NASA Technical Memorandum 102465

Parametric Studies to Determine the Effect of Compliant Layers on Metal Matrix Composite Systems

J.J. Caruso and C.C. Chamis National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio

and

H.C. Brown Sverdrup Technology, Inc. NASA Lewis Research Center Group Cleveland, Ohio

Prepared for the 35th Symposium and Exhibition sponsored by the Society for the Advancement of Material and Process Engineering Anaheim, California, April 2–5, 1990

(NASA-TM-102465) PARAMETRIC STUDIES TU N90-14294 DETERMINE THE EFFECT OF COMPLIANT LAYERS ON METAL MATRIX COMPOSITE SYSTEMS (NASA) 13 p CSCL 110 Unclus G3/24 0254456

1999 - S. - S. - S.___ ------_____

PARAMETRIC STUDIES TO DETERMINE THE EFFECT OF COMPLIANT LAYERS ON METAL MATRIX COMPOSITE SYSTEMS

J.J. Caruso and C.C. Chamis National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

> H.C. Brown Sverdrup Technology Inc. NASA Lewis Research Center Group Cleveland, Ohio 44135

ABSTRACT

Computational simulation studies are conducted to identify compliant layers to reduce matrix stresses which result from the coefficient of thermal expansion mismatch and the large temperature range over which the current metal matrix composites will be used. The present study includes variations of compliant layers and their properties to determine their influence on unidirectional composite and constituent response. Two simulation methods are used for these studies. The first approach is based on a threedimensional linear finite element analysis of a nine-fiber unidirectional composite system. The second approach is a micromechanics based nonlinear computer code developed to determine the behavior of metal matrix composite system for thermal and mechanical loads. The results show that an effective compliant layer for the SCS 6 (SiC)/Ti-24Al-11Nb (Ti3Al+Nb) and SCS 6 (SiC)/Ti-15V-3Cr-3Sn-3A1 (Ti-15-3) composite systems should have a modulus 15 percent that of the matrix and a compliant layer coefficient of thermal expansion roughly equal to that of the composite system without the CL. The matrix stress in the longitudinal and the transverse tangent (hoop) direction are tensile for the Ti₃Al+Nb and Ti-15-3 composite systems upon cool down from fabrication. The fiber longitudinal stress is compressive from fabrication cool down. Addition of a recommended compliant layer will result in a reduction in the composite modulus.

INTRODUCTION

Metal matrix composite (MMC) are prime candidates for high temperature applications. They present a unique challenge to today's researchers. The

large operating temperature range (greater than 2000 °F) and the mismatch between the thermal expansion coefficients (CTE) of the fiber and the matrix pose great difficulties in fabrication and low thermal cycling resistance. Both of these increase the matrix stress to critical proportions and often lead to failure. Many solutions to this problem have been proposed (e.g., matching CTE for fiber and matrix) with little success. One suggestion is to use a compliant layer (CL) as a buffer between the fiber and the matrix. The goal of this CL is to reduce the matrix stress without degrading the fiber, the matrix, or the composite. Finding a material to do this, however, may prove to be quite a challenge.

In an attempt to find such CLs, a parametric study is a natural first step. It is essential to assemble a working knowledge of which and/or how characteristic parameters of the constituent material effect composite behavior.

Two computational simulation approaches are used in this study to evaluate CLs in MMC systems for high temperature applications under thermal loads. The first is a three-dimensional linear finite element method. The other is a nonlinear micromechanics based numerical method.

In attempt to identify characteristics for suitable compliant layers, compliant layers are evaluated with two common but very different metal matrices. They are (1) Ti-15V-3Cr-3Sn-3A1 (Ti-15-3) and (2) Ti-24A1-11Nb (Ti_3A1+Nb) reinforced with SiC (SCS 6) fibers. The SiC/Ti-15-3 composite system has been processed without matrix cracks (1-3). SiC/Ti_3A1+Nb, however, does develop matrix cracks during processing (5,6), making it a candidate for a CL. There will be some discussion on the Ti-15-3 system; but, the majority of the effort will concentrate on the Ti_3A1+Nb system.

The development of matrix cracks may be related to tensile stresses in specific directions. Large tensile hoop stresses in the matrix can cause the transverse tangent (hoop) cracks observed by MacKay (1) and Ghosn & Lerch (2). Similarly, large tensile longitudinal stresses may cause matrix cracking perpendicular to the fibers. These cracks have not been observed. A compliant layer should reduce the stress in all directions to be an effective method for preventing cracks during the fabrication and the thermal cycling of these systems. If the goal is to eliminate matrix cracking, a compromise may have to be made between stresses to eliminate matrix cracking.

METHODS

The FEM calculates the linear composite response at many locations in the constituents of the composite system that cannot be determined through

experiments (6-8). The general purpose finite element code MSC/NASTRAN (9) is used to perform the analysis. The model uses eight-noded hexahedron and six-noded pentahedron elements to form a nine-cell nine-fiber unidirectional composite system (Fig. 1). The model provides constituent displacements, stresses, and forces due to thermal loading conditions.

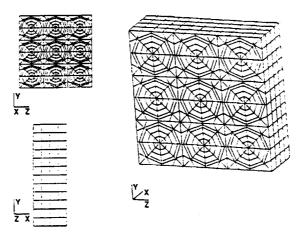


FIGURE 1. - MULTICELL 3-D FINITE ELEMENT MODEL FOR LOCAL DETAILS.

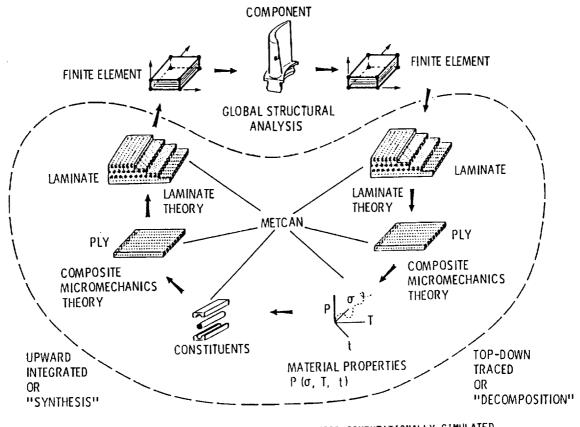
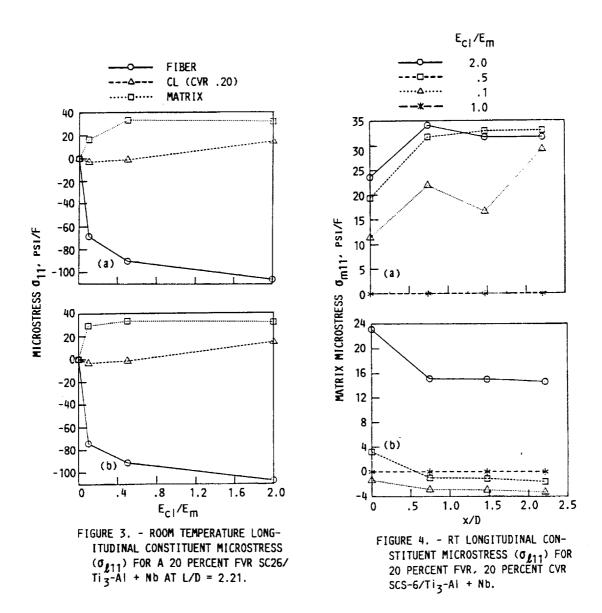


FIGURE 2. - HIGH TEMPERATURE COMPOSITE BEHAVIOR COMPUTATIONALLY SIMULATED.


The second approach, the METCAN computer code (Fig. 2), is used to determine the nonlinear average composite response of unidirectional and laminate composite systems (10). The code's computational simulation begins with the cool down of the consolidation process and includes any thermal and/or mechanical processes which occur after consolidation. The changes in constituent materials resulting from environmental variations are taken into account. In this study a unidirectional MMC system is evaluated to determine the fiber, matrix, and CL stress. These stresses are used to determine whether the composite system will survive fabrication and, if so, the thermal cycles to failure of the system. METCAN also computes composite properties in an attempt to determine the effect of a CL on them.

		SiC Fiber	Ti3Al+Nb Matrix	Ti-15-3 Matrix
E G v a Soxxt	psi psi in./in. °F ksi	62.0x106 23.8x106 0.300 2.70x10-6	11.0x106 4.23x106 0.300 6.50x10-6 65.0	14.5x106 5.50x106 0.320 4.72x10-6 130.0

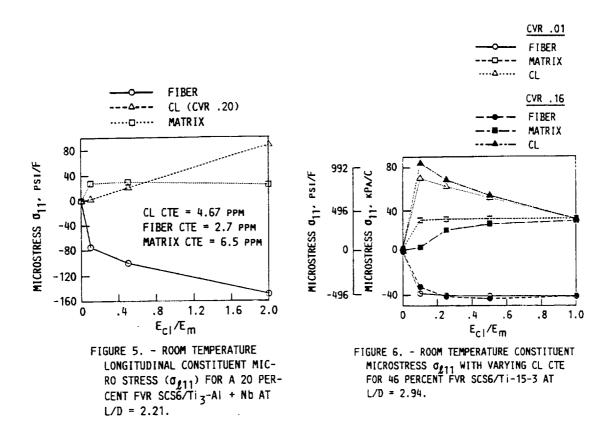
TABLE 1 ROOM TEMPERATURE CONSTITUTIVE MATERIAL PROPERTIES

RESULTS AND DISCUSSION

Finite Element Method The first phase of this study is to find, using the FEM, the longitudinal stresses in the SiC/Ti₃l+Nb (Table 1) for selected CL's. The first selected CL (2) has a CTE of 4.67 ppm/°F and a modulus that varies from 1.1 to 22 Msi. Figures 3(a) and (b) shows that the CL stress is lower than the matrix stress throughout the range of CL modulus. In Fig. 3, the stress is normalized per degree Fahrenheit. (Table 2 summarizes the figures for the readers' benefit). The fiber is in compression for the composite system in a fabrication cool down through the range. The longitudinal stress in the matrix is low on the surface (Figs. 4(a) and (b)) and increases as the X/D ratio increases, where X is the distance from the free surface of the composite and D is the fiber diameter. As X/D increases, the matrix stress does not decrease until the compliant layer modulus has decreased to 40 percent of the matrix modulus. In all cases the matrix stress does not significantly decrease until the CL modulus is 15 percent of the matrix modulus. For the TigAl+Nb system the CL modulus would be 1.7 Msi.

The second specific CL has a higher CTE of 7.5 ppm/°F but the same range for the modulus (1.1 to 22 Msi). Figure 5 shows the longitudinal stress in the constituents of the SiC/Ti₃Al+Nb composite system. At a high CL modulus, the CL stress is much larger than the matrix stress. As the CL modulus decreases, the compliant layer stress decreases. The matrix stress

TABLE 2 TEST MATRIX

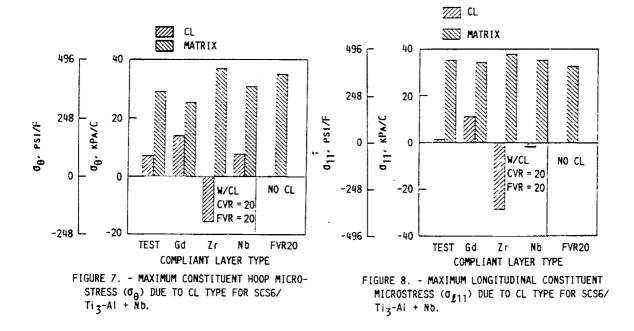

Fig- ure	FVR	Composite system	CVR	Compliant layer	Test
3(a)	0.20	SCS6/Ti ₃ A1	0.20	TigAl w/ var. Ecl	Longitudinal constituent microstress CL CTE = 4.57 ppm, X/D = 1.47
3(b)					Longitudinal constituent microstress CL CTE = 4.67 ppm, X/D = 2.21
4(a)					Longitudinal matrix microstress as X/D increases
4(b)					Longitudinal CL mictrostress as X/D increases
5					Longitudinal constituent microstress CL CTE = 7.55 ppm, X/D = 2.21
6	.46	SCS6/T115	.01 .16	Til5 w/ var. Ecl	Longitudinal constituent microstress var. CL CTE X/D = 2.94
7	-20	SCS6/Ti ₃ A1	0 .20 ↓	Gd Nb Zr Test	Maximum constituent hccp microstress due to CL type
8			Repeat CL from Fig. 7		Maximum longitudinal constituent microstress due to CL type
9			0.20	Gd Nb Zr Test	Change in composite modulus due to CL type
10			.03 0 .05,.1,.2	Carbon Gd	Thermal cycles to failure as CTE mismatch increases

[Stresses are due to thermal loading (excluding Fig. 9).]

remains constant throughout this range of the CL moduli. The longitudinal matrix stress does not vary with the two CL CTEs shown in Figs. 3 and 5.

Constituent longitudinal stresses are predicted from the FEM for a composite system that contains several CLs for which the CTE varies inversely with the modulus. For example, when the CL modulus is halved, the CTE is doubled. As the CTE decreases and the modulus increases, the CL stress grows until it is significantly larger than the matrix stress (Fig. 6). The CL, even with a high CTE, does not significantly reduce the matrix stress until the modulus is 15 percent that of the matrix. Unfortunately, the CL stress is very high at this point. Since the CL stress is large the CL strength must also be high. A good rule of thumb for the SiC/Ti-15-3 composite system is to have the CL strength twice the matrix strength. Finding a CL that meets this is obviously not very practical since it may be impossible to find a material with a low modulus and high strength.

Next, the effect of select CL materials on the SiC/Ti_3AI+Nb system is examined. Four of the many CL materials evaluated by Ghosn and Lerch (2) were


chosen for this study (Table 3). Three of the CLs are actual materials, Gd (gadolinium), Nb (niobium), and Zr (zirconium). One is a fictitious material designed to find optimum CL properties (called the test case in the present study). This test case has a CTE of 4.67 ppm/°F and a modulus varying form 1.1 to 2 Msi. The composite systems containing CLs are compared to a reference case of SCS $6/Ti_3A1+Nb$ having no CL, both at a fiber volume ratio (FVR) of 20 percent. In this study the FVR is the fiber volume ratio of the fiber without the CL.

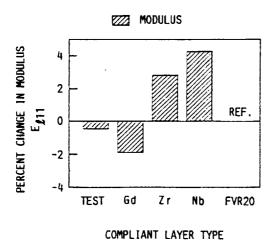
The FEM is used to predict the hoop microstress SiC/Ti_3Al+Nb system. For most CLs the matrix hoop stress is less (about 20 percent) than the matrix stress of the reference case with no CL (Fig. 7). A CL of Zr, however, increased the stress in the matrix slightly; while the CL stress went into compression. The CL stresses are significant for the fabrication cool down and, because of this, the CL strength may need to be close to that of the matrix or larger.

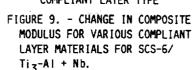
The longitudinal microstresses in the SiC/Ti₃Al+Nb system are determined from the FEM and plotted per degree Farenheit. The results show that the CLs examined increase (about 11 percent) the longitudinal matrix stress from the reference case with no CL (Fig. 8). This increase in longitudinal matrix stress may induce matrix cracking during fabrication and thermal cycling. The increase in matrix stress may also reduce fatigue life, provided the composite system survives fabrication.

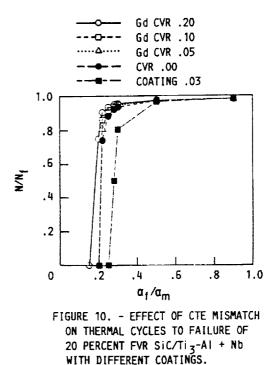
TABLE 3 ROOM TEMPERATURE COMPLIANT LAYER MATERIAL PROPERTIES

		Gd	Zr	Nb
E G ν α	psi psi in./in. °F	8.30x106 3.30x106 0.260 5.60x10-6	13.6x106 5.10x106 0.332 2.90x10-6	14.9x106 5.31x106 0.402 4.40x10-6

The composite modulus may be affected by the use of CLs. The five systems from the FEM study have a very small decrease in the longitudinal modulus. Hence, the composite modulus variation is small (\pm 4 percent) (Fig. 9). The two compliant layers that performed the best in this study (Gd, Test) have a slightly lower modulus than the reference. The change in composite modulus could be significant when using the recommended CL with a modulus 15 percent that of the matrix.


METCAN


The thermal cycling resistance is critical because of the large temperature envelopes in which MMC systems operate. The multifactor interaction relationship (MFI) is used to calculate the thermal cycles to failure. The MFI is shown for the SiC/Ti₃Al+Nb composite system. The exponents are determined from monolithic matrix experimental data. The matrix material is fabricated as a composite system is fabricated.


$$\frac{S}{S_{f}} = \begin{bmatrix} \frac{T_{m} - T_{u}}{T_{m} - T_{o}} \end{bmatrix}^{0.55} \begin{bmatrix} \frac{S_{o} - \sigma_{p}}{S_{o}} \end{bmatrix}^{0.66} \begin{bmatrix} \frac{S_{o} - \sigma_{c}}{S_{o}} \end{bmatrix}^{0.33} \begin{bmatrix} 1 - \frac{N}{N_{f}} \end{bmatrix}^{0.5}.$$

Where S/S_f is the remaining ultimate tensile strength of the composite after thermal cycling over the original ultimate strength of the composite, T_m is the melting temperature (2730 °F), T_u is the maximum temperature of the thermal cycle (1200 °F), T_o is the reference temperature (70 °F), S_o is the room temperature reference ultimate tensile strength of the matrix (65 ksi), σ_p is the longitudinal residual matrix stress at the end of cycling, σ_c is the longitudinal residual matrix stress at the end of consolidation, N is the number of cycles at which there is 10 percent remaining strength, and N_f is the number of cycles to failure. -This equation is evaluated for the number of cycles to failure with a 10 percent remaining strength S/S_f.

METCAN is used to investigate the thermal cycles to failure of FVR 20 SiC/Ti_Al+Nb and variations of this system. In four of the composites the protective carbon coating is removed from the fiber, three fibers have the coating replaced with a CL of Gd of different thicknesses and one without a coating or CL. The fiber without a coating was assumed to have the same strength as one with a coating (i.e., SCS 6). One additional composite system is analyzed with the coating. As the CTE mismatch between the fiber and the matrix grows, the composite system became less tolerant of the cycling (Fig. 10). The worst case is the composite system that contains the fiber with the coating. The CL slightly delayed the failure as the CTE mismatch increased.

CONCLUSION

The compliant layers studied appear to be ineffective in reducing the longitudinal stress in the Ti₃Al+Nb composite system except with very low CL moduli (on the order of 15 percent of the matrix modulus). The reduction in hoop stress may eliminate the cracking in the hoop direction. It does not significantly increase the thermal cycles to failure of the system. The fiber stress is in compression and is currently not considered the weak link in this type of failure.

The best performing compliant layer has a low modulus (around 15 percent of the matrix) and a CTE lower than the matrix but higher than the fiber. High CTE CLs cause high stresses in the CL which require high CL strengths. Low modulus and high strength are not compatible properties for a material to have. The reduction in matrix stresses due to high CTE are not realized until the CL modulus is 15 percent that of the matrix modulus.

The compliant layer generally reduces the modulus of the composite but not by an appreciable amount. If a low modulus compliant layer (15 percent of the matrix) were used, the reduction could be much greater.

REFERENCES

- McKay, R.A., "Effect of Fiber Spacing on Interfacial Damage in a Metal Matrix Composite," submitted to Scripta Metallurgica, 1989.
- Lerch, B.A., Hull, D.R., and Leonhardt, T.A., "As Received Microstructure of a SiC/Ti-15-3 Composite," NASA TM-100938, 1988.
- 3. Lerch, B.A., Personal Communication, NASA Lewis Research Center, Cleveland, OH, 1989.
- 4. Brindley, P.K., Bartolotta, P.A., and Klima, S.J., "Investigation of a SiC/Ti-24A1-11Nb Composite," NASA TM-100956, 1988.
- Brindley, P.K., Bartolotta, P.A., and MacKay, R.A., "Thermal and Mechanical Fatigue of SiC/Ti₃Al+Nb," <u>Hitemp Review 1989</u>, NASA CP-10039, 1989, paper 52.
- 6. Caruso, J.J., "Application of Finite Element Subststructuring to Composite Micromechanics," NASA TM-83729, 1984.
- 7. Caruso, J.J. and Chamis, C.C., "Superelement Methods Applications to Micromechanics of High Temperature Metal Matrix Composites," <u>29th</u> <u>Structures, Structural Dynamics, and Materials Conference</u>, Part 3, AIAA, 1988, pp. 1388-1400.

- Caruso, J.J., Trowbridge, D., and Chamis, C.C., "Finite Element Applications to Explore the Effects of Partial Bonding on Metal Matrix Composite Properties," <u>30th Structures, Structural Dynamics, and</u> <u>Materials Conference</u>, Part 1, AIAA, 1989, pp. 140-154.
- 9. Gockel, M.A., ed., <u>MSC/NASTRAN: Handbook for Superelement Analysis:</u> <u>MSC/NASTRAN Verson 61</u>, The MacNeal-Schwendler Corp., Los Angeles, CA, 1982, p. 1.1-1.
- Hopkins, D.A. and Chistos, C.C., "A Unique Set of Micromechanics Equations for High Temperature Metal Matrix Composites," NASA TM-87154, 1985.

÷

	Poport Docum	optation Page		
National Aeronautics and Space Administration	leport Docum	entation ray	e	
1. Report No. NASA TM-102465	2. Government Acce	ssion No.	3. Recipient's Catal	og No.
4. Title and Subtitle			5. Report Date	
Parametric Studies to Determine the E	Effect of Compliant			
Layers on Metal Matrix Composite Sy		6. Performing Organ	nization Code	
7. Author(s)			8. Performing Organ	ization Benort No
J.J. Caruso, C.C. Chamis, and H.C. 1	Brown		E-5252	
J.J. Caruso, C.C. Channis, and H.C. I	brown			<u></u>
			10. Work Unit No.	
0. Derforming Organization Name and Address			505-63-1B	
9. Performing Organization Name and Address		11. Contract or Grant No.		No.
National Aeronautics and Space Admin Lewis Research Center	nistration			
Cleveland, Ohio 44135–3191				
			13. Type of Report ar	
12. Sponsoring Agency Name and Address			Technical Men	norandum
National Aeronautics and Space Admir Washington, D.C. 20546–0001		14. Sponsoring Agenc	y Code	
15. Supplementary Notes			[
Ohio 44135. 16. Abstract				
Computational simulation studies are confrom the coefficient of thermal expansion matrix composites will be used. The product of the set studies influence on unidirection for these studies. The first approach is unidirectional composite system. The sound to determine the behavior of metal show that an effective compliant layer (SiC)/Ti-15V-3Cr-3Sn-3Al (Ti-15-3) conficient of thermal expansion of the CL. The matrix stress in the longitudina and Ti-15-3 composite systems upon confrom fabrication cool down. Addition of composite modulus.	ion mismatch and the resent study includes onal composite and of based on a three di econd approach is a al matrix composite for the SCS 6 (SiC) omposite systems sho compliant layer rou al and the transverse pool down from fabri	e large temperature s variations of comp constituent response mensional linear fin micromechanics ba system for thermal //Ti-24Al-11Nb (Ti- bould have modulus ighly equal to that of tangent (hoop) direct cation. The fiber lo	range over which pliant layers and the . Two simulation m nite element analysis ased nonlinear comp and mechanical loa A_1^{\dagger} + Nb) and SCS 15 percent that of t of the composite sys- ection are tensile for ongitudinal stress is	the current metal eir properties to nethods are used s of a 9 fiber puter code devel- ds. The results 6 he matrix and a stem without the the Ti ₃ AI + Nb compressive
17. Key Words (Suggested by Author(s))		18. Distribution Staten	ient	
Compliant layer	Unclassified – Unlimited			
Metal matrix composites	Subject Category 24			
Micromechanics	•			
9. Security Classif. (of this report)	20. Security Classif. (or	* .	21. No. of pages	22. Price*
Unclassified	Unclassified Uncla		12	A03

^{*}For sale by the National Technical Information Service, Springfield, Virginia 22161