region y > 0 as illustrated in Fig. 1. The thermal radiations 
effect has been considered along an x-coordinate. Under the above-mentioned presumptions, the flow problem 
in the of PDEs can be stated  as26,27,29:

Boundary conditions for the two-dimensional flow is given  as26,27:

Here, the thermal radiation term is defined as:

While, ignoring the higher order terms in Taylor’s series, we consider only τ4 about τ1 , which can be expressed 
as:

by using Eqs. (7) and (8), Eq. (4) becomes,

(1)
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}
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(8)τ 4 ≃ 4τ 31 τ
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− 3τ 41 .

Figure 1.  The fluid flow over a stretching surface.
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The corresponding similarity transformations  are26:

The temperature and concentration for the thin film flow are

In the consequences of Eq. (10) and Eq. (11) in Eqs. (1)–(6), we get:

The system of ODEs transforms boundary conditions are:

where, � = kc
/

v is the coupling parameter, Nr = 2ϕCru0
/

a is the inertia coefficient parameter, M = ka
/

2ϕv 
is the permeability parameter, Gr = G1a

/

v denotes micro rotation parameter, R = 4σ ∗τ 31
/

K∗ denotes 
radiations parameter, Pr = ρvcp

/

k denotes Prandtl number, Sc = v
/

Dm denotes Schmidt number, 
Sr = DmKT (Tw − T0)

/

vTm(Cw − C0) denotes Soret number and Du = DmKT (Cw − C0)
/

vTm(Tw − T0) denotes 
Dufour number.

The drag force, Nusselt and Sherwood number, which have several physical and engineering interpretations, 
are determined as:

where τ sw , qw and qm are the shear stress, heat and mass fluctuation at the surface, which can be rebound as:

With µ being the dynamic viscosity, then from (17) and (18) into (17), we get

Here Re = u0x
v  is Reynold number.

Solution procedures
In this section, the basic methodology and step wise solution of PCM technique have been expressed.

Step 1
We presented the following variables to reduced system of BVP to first order:

Making use of Eq. (20) in Eqs. (12–15) and (16), we obtained:
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.
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(16)
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(20)ζ1 = f , ζ2 = f ′, ζ3 = f ′′, ζ4 = g , ζ5 = g ′, ζ6 = θ , ζ7 = θ ′, ζ8 = φ, ζ9 = φ′.

(21)ζ ′3�ζ5 + ζ1ζ3 +
1

M
(1− ζ4)+ N(1− ζ 22 ) = 0,

(22)Grζ ′52(2ζ4 + ζ3) = 0,
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The conditions for first order system of differential equations are:

Step 2 Introducing the parameter p in Eqs. (21–24):

Step 3 Differentiating Eqs. (21–25) by parameter ’p’

where, A and R is the coefficient matrix and the remainder.

where i = 1, 2, ………11.
Step 4 Apply superposition principle for each term

Solve the following two Cauchy problems for each term

introducing Eq. (32) in Eq. (30), we obtained

Step 5 Solving the Cauchy problems
In order to solve the Cauchy issues, a numerical implicit approach is employed, as shown below from Eqs. (33) 

and (34)

from where we obtain the iterative form of the solution

Results and discussion
The thin film flow of micro-polar fluid in permeable media is investigated, as well as the combined influence 
of temperature and concentration fields across expands in plate. Distinct physical constraints upshot on veloc-
ity, energy and concentration profiles have been highlighted. The physical flow behavior is manifested through 
Fig. 1. Figure 2a evaluates the dependence of the coupling parameter � on the velocity f (η) . As can be seen, 
� is inversely linked to the kinematic viscosity of the fluid; as � grows, the thickness drops, and the velocity of 
the liquid rises.

Figure 2b depicts the effect of permeability Mr on the f (η) . Given that higher values for M resulting in a 
highly porous media, the fluid flow would obviously decelerate, leading to a drop in velocity. Figure 2c depicts 

(23)(3R + 4)ζ ′7 − 3R Pr(Duζ ′9 + ζ7ζ1) = 0,

(24)ζ ′9 + Srζ ′7 − Scζ9ζ1 = 0.

(25)
ζ1(0) = ζ2(0) = ζ4(0) = ζ6(0) = ζ8(0) = 1, at y = 0,

ζ3(1) = ζ1(1) = ζ5(1) = ζ7(1) = ζ9(1) = 0, at y = 1.

}

(26)ζ ′3�ζ5 + ζ1(ζ3 − 1)p+
1

M
(1− ζ4)+ N(1− ζ 22 ) = 0,

(27)Grζ ′52(2ζ4 − ζ5 + (ζ5 − 1)p+ ζ3) = 0,

(28)(3R + 4)ζ ′7 − 3R Pr(Duζ ′9 + (ζ7 − 1)pζ1) = 0,

(29)ζ ′9 + Srζ ′7 − Scζ1(ζ9 − 1)p = 0.

(30)V ′
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(31)
dζi

dτ
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the effect of the inertia coefficient Nr. It can be shown that boosting Nr credit increases fluid velocity. Figure 2d 
shows a comparative analysis of the PCM and bvp4c methods vs the velocity field f (η).The micro-rotation 
circular velocity distribution g(η) vs different physical constants is represented in Fig. 3a–d. The kinetic energy 
improves as the value of Gr (micro-rotation factor) rises. Physically, when the rotation parameter is elevated, the 
fluid’s kinematic viscosity drops, and fluid velocity rises. The consequence of the inertia component Nr on the 
radial velocity profile g(η) is seen in Fig. 3b. The fluid velocity g(η) declines as Nr increases. Figure 3c depicts 
the impact of the permeability element on the non-dimensional micro-rotation angular velocity. Because the 
permeability factor and the fluid’s viscosity are inversely related, as the permeability parameter increases, the 
viscosity lowers, and the radial velocity improves. Figure 3d illustrates the comparison of both strategies vs g(η).

The temperature profile θ(η) of the fluid reduces with larger values of the radiation factor R, as illustrated in 
Fig. 4a, The rising effect of radiations reduces the fluid energy profile θ(η) . Physically, a fluid with a high Prandtl 
number has a lower thermal diffusivity. The increase in Pr results in a reduction in θ(η) as displayed in Fig. 4b. 
Figure 4c shows that increasing the Schmidt number Sc lowers the thermal energy θ(η) , because Schmidt number 
effect reduces the boundary layer thickness. The fluid temperature reduces with the action of Soret number Sr, 
as revealed through Fig. 4d. As a result, an enhancement in the Sr corresponds to rises in θ(η) . Figure 4e shows 
the correlation between the Dufour number Du and energy profile. The fluid temperature enhances with the 
positive increment Dufour number Du. As demonstrated in Fig. 4f, both solutions for the temperature profile 
θ(η) have the best correlation.

Figure 5a explains the response of Sr on the concentration allocation φ(η) . Because Soret number is directly 
related to viscosity. The upshot of Schmidt number Sc on concentration contour φ(η) is shown in Fig. 5b, which 
indicates that variation in Sc improves the concentration distribution. Figure 5c shows that when the Dufour 
number Du increases, the non-dimensional concentration profile of the liquid grows. As shown in Fig. 5d, the 

Figure 2.  (a–d) The impact of � , Mr and Nr on non-dimensional velocity field f ′(η) . (d) Comparison of 
solution obtained by PCM and bvp4c method.
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numerical approximation for the concentration gradient φ(η) has the best agreement. Tables 1, 2, 3 provide 
the numerical results for skin friction, energy transmission, and Sherwood number, as well as a comparison to 
existing work. Tables 4 and 5 displays the computational estimates for axial velocity, energy, and mass transition 
profiles for the variation of embedded parameter values.

Conclusion
The mass and heat propagation through steady flow of micropolar fluid across a stretched permeable sheet have 
been analyzed. The modeled equations are numerically computed via PCM technique. The findings are verified 
with a Matlab source code called bvp4c to ensure that the outputs are accurate. Physical constraints have been 
explored in relation to velocity, temperature and concentration profiles. The following conclusion may be formed 
based on the findings of the aforementioned study:

• The PCM and bvp4c approaches are thought to be particularly efficient and reliable
• in determining numerical solutions for a wide range of nonlinear systems of partial differential equations.
• The permeability parameter M controls the mobility of the fluid particles, which result in lowering its velocity.
• The thermal radiation and Prandtl number show positive effect on the fluid temperature.
• With increasing credit of Schmidt number Sc, the thermal energy profile improves but the mass transmission 

rate reduces.
• The coefficient of skin friction rises when the radiation parameter and permeability parameter are elevated.

Figure 3.  (a–d) Micro rotation profile g(η) under the effects of Gr, Nr and Mr. (d) Comparison of solution 
obtained by PCM and bvp4c method.
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Figure 4.  (a–f) Variation of dimensionless temperature profile θ(η) with parameters Rd, Pr, Sc, Sr and Du 
respectively. (f) Comparison of solution obtained by PCM and bvp4c method.
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Figure 5.  (a–d) The effects of parameters Sc, Sr and Du on dimensional less concentration profile φ(η) 
respectively. (d) Comparison of solution obtained by PCM and bvp4c method.

Table 1.  Numerical outcomes for skin friction.

� Mr Nr
(

Cf

)

28 � Mr Nr
(

Cf

)

0.2 0.7 0.2 1.37594 0.2 0.7 0.2 1.37589

0.3 0.7 0.2 1.37571 0.3 0.7 0.2 1.37568

0.4 0.7 0.2 1.37547 0.4 0.7 0.2 1.37551

0.2 0.7 0.2 1.37594 0.2 0.7 0.2 1.37587

0.2 0.8 0.2 1.25938 0.2 0.8 0.2 1.25921

0.2 0.9 0.2 1.16533 0.2 0.9 0.2 1.16511

0.2 0.7 0.2 1.37594 0.2 0.7 0.2 1.37575

0.2 0.7 0.3 1.46338 0.2 0.7 0.3 1.46366

0.2 0.7 0.4 1.55067 0.2 0.7 0.4 1.55053

Table 2.  Numerical outcomes for Nusselt number.

R Pr Nux
28 R Pr Nux

0.3 0.7 0.245742 0.3 0.7 0.245756

0.3 0.7 0.241842 0.3 0.7 0.241852

0.3 0.7 0.234106 0.3 0.7 0.234108

0.3 0.7 0.245742 0.3 0.7 0.245746

0.3 0.7 0.324886 0.3 0.7 0.324890

0.3 0.7 0.402525 0.3 0.7 0.402528



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2542  | https://doi.org/10.1038/s41598-022-06458-3

www.nature.com/scientificreports/

Received: 28 September 2021; Accepted: 18 January 2022

References
 1. Abidi, A. & Borjini, M. N. Effects of microstructure on three-dimensional double-diffusive natural convection flow of micropolar 

fluid. Heat Transfer Eng. 41, 361–376 (2020).
 2. Siddiqa, S. et al. Effect of thermal radiation on conjugate natural convection flow of a micropolar fluid along a vertical surface. 

Comput. Math. Appl. 83, 74–83 (2021).
 3. Anwar, S. Encyclopedia of Energy Engineering and Technology; CRC Press: 2015.
 4. Khoshvaght-Aliabadi, M., Sahamiyan, M., Hesampour, M. & Sartipzadeh, O. Experimental study on cooling performance of 

sinusoidal–wavy minichannel heat sink. Appl. Therm. Eng. 92, 50–61 (2016).
 5. Eringen, A. C. Theory of thermomicrofluids. J. Math. Anal. Appl. 38, 480–496 (1972).
 6. Stokes, V. K. Micropolar Fluids 150–178 (Springer, 1984).
 7. Abo-Eldahab, E. M. Radiation effect on heat transfer in an electrically conducting fluid at a stretching surface with a uniform free 

stream. J. Phys. D Appl. Phys. 33, 3180 (2000).

Table 3.  Numerical outcomes for Sherwood number.

� Sc Shx
28 � Sc Shx

0.3 0.3 0.265463 0.3 0.3 0.265471

0.4 0.3 0.264059 0.4 0.3 0.264066

0.5 0.3 0.262655 0.5 0.3 0.262663

0.3 0.3 0.265463 0.3 0.3 0.265471

0.3 0.4 0.266868 0.3 0.4 0.266878

0.3 0.5 0.268272 0.3 0.5 0.268280

Table 4.  Comparative analysis between bvp4c and PCM techniques for velocity.

η PCM f ′(η) bvp4c f ′(η) Absolute error

0.0 5.09× 10
−21 0.000000 5.09× 10

−21

0.1 0.059923 0.121043 4.2× 10
−7

0.2 0.159901 0.211168 1.7× 10
−6

0.3 0.259954 0.311364 3.7× 10
−6

0.4 0.359994 0.411624 6.03× 10
−6

0.5 0.459987 0.511937 9.2× 10
−6

0.6 0.559998 0.612295 1.4× 10
−5

0.7 0.659935 0.713689 1.7× 10
−5

0.8 0.759957 0.813110 2.3× 10
−5

0.9 0.859902 0.913549 2.7× 10
−5

10.0 0.959946 1.023997 2.8× 10
−5

Table 5.  Comparison between PCM and bvp4c techniques for concentration.

η PCM φ(η) bvp4c φ(η) Absolute error

0.0 1.000000091 1.000000 9.1× 10
−4

0.1 0.8879855 0.903110 4.2× 10
−4

0.2 0.709875 0.717920 7.04× 10
−4

0.3 0.633047 0.641694 7.6× 10
−4

0.4 0.568142 0.575623 6.4× 10
−4

0.5 0.514767 0.519828 4.1× 10
−4

0.6 0.472423 0.474360 1.9× 10
−4

0.7 0.440544 0.439201 1.3× 10
−4

0.8 0.418529 0.414291 3.2× 10
−4

0.9 0.405765 0.489496 5.2× 10
−4

10.0 0.401644 0.483614 6.03× 10
−4



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2542  | https://doi.org/10.1038/s41598-022-06458-3

www.nature.com/scientificreports/

 8. Abo-Eldahab, E. M. & Ghonaim, A. F. Radiation effect on heat transfer of a micropolar fluid through a porous medium. Appl. 
Math. Comput. 169, 500–510 (2005).

 9. Ramesh, G. K., Madhukesh, J. K., Prasannakumara, B. C., & Roopa, G. S. (2021). Significance of aluminium alloys particle flow 
through a parallel plates with activation energy and chemical reaction. J. Therm. Anal. Calorim., 1–11.

 10. Reddy, K. R. & Raju, G. Thermal effects in Stokes’ second problem for unsteady micropolar fluid flow through a porous medium. 
Int. J. Dyn. Fluids 7, 89–100 (2011).

 11. Jyothi, A. M., Varun Kumar, R. S., Madhukesh, J. K., Prasannakumara, B. C. & Ramesh, G. K. Squeezing flow of Casson hybrid 
nanofluid between parallel plates with a heat source or sink and thermophoretic particle deposition. Heat Transf. 50(7), 7139–7156 
(2021).

 12. Kumar, K. G., Gireesha, B. J., Ramesh, G. K. & Rudraswamy, N. G. Double-diffusive free convective flow of Maxwell nanofluid 
past a stretching sheet with nonlinear thermal radiation. J. Nanofluids 7(3), 499–508 (2018).

 13. Soundalgekar, V. & Takhar, H. Flow of micropolar fluid past a continuously moving plate. Int. J. Eng. Sci. 21, 961–965 (1983).
 14. Gorla, R. S. R. Mixed convection in a micropolar fluid from a vertical surface with uniform heat flux. Int. J. Eng. Sci. 30, 349–358 

(1992).
 15. Rees, D. A. S. & Pop, I. Free convection boundary-layer flow of a micropolar fluid from a vertical flat plate. IMA J. Appl. Math. 61, 

179–197 (1998).
 16. Gireesha, B. J., & Ramesh, G. K. (2018). Thermal analysis of generalized Burgers nanofluid over a stretching sheet with nonlinear 

radiation and non-uniform heat source/sink. Arch. Thermodyn.
 17. Ramesh, G. K. & Gireesha, B. J. Flow over a stretching sheet in a dusty fluid with radiation effect. J. Heat Transf. 135(10), 1 (2013).
 18. Ganji, D. D., Sabzehmeidani, Y. & Sedighiamiri, A. Nonlinear systems in heat transfer (Elsevier, 2018).
 19. Mahanthesh, B. & Mackolil, J. Flow of nanoliquid past a vertical plate with novel quadratic thermal radiation and quadratic 

Boussinesq approximation: Sensitivity analysis. Int. Commun. Heat Mass Transf. 120, 105040 (2021).
 20. Kumar, M. A., Reddy, Y. D., Rao, V. S. & Goud, B. S. Thermal radiation impact on MHD heat transfer natural convective nano fluid 

flow over an impulsively started vertical plate. Case Stud. Therm. Eng. 24, 1026 (2021).
 21. Khader, M. M. & Sharma, R. P. Evaluating the unsteady MHD micropolar fluid flow past stretching/shirking sheet with heat source 

and thermal radiation: Implementing fourth order predictor–corrector FDM. Math. Comput. Simul. 181, 333–350 (2021).
 22. Patil, A. A Modification and Application of Parametric Continuation Method to Variety of Nonlinear Boundary Value Problems 

in Applied Mechanics. 2016.
 23. Shuaib, M., Shah, R. A. & Bilal, M. Variable thickness flow over a rotating disk under the influence of variable magnetic field: An 

application to parametric continuation method. Adv. Mech. Eng. 12, 1687814020936385 (2020).
 24. Shuaib, M., Shah, R. A., Durrani, I. & Bilal, M. Electrokinetic viscous rotating disk flow of Poisson-Nernst-Planck equation for 

ion transport. J. Mol. Liq. 313, 11341 (2020).
 25. Dombovari, Z. et al. Experimental observations on unsafe zones in milling processes. Phil. Trans. R. Soc. A 377, 20180125 (2019).
 26. Ali, V. et al. Thin film flow of micropolar fluid in a permeable medium. Coatings 9(2), 98 (2019).
 27. Rashidi, M. M. & Abbasbandy, S. Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium 

with radiation. Commun. Nonlinear Sci. Numer. Simul. 16(4), 1874–1889 (2011).
 28. Khan, W. et al. Thin film Williamson nanofluid flow with varying viscosity and thermal conductivity on a time-dependent stretch-

ing sheet. Appl. Sci. 6(11), 334 (2016).
 29. Khan, M. I., Waqas, M., Hayat, T. & Alsaedi, A. Soret and Dufour effects in stretching flow of Jeffrey fluid subject to Newtonian 

heat and mass conditions. Results in physics 7, 4183–4188 (2017).

Acknowledgements
The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and Com-
putational Science (TaCS-CoE), KMUTT. Moreover, this research was funded by National Science, Research 
and Innovation Fund (NSRF), and Rajamangala University of Technology Thanyaburi (RMUTT) with Contract 
no. FRB65E0633M.2.

Author contributions
M.B., A.S., and T.G. modeled and solved the problem. M.B. and A.S. wrote the manuscript. S.M., T.G., P.K. 
and W.K. contributed in the numerical computations and plotting the graphical results. M.B., S.M. and T.G. 
work in the revision of the manuscript. All the corresponding authors finalized the manuscript after its internal 
evaluation.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.K. or P.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Parametric simulation of micropolar fluid with thermal radiation across a porous stretching surface
	Mathematical formulation
	Solution procedures
	Results and discussion
	Conclusion
	References
	Acknowledgements


