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Abstract The preliminary design of suspension bridges is

a very important step in the design of a structure, since this

stage is the one that will lead to an efficient and economic

structure. The models that are used nowadays are complex

and sometimes hard to apply, leading to a lack of com-

prehension from the designing team. This work proposes a

new simplified method for the preliminary design of cable

suspension bridges that relate the stiffness of the deck truss

with the stiffness of the cable, in which stresses are cal-

culated. This relation is intended to know how much of the

live load is absorbed by each of these elements and finally

obtaining the pre-design values of each substructure. First

simple parametric tests are executed using the proposed

method and finite element method with geometrical non-

linear analysis, in order to study its accuracy. Finally, a real

case study is analysed using a known Portuguese suspen-

sion bridge, in which the proposed method is applied and

compared with numerical solutions.

Keywords Suspension bridges � Preliminary design �
Deflection theory of the suspension bridge � Stiffness

distribution � Parametric analysis � Uniform and point loads

Introduction and historical remarks

Cable supported bridges are one of the oldest structures in

history, there are few structures that are universally

appealing as these, the origin of the concept of bridging

large spans with cables, exerting their strength in tension, is

lost in antiquity and undoubtedly dates back to a time

before recorded history. These structures arise so primitive

humans that wanted to cross natural obstructions, observed

a spider spinning a web or monkeys traveling along

hanging vines (Brockenbrough and Merritt 1999). Never-

theless, it was in the 18th century that there was a major

development in these structures, the crescent development

of the structures started with the production of iron on a full

scale (Chen and Duan 2014). Since the materials and sys-

tems used in these structures were fragile, the bridges were

considered temporary. Because of that, there were a cres-

cent search in new materials and technology’s that helped

to increase the life-time of these structures. In 1823, Marc

Seguin designed the first permanent cable suspension

bridge, the Saint Antoine bridge in Genebra. He and his

five brothers started the design of several bridges and built

more than a thousand in 20 years (Gimsing and Georgakis

2011). These structures gave the experience and the

knowledge needed to rise bridges with bigger spans and

sizes. The engineers in that time did not rely on scientific

methods but on the empirical knowledge obtained by the

experience. This fact and the insufficient variety of mate-

rials leaded to the decrease of interest in the implementa-

tion of these structures from the nineteenth to twentieth

centuries. Therefore, it is possible to say that the failure in

understanding the behaviour of the stayed systems and the

lack of methods for controlling the equilibrium and com-

patibility of the various highly indeterminate structural

components, appear to have been the major drawback to
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further development of the concept (Drewry 1832). There

was then needed to rise a new generation of engineers that

could get through these obstacles. The Rankine theories

based in linear elastic models, led to new design solutions.

These theories leaded to new methods of design that could

approximate the values obtained by manual means (Gim-

sing and Georgakis 2011). From this time on, the design

was not solely based on the experience but also in the

scientific methods that could lead to better solutions. It was

after the Second World War that the suspension bridges

had their major period in Europe, the need of access of a

large number of cities leaded to the discovery of several

new technologies and methods that led to a better

construction.

The known analytical methods for studying suspension

bridges (Gimsing and Georgakis 2011; Timoshenko and

Young 1965) are extremely heavy to be applied in the

preliminary design phase since they rely on iterative pro-

cedures. Some simple methods based on ‘‘static equilib-

rium’’ theories also exist (Irvine 1981), but these are

extremely conservative which lead to non-economic solu-

tions (Tadaki 2010).

The authors proposed a different method based on a

simple proportional analysis between the girder and the

cable stiffness (Serafim 2014). The main advantaged is its

simplicity, since all relations are based on direct linear

analysis, without any iterative process. This method is later

on compared with a numerical analysis using finite element

models (Belytschko and Fish 2007), using geometrical

non-linear analysis (Crisfield 1991, 1997).

Previous work

The theory of the displacements of a suspension bridge was

first formulated by Melan in 1888 (Melan 1913). This was

the first method to be used because it is extremely efficient

when it’s used in the analysis of a bridge with a flexible

deck girder. There are several ways to study the forces

currently on a structure like this, which have been applied

over the years in the design of suspension bridges.

The first one is the ‘‘static analysis’’ (Gimsing and

Georgakis 2011) of a suspension bridge that neglects the

deflection caused by the geometry of the structure and the

equilibrium equations are linear. Nevertheless, the neglec-

tion of the deflections can lead to inaccurate and non-eco-

nomic results when trying to obtain the stress values. This

method was used to study the structures that had a small

span or that the deflections due to the live loads were rela-

tively small. The second one is the theory that permits the

analysis of deck girders of brides, this theory is called

‘‘theory of displacements’’ (Von-Karman and Biot 1940) of

suspension bridges. This theory is used when the stiffness of

the girder is high and the displacements that were caused by

the live loads are considered small. This theory assumes that

the configuration that the cable assumes is a parabola and it

is possible to obtain the equation that gives the displacement

of the structure in any point.

There are also several graphical methods (abacus) that

can be used to estimate the values of the preliminary design

forces of suspension brides. The first is the preliminary

design by Steinman–Baker (Gimsing and Georgakis 2011)

that is used for bridges with a small span and stiffed girders

(so the displacements are small). This method is simple to

be used for preliminary analysis and it uses a Steinman–

Baker coefficient to extrapolate the percentage of shear

force and moment that is present in the mid span and the

side span.

The coefficient is given by (1):

S ¼
1

Lspan

ffiffiffiffiffiffiffiffiffi

EI

Hdl

;

r

ð1Þ

where EI is the stiffness of the girder and Hdl is the hori-

zontal force of the cable due to the dead load. This coef-

ficient is latter used in the Steinman–Baker charts Fig. 1 to

obtain the percentage of the Shear Force and the Moment

present in the girder.

The second process that is used for the preliminary

analysis of a suspension bridge is the Hardesty–Wessman

process (Brockenbrough and Merritt 1999). This process is

based in the distortion of the structure and gives more

realistic values of the forces. It correlates the deflection in

percentage of the cable sag with the relation of the live

loads and the dead loads to obtain the parameters that are

used in several formulas (Fig. 2).

Proposed method

The preliminary design of cable suspension bridges can be

obtained from a numerous different ways and methods,

from the deflection theory of the suspension bridge (Ti-

moshenko and Young 1965), to the computational models

that can be obtained with the proper software (Wilson

2002). All of these methods can be very exhausting and

sometimes require large amounts of computational time.

These problems lead to the need of a new simplified

method that can unite the precision of the obtained results

with a less amount of time that takes to obtain them.

The forces that this method manages to calculate is the

bending moment (M) at mid span in the deck and the

horizontal cable tension (H) on top of the towers/pylons.

This method is applied for two load situations:

• Uniform load—distributed at the mid span

• Point load—applied at the centre of the mid span.
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The loads that are going to be introduced are the live

loads that can be produced by traffic, which depend on the

country structural codes. The dead load is not applied,

since during the construction phase of the suspension

bridged it is all transferred to the cable (Holger 2013).

Although the method is precise, it relays on some simpli-

fications such as: it is admitted a parabolic cable shape; the

hanger tendons are rigid and continuous; the load that is

transferred to the cross section of the deck girder is uni-

form; the effect of the shorting due to the compression of

the deck is negligible; it does not take into account the

horizontal and vertical flexibility of the towers; for the deck

girder only the bending flexibility is taken into considera-

tion; the cable is already deformed due to the self-weight of

the cable and girder [this last hypothesis is very common in

other simplified methods (Timoshenko and Young 1965;

Von-Karman and Biot 1940), since it happens due to the

construction phase (Parke and Hewson 2000; West and

Robinson 1967)].

This method is applied to the mid span of a cable sus-

pension bridge. The model of the suspension bridge is

going to be the one that is represented in Fig. 3, in this

model, both ends of the cable and the girder are simply

supported (pinned) and the hangers are the only physical

connection that are between both structures.

This method requires that the hangers are rigid and

without any deformation, and two geometric parameters

and two stiffness that are require to be considered; the

length of the mid span (Lspan); the sag of the cable (fw); the

cable area (Ac); and the deck girder inertia (Ig).

The cable area is the total cross section, if the structure

has two or more cables this area is the sum of all cross-

section areas, the girder inertia is considered to be constant

trough all span.

Fig. 1 Steinman–Baker charts. a Mid span, b side span (Gimsing and Georgakis 2011)

Fig. 2 Charts that lead to the displacements of a unstiffened cable due to a partial load. a Maximum displacement at � of span. b Displacement

at mid span (Gimsing and Georgakis 2011)
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Since there is two types load cases that can be used, this

method is divided into two parts. The first is going to study the

uniform live load and the second the point load. Both parts are

going to give the approximate values of the forces that are

going to be studied but each one has a different approach.

Uniform load

To obtain the forces for the uniform load it is required to

understand the deflection theory of suspension bridges (Jen-

nings 1987; Von-Karman and Biot 1940). This theory implies

that the displacements that occur due to the live load, intro-

duce equal displacements, both in the cable and the girder

(Fig. 4), [recalling that the deformation of the structure due to

the dead load is only transferred to the cable during the con-

struction stage (West andRobinson 1967)]. This occurs due to

the fact that the hangers cannot deform. This hypothesis is

valid since it was observed ‘‘in situ’’ (Branco 1994) that these

deformations remained relative small when compared with

the cable and girder deformations.

In this case, as can be seen in the deflection theory of

suspension bridges, the displacement that is introduced in the

cable can be obtained (Timoshenko and Young 1965) using

(2), if the deformation is small compared with the sag fw.

dpc ¼
ð16f 2w þ 3L2spanÞL

2
spanp

128AcEcf 2w
: ð2Þ

This expression is of up most importance to comprehend

the simplified method, in this equation, dpc stands for the

displacements produced by the uniform live load p, that is

applied in the span and Ec is the Young’s module of the

material of the cable.

The uniform load method can also be called the ‘‘ratio

load method’’, since this procedure is based on the fact that

the flexibility at mid span of the cable and the girder are the

same ðdpcable ¼ d
p
girderÞ. With this hypothesis it can be con-

sidered that the structure (as can be seen on Fig. 3), can be

divided into two sub structures, a simply supported girder

and a simply suspension cable Fig. 5.

It is implied that both structures are loaded with a

unique load that combined is equal to the total load

introduced in the structure (3). This total load that is

introduced in the structure, has to be in kN/m so can be

used in a 2D model, to achieve this load, the uniform load

in kN/m2 has to be multiplied by the deck’s width.

ptotal ¼ pcable þ pgirder: ð3Þ

In this case, each structure is going to have a unique stiff-

ness, that combined canbecalled the total stiffness of the cable

suspension bridge. To obtain each sub structure stiffness a

direct approach (Martha 2009) is implemented using a unitary

load, and calculating its respective displacement. In this case

the displacements are equal to the flexibility of the structure,

and when inverting these displacements the stiffness of each

element is obtain. For a simply supported girder the equation

that leads to the flexibility (Ghali and Nevillle 1997) of the

structure is represented next (4):

dpg ¼
5

384
�
pL4span

EgIg
; ð4Þ

where Eg is the Young’s module of the material constituent

of the girder and dpg is the displacement that the uniform

load produces on the structure. Replacing p in (2) and (3)

for a unit uniform load �p ¼ 1:0 it is obtained the Eqs. (5)

and (6) that lead to the flexibility of the structures and

consequently to the stiffness of the sub elements.

Kp
c ¼

1

dpc
; ð5Þ

Kp
g ¼

1

dpg
: ð6Þ

Having both stiffness of the elements, it is important to

obtain the load that each element is going to absorb (Inglis

Fig. 3 Model of the cable

suspension bridge studied in this

work

Fig. 4 Displacements of a suspension bridge due to a uniform live

load applied on the length of the girder (Von-Karman and Biot 1940)
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1963). This is succeeded by using a ratio formula to obtain

the separate loads in the cable (7) and girder (8).

pcable ¼
Kp
c � ptotal

K
p
c þ K

p
g

; ð7Þ

pgirder ¼
Kp
g � ptotal

K
p
c þ K

p
g

: ð8Þ

After obtaining the loads that each element have, it is

necessary to obtain the design forces of the structure. These

forces are the horizontal cable tension and the bending

moment at the centre of the mid span. These forces can be

obtained by using the static equilibrium (Irvine 1981) and

the formulas are given by (9) and (10):

H ¼
pcableL

2
span

8fw
; ð9Þ

M ¼
pgirderL

2
span

8
: ð10Þ

Having both forces, the preliminary design of the cable

and deck girder can be achieved. It is important to point out

that if the cable presents an almost rigid behaviour, the

proposed method converges for the exact solution. Later on

demonstrated in Fig. 11.

Point load

To obtain the bending moment at the span and the cable

tension from a load applied at the centre of the structure it

is necessary to understand the theory of beams on elastic

foundation (Hetenyi 1971). Using this theory the bending

moment can be achieved applying the next formula (11):

Mc ¼
P

4b

sinh bLspan þ sinbLspan

cosh bLspan þ cos bLspan
; ð11Þ

where Mc is the bending moment at the centre of the span,

P is the point load that is applied at the centre of the

structure, Lspan is the total length of the span and b is a

system characteristic coefficient that correlates the stiffness

of the foundation with the stiffness of the beam (Bowles

1995). This parameter can be obtained by using the next

expression (12):

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kfoundation

4EIz

4

s

; ð12Þ

where Kfoundation is the stiffness of the foundation, E is the

Young’s module of the beam and Iz is the beams inertia in

the z axis. To obtain the systems characteristic coefficient

is necessary to assume a Kfoundation so that the bending

moment can be obtained.

Since the hangers of the structure are considered to be

rigid, it can be assumed that the equivalent foundation

stiffness is the stiffness of the cable.

Of course that this is an ill-mannered simplification that

is needed to be used so the b can be achieved. The stiffness

of the cable can be obtained by considering two cases.

• The stiffness of the cable is obtained by a unitary point

load.

• The stiffness of the cable is obtained by a uniform load.

It was concluded that the best results obtained where the

ones where the stiffness of the cable is obtained by a

unitary point load. So, the stiffness of the cable can be

obtained by considering the next model (Fig. 6).

Using the next formula (Ghali and Nevillle 1997) the

stiffness of the cable can be obtained (13):

Kc ¼
2EcAc

L0
cos2 a; ð13Þ

where Kc is the stiffness of the cable in the point where the

load is applied, Ac is the area of the cross section of the

cable and L0 is the distance from point A to B. This stiff-

ness cannot be considered the Kfoundation yet, since this is

the stiffness of the point where the point load is applied.

Then it is used another simplification, where the Kc is

distributed along the size of the beam Lspan. After these

simplifications the bending moment at the mid span can be

obtained.

To obtain the horizontal cable tension it is necessary to

perform and equilibrium at mid span using the moment

obtain from (11), using an equivalent simply supported

beam, and calculating Pbeam ¼ Mc � 4=Lspan. Considering

that Ptotal ¼ Pbeam þ Pcable it can be achieved the value of

the point load applied on the beam and subsequently

obtained the horizontal value of cable tension.

Fig. 5 Sub structures of a cable suspension bridge

Int J Adv Struct Eng (2017) 9:165–176 169

123



Parametric study

The parametric study that is used, considers the value of

the loads present in the Portuguese structural safety code

(RSA 1983) applied in the structure. These loads are con-

sidered the follow: uniform load of q1 ¼ 40 kN/m; and a

point load of q2 ¼ 500 kN. These are the loads that con-

sider a situation where the bridge has heavy traffic.

The parametric study also changes the values of the

length of the span Lspan, the sag of the cable f , the cross

section of the cable ac and finally the beam inertia Iz. The

control values that remain constant through the parametric

analysis, are assumed according to known suspension

bridges (Chen and Duan 2014), which are displayed in

Table 1.

These parametric studies will compare the values

obtained by the simplified method, and the ones obtained

by the software (SAP 2000), in terms axial tension and

bending moment. The static and kinematic boundaries of

the numerical models, are the same as the ones represented

in Fig. 3. Three type of finite elements were used: the 1st

was the enhanced cable element for the cable (Ahmadi-

Kashani 1983; Tibert 1999); the 2nd was the frame element

for the bridge girder; and the 3rd the kinematic rigid ele-

ment for the hangers. It was limited the maximum size of

all finite elements of 1.0 m.

In the parametric analysis, only the relative error of the

axial tension and bending moment are presented in the

vertical axis, with a logarithmic scale, using as target the

output from the finite element model:

ErrorH % ¼
Hproposed � Hnumerical

�

�

�

�

Hnumerical

� 100%; ð14Þ

ErrorM % ¼
Mproposed �Mnumerical

�

�

�

�

Mnumerical

� 100%: ð15Þ

It is important to point out that the proposed method

uses a linearized approach, but the finite element method

used in SAP2000 uses geometrical non-linear analysis. It is

therefore expected some differences which are acceptable,

since the outputs during the pre-design phase are not

always the same as in the design phase (Menn 1990). In

this case the proposed method is used in the pre-design

phase and the SAP2000 in the final design phase.

Span analysis

In this analysis the span Lspan varies from 200 to 3000 m,

and the rest of the variables in Table 1 remain constant

through the entire parametric study.

Uniform load

The results obtained with the proposed method are pre-

sented in the Fig. 7. These results show that the error of the

cable tension, and the bending moment are low, for the

current geometries for example in the cable tensions when

using spans, from 500 to 2000 m. These errors have values

in between 0.24 and 6.17%. Values which are accept-

able for a preliminary design of a bridge. The results

obtained for the bending moment are slightly higher, but

they are acceptable for this design phase, in this case

between 15 and 12%. Below the span of 500 m, the results

tend to get poorest, because the cable is no longer near a

parabolic approximation, therefore, the propose method

starts to diverge from the numerical result. For span larger

than 2000, the combined deformation of the cable and the

girder start to be important, especially when writing the

static equilibrium equations in the deformed shape for both

cable and girder, therefore, it is expected that the proposed

method presents coarse approaches.

Point load

The errors obtained by the point load, method are higher

than the ones obtained by the uniform load as shown in

Fig. 8. Nevertheless, these results are still in good agree-

ment with the ones provided by SAP2000, for both cable

tension and bending moment.

Fig. 6 Deformed shape of the

cable when a point load is

applied at the centre

Table 1 Control values of the

parametric test
Span, Lspan (m) Sag, f (m) Inertia, Iz (m

4) Cross section of the cable, ac (m
2)

1000 200 13.84 0.1963
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In this case the error for the cable tension is below 15%

and for the bending moment below 35%. The difference

between the uniform load, is the error is smaller below

span of 500 m. This is due to the fact that the proposed

method admits a straight cable for the point load, which is

near an exact value when the span of the suspension bridge

is bellow 200 m.

For spans bigger than 1000 m, the error tends to stabi-

lize, this is due to the fact that straight cable approximation

follows the ‘‘secant’’ approach of the real cable deforma-

tion. In this case in terms of force resultant in mid span, the

values are the same, only changing the axial stress direc-

tion, therefore maintaining a constant error trough the

parametric analysis.

Although the errors are larger, in terms of pre-design

phase it still can be concluded using the referrer parametric

study, that the proposed method is adequate.

Sag analysis

In this analysis the sag f varies from 50 to 500 m, and the

rest of the variables that were displayed in Table 1 remain

constant through the entire parametric study.

Uniform load

The results from the sag analysis are displayed in Fig. 9,

these have the same errors reported earlier in span analysis

4.1, derived from a variation on the cable deformed shape

(initially a parabolic one), when using low ratio of f=Lspan.

This is notable especially for sag below the 100 m and a

span of 1000 m, usually not the case in common cable

suspension bridges (Leonhardt 1979).

The cable sag that varies between 100 and 200 m has

low relative errors for the cable tension of 2.73 and 0.43%

and for the bending moment of 5.63 and 8.16%.

From the sag analysis, the results obtained are still

acceptable to be used in a preliminary design when using

current geometries of the structure, this shows that the

method works well with general sag sizes.

Point load

Once again, the point load test shows higher errors, than the

uniform load, nevertheless for general geometries the values

obtained by the method are still good, for the preliminary

analysis, when using cable tension with error below 15%.

But for the bending moment as shown in Fig. 10, the error

can go far as 45%, although it stables for the same reasons as

the ones presented in Fig. 8 in ‘‘Point load’’. In any case for

a value of sag between 100 and 200 m, the value of the error

is below 20% which are most of the cases in cable sus-

pension bridges. Therefore, it is concluded once again, that

for most of the cable suspension bridges geometries the

proposed method is adequate for the pre-design phase.

Cable cross-section analysis

For this analysis the cross section ac of the cable varies

from 0.1 to 0.4 m2, and the rest of the variables that were

displayed in Table 1 remain constant through the entire

parametric study.
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Fig. 7 Span analysis of the
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Uniform load

For both cable tension and bending moment the maximum

error for cross-section area above 0.05 m2 is below 3.5%.

The errors obtained for both cable tension and bending

moment are low and show the effectiveness of the sim-

plified method.

When comparing the increasing of the cable cross sec-

tion (and therefore its stiffness) the values of the error are

consistently decreasing for the cable tension. This is due to

the fact that if the cable increases its stiffness its defor-

mation is smaller, maintaining its original deformed shape,

in which the results of the proposed method (which admits

the deformation of cable is negligible) are almost exact

when compared with the real solution. This is closer to a

rigid cable, in which the proposed method gives de exact

solution (Fig. 11).

Point load

The errors obtained by the point load method are higher

than the ones obtained by the uniform load as displayed in

Fig. 12. Nevertheless, these results are still in good

agreement for both cable tension and bending moment. In

this case the error for the cable tension is below 14% and

for the bending moment below 41%. Also just like in

‘‘Span analysis’’ and ‘‘Sag analysis’’ the error tends to

stabilize exactly for the same reasons explained before.

The difference between the uniform load, is the error is

smaller below span of 500 m. This is due to the fact that

the proposed method admits a straight cable for the point

load, which is near an exact value when the span of the

suspension bridge is bellow 200 m.

For spans bigger than 1000 m the error tends to stabi-

lize, this is due to the fact that straight cable approximation

follows the ‘‘secant’’ approach of the real cable deforma-

tion. In this case in terms of force resultant in mid span, the

values are the same, only changing the axial stress direc-

tion, therefore maintaining a constant error trough the

parametric analysis.

Girder inertia analysis

For this analysis the inertia Iz of the deck girder varies from

0.01 to 28 m4, and the rest of the variables that were dis-

played in Table 1 remain constant through the entire

parametric study.

Uniform load

The uniform load in the girder presents stable error values,

this is due to the stiffness of the girder having a small

contribution in the general structure stiffness. This leads to

the conclusion that the girder stiffness is not very important

in the parametric study of the simplified method since it has

a very low value (Fig. 13).

Point load

Once more the values of the error presented by the point

load are higher, but since the inertia of the girder (bending

stiffness) is generally above 10 m4, it can be stated that the
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Fig. 9 Sag analysis of the

uniform load, cable tension and

bending moment
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error of the cable tension is below 10 and 40% for the

bending moment. The proposed method in this case pro-

vides a good approximation for the cable tension, but a

coarse estimation on the bending moment even in the pre-

design phase (Fig. 14).

Application to real model (Tagus Bridge 25 de

Abril)

The simplified method is then applied to a real structure,

the Tagus Bridge/25 de Abril (aka Salazar Bridge), a sus-

pension bridge that was open to public in 1966 and was

built by the United Steel International (Steinman 1960).

This bridge was intended to have railway traffic, but the

means that permitted such were only introduced later in

1992. When this alteration was made the girder was also

expanded and since then the bridge permits car traffic and

railway traffic simultaneous (Branco 1994; LUSOPONTE

2000) (Fig. 15).

Materials and structural elements

To proceed with the analysis of this structure it was

required to know all the characteristics of the materials and

structural elements. It was necessary to consult the original

design report provided by Steinman (1960), which is pre-

sented in IST library. The materials were considered to be

Steel and with a Young module of 195 GPa and Poisson

coefficient of 0.3. From the initial report it was also pos-

sible to know the general geometry of the structure, pre-

sented in Table 2.

From the structural design project it was possible to see

that each hanger presents a longitudinal spacing of 11 m

from each other. The axial diameter of each of these

hangers is admitted to be 64 mm. The girder is a square

truss, namely from the family of ‘‘Warren Truss with

Verticals’’. The geometry of the sections that constitute the

girder is the follow (Fig. 16).

The width of the girder was also obtained and it was

considered to be 21 m long. Finally, the diameter of the
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Fig. 11 Cable cross-section

analysis of the uniform load,

cable tension and bending

moment
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Fig. 12 Cable cross-section

analysis of the point load, cable

tension and bending moment
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Fig. 13 Girder analysis of the

uniform load, cable tension and

bending moment
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cables was of 0.586 m. The geometric characteristics of the

bridge considered in this work were the follow (Table 3).

Live loads applied

The liveloads considered were again the ones present in the

original design report provided by RSA (1983), in which

two types of live loads are considered (Table 4).

Computer modelling of the structure

The fully 3D computer model of the structure was made in

the software (SAP 2000). It was also made a geometrical

non-linear analysis, but it was considered a material linear

analysis. This last approximation is realistic, since during

the design phase, none of the stresses presented in the

structure are above the yield stress at the time. According

to observed ‘‘in situ’’ and what was reported in (Steinman

1960) the girder is supported in both towers.

Two types of finite elements were used: the 1st was the

enhanced cable element for the cable; the 2nd was the

frame element for the bridge girder and the hangers. The

cross section of the frame elements used in the truss of the
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Fig. 14 Girder analysis of the

point load, cable tension and

bending moment

Fig. 15 Tagus Bridge 25 de Abril, view from the south side of the river

Table 2 General geometry of the structure

Sag (m) Midspan (m) Sidespan (m)

103 1035 460

Fig. 16 Sections of the deck

girder. a Diagonal and vertical

struts of the girder, b horizontal

upper and bottom struts/ties of

the girder cross section
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girder are presented in Fig. 16. It was limited the maximum

size of all finite elements of 1.0 m.

It is important to point out that this model presented an

extra flexibility when compared with the proposed method,

namely the vertical and horizontal deformation of the

towers. These even though small contribute to decrease the

level of axial tension in the cables.

The loads were considered to be applied in the span and

it was obtained the resulting bending moment (using the

tool ‘‘section cut’’ of SAP2000 in the girder) at the midspan

and the cables horizontal tension stress (Fig. 17).

Obtained values

Next the outputs of the cable tension and bending moment

of the proposed method and the finite element model are

presented in Table 5, in which it is possible to observer a

general error below 4.3%, which leads to the conclusion

that even on a 3D model with geometrical non-linear

analysis and tower flexibility, the proposed method pos-

sesses extraordinary results for the pre-design phase. A

small point that it is important to notice is that the proposed

method does not guarantee an upper or lower bond of the

resulting forces.

Conclusions

After the analysis of the proposed method several conclu-

sions can be obtained, using the results and observations

from the parametric tests and real case study.

• The proposed method for uniform live load provides

excellent results for the preliminary design phase with

errors below 10% in terms of stress prediction. The

main errors belong to spans lengths that are not used in

cable suspension bridges, this happens due to the

exchange of the initial cable shape resulted from high

deformation. Therefore, concluding that this method is

precise for general geometries.

• The proposed method for the point load provides a

good technique although with errors around an average

of 20%, almost the double of the uniform load. In any

case it is still a good methodology for the pre-design

phase to estimate general cable shape and girder cross

section. This is also not a problem in cable suspension

bridges since the stress caused by the point load is

generally 1/10 of the stress caused by the uniform load.

• In both methods it was observed that none of them

provide an upper or lower bound for the cable tension

and bending moment. This is important since it is

necessary for the bridge designer to know that the

estimated values do not provide any ‘‘extra’’ structural

safety.

Fig. 17 Computer model of the Tagus bridge made in SAP2000

Table 3 Geometry of the structure

Midspan (m) Sidespan (m) Cable sag (m) Girder span (m)

1035 469 103 21

Hangers

diameter (m)

Cable diameter

(m)

Number of

cables

Girder inertia

(m4)

0.064 0.586 2 34,117

Table 4 Loads to be applied in the proposed model

Uniform load (kN/m) Point load (kN)

84 1050

Table 5 Relative error obtained when compared the proposed

method to the computer analysis

Hproposed method (kN) HSAP2000 (kN) Relative error (%)

107,980.67 105,408.65 2.44

Mproposed method (kNm) MSAP2000 (kNm) Relative error (%)

125,853.41 131,402.3 4.22
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