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ABSTRACT

The basic motivation for employing trajectory models for
speech recognition is that sequences of speech features are
statistically dependent and that the effective and efficient
modeling of the speech process will incorporate this depen-
dency. In our previous work [1] we presented an approach
to modeling the speech process with trajectories. In this
paper we continue our development of parametric trajec-
tory models for speech recognition. We extend our models
to include time-varying covariances and describe our ap-
proach for defining a metric between speech segments based
on trajectory models; it is important in developing mixture
models of trajectories.

1. INTRODUCTION

The motivation for much of the work on trajectory or seg-
mental models is that conventional HMM’s do not effec-
tively exploit the time dependence of speech frames [1,2,3].
The polynomial, parametric trajectory model we employed
in [1] to exploit the time dependency in the speech process
had some shortcomings. In particular, it could not account
for the change in variance of the trajectory as a function
of time. That is, the model required a constant covariance
function over the whole trajectory. The way we dealt with
this limitation in [1] was to propose the mixture model for
parametric trajectories. The mixture model of trajectories
deals with the issue of trajectory variability implicitly by
allowing more choices for the trajectories. Our description
of the trajectory models did not include our methodology
for measuring the distance between speech segments based
on trajectory models, which is important for the develop-
ment of mixture models. In the following we will describe
our approach to measuring distances.

We will also present a new approach to trajectory model-
ing that now allows for a changing covariance structure as
a function of the position along the trajectory. We will de-
scribe the algorithm for training such models and compare
it to mixture modeling on a vowel recognition experiment.

2. BACKGROUND - THE CURRENT
PARAMETRIC TRAJECTORY MODEL

The parametric trajectory model treats each speech unit
being modeled as a curve (or collection of curves) in feature
space, where the features typically are cepstra and their
derivatives. The class of trajectories that we have thus far
considered have been low degree polynomials, though our
formulation does permit other classes of trajectory models.

For the parametric trajectory we model each feature di-
mension of a speech segment as

e(n) = u(n) + e(n)

where c(n) are the observed cepstral features in a segment
of length N, u(n) is the mean feature vector as a function of
frame number and represents the dynamics of the features
in the segment, and e(n) is the residual error term which
we assume to have a Gaussian distribution. In addition, the
errors are assumed to be independent from frame to frame.
The mean feature vector models that we consider in this
paper will be at most a quadratic function of time, i.e.,

for n=1,...,N (1)

p(n) = bi4ben+bsn® for n=1,...,N (2)
z-b
where z' = [1 n n?] and b’ = [b1 by b3]. A primary

assumption for this model is that the residual e(n) is un-
correlated between any time instants.

Equation 2 is the trajectory for a single feature and a
complete description of the model requires the joint distri-
bution of all the features.

If we let ¢, ; denote the it" feature at time n we can write

Cnyi = P, + P2,in+ ﬁs,in2 + €n,i (3)

where n takes on the the values n = 1,...,N and ¢ =
1,...,D with D equal to the number of features. Al-
though we have required the residuals, e, ; to be uncorre-
lated across time, we assume that, at each instant of time,
they are D-dimensions Gaussian random variables with zero
mean and covariance matrix 3. This correlation is some-
times referred to as contemporaneous correlation. The re-
quirement of constant covariance over time is a serious lim-
itation of this model and we will later consider methods for
overcoming this limitation.

Notwithstanding the constant covariance limitation the
model does exploit the dependency of features in time
through the trajectory. By not allowing a time varying
covariance we are assuming that our uncertainty along the
trajectory is time independent and this is not an entirely
adequate assumption.

2.1. Estimation of the Model

Estimation of the model means estimation of the trajectory
which mean estimation of weights ;i = (81, 82,i, 33,;) and
estimation of covariance matrix between the residuals, X.
We first write the trajectory equation for each feature as

Ci:ZIBi-I-eii:].,...,D (4)



which is a vector representation of Equation 3 where ¢, ;
is the observed feature observed at N time instants. Z is
the design matrix which is determined by the nature of the
trajectory and for our case it is a second degree polynomial
and e, ; is the vector of N residuals for the observed feature.

In anticipation that in estimating a model we will be
dealing with segments representing the same phonetic units
that are of different duration, we will normalize all segments
to be of unit length. This normalization is reflected in the
design matrix. Below we consider estimating the model
parameters using the normalized design matrix.

Expanding out Equation 4 for a quadratic trajectory
model and a segment with N frames, we get:

el 10 0 3%
C2,i 1 ﬁ (ﬁﬁ B1,i e2
. = . . Boi | +
Bs,i :
CN,i 1 1 1 €eN,i

for i=1,...,D
or
2
Cnyi = Bri+ Boi (£22) + B (225) +eni
for n=1,...,N and i=1,...,D. (6)

For each feature the Maximum Likelihood (ML) and lin-
ear least square estimates of the parameters are given by

B=Z7Z 2 (7)

If we let C be a matrix whose i** column is c;, B be a
matrix whose i" column is Bi and E whose i column is
e; we have the matrix equation for all the feature equations
as given by Equation 4

C=ZB+E (8)
with the corresponding solution for the parameters given by
B=[zz] 'zZC (9)

Using the same matrix notation we can estimate the co-
variance matrix ¥ from the estimated residuals, i.e.,

BB _ (C—ZB)'(C—ZB).

= ~ ~ (10)

2.2. Pooling the Data

In the estimation of a model for a trajectory for a pho-
netic unit we will have a collection of speech segments from
which to create the model. As we have noted previously
these segments will have different durations and to accom-
modate this variation we scale all segments to have unit
length. Even with the scaling accommodating the different
durations we are still faced with the equation for the tra-
jectory for each of the segments having a different design
matrix which we can denote by Zi, for the k** segment.

We form the total observation matrix, the combined de-
sign matrix and total residual matrix,

S o I Bl I B

S S N

respectively, where K is the total number of segments being
pooled.

Analogous to Equation 8 we have
Cr =ZrB + ET, (12)

with the analogous solution for trajectory parameters being,

B = [Zr'Zr] ' Zr'Cr. (13)

Using the represention for the matrices given in Equa-
tion 11 we obtain

K “1rk
B= lz Z;czk] [Z 7, 7B, (14)
k=1 k=1
where By, is the estimate of the trajectory parameters ob-
tained from the k*" segment and the pooled estimate is seen

to be a weighted combination of the individual segment es-
timates. The estimate for the covariance becomes

K
(Ck — ZB)" (Cr — Z:B)
5= A= (15)

2.3. Likelihood of a Segment

Being able to compute the likelihood of segment coming
from a particular model is a primary goal of the model-
ing. Once an estimate has been established for a particular
phonetic unit it can then be used to evaluate the likeli-
hoods of speech segments of having been generated by the
model. For example, let ¥, and B,, be the trajectory
model parameters for phonetic unit m, (which is estimated
from pooled data as given above). Then the likelihood of
a sequence of speech features (a segment) being generated
by this model will depend on the segment via the estimate

of trajectory parameters B, the estimate of the covariance
matrix ¥, and, N, the number of frames in the segment.

For our Gaussian model the likelihood is given by:

L(B,%|B,,Zn) = (16)

(2m)” 2 |Em|—% - exp (—%tr [E;Llf?]) )
exp (—%tr [Z(B - B,)%, (B - Bm)’z’]) ,

The above expression shows that the likelihood is not sim-
ply a function of the likelihoods for for the trajectories of the
individual features. The interaction between the trajecto-
ries for the individual features is caused by the contempora-
neous correlation existing between the residuals associated
with the different features.

3. DISTANCE BETWEEN SPEECH
SEGMENTS BASED ON THE
TRAJECTORY MODEL

A mixture model for trajectories is similar to the conven-
tional use of Gaussian mixture models except that the mean



of each term in the mixture is a trajectory, such as is the
case in Equation 16. The motivation for using mixtures is
to obtain a better representation of the types of trajectories
that can represent a phonetic unit.

We discussed the EM algorithm for training such a mix-
ture in [1] however we did not discuss an important prereg-
uisite for developing mixture models and that is developing
a metric for distances between segments based on their tra-
jectory parameter estimates. The metric that we employed
is based on a generalized likelihood ratio approach that we
have often used in developing metrics. See [4] for example.

The basic idea is that we consider the hypothesis that the
observations associated with two segments were generated
by the same trajectory model and compare it to the alter-
native hypothesis that they weren’t generated by the same
model. The hypotheses forms the basis for a generalized
likelihood ratio test and the negative of the log likelihood
ratio is used as the distance.

More specifically, given two speech segments, X (N1
frames long) and Y (N2 frames long), we have the following
hypothesis test:

e H,: the segments were generated by the same model,
and

e H;: the segments were generated by different models.

If we let A\ denote the likelihood ratio, then

L,
A= o (17)
giving
L(X;B,X) L(Y;B,%) (18)

©L(X; By, 51) L(Y; By, 5)
where the hat denotes the ML estimate. Note the common
parameters in the numerator.

Using Gaussian likelihood expressions in Equation 18 for
the trajectory models and simplifying, we obtain:

N N
CIsu TSy

A
S|*

(19)

where N = N; + N2, S; and S» are the sample covariance
matrices for segments X and Y respectively, and S is the
sample covariance matrix for the joint segment model.

The sample covariance matrix for the joint segment model
can be rewritten as a sum of two matrices as follows:

S=W+D (20)
where N N
_ v M2g,
W—Nsl-l-NSz (21)
and
D - (2,B, — Z,B)'(Z,B, — Z,B) N (22)

(23)

Note that the W matrix is a weighted sum of the co-
variance matrices of the two separate segments, and the D

matrix is composed of the deviations between the segment
trajectories and the trajectory of the joint model.

From Equation 20, we can factor out the W matrix and
obtain the following expression for the sample covariance of
the joint model matrix and its determinant:

S=W (I+W 'D) (24)

and
IS| = W] I+ W 'D|. (25)

Substituting Equation 25 into Equation 19, we obtain:

S Ny S Nag
2 . 2
A= 81 |N2| x L . (26)
wiF  p+woiD|¥
which can be written as
A= AcovATRAJ (27)
where
Sl Ay
Acov = |1|7|N2 (28)
W|z
and 1
ATRA] = ———————. (29)
I+W-ID|Z

This factorization of the likelihood ratio into two terms cor-
responding to the “distances” between segments based on
matching covariances of the residuals and trajectory param-
eters, respectively.

From these likelihoods, we obtain our “distances” be-
tween segments by taking the negative of their logarithms:

dcov = —log(Acov) (30)
N N N:
Elog (W[ - 71 log |S:1| — 7210g|52|

and

drras = —log(Array) (31)
= %log|I+W_lD|.

Since the generalized likelihood ratio is always greater
than zero and less than unity, the above “distances” are
always positive, although they may not satisfy the trian-
gle inequality. In our experiments we have found using the
drrag distance measure preferable to using drras +dcov .
A detailed discussion and analysis of these distance mea-
sures for the constant trajectory case under the assumption
that the probability models are Gaussian can be found in

[4].
4. TIME-VARYING COVARIANCE

We have already noted how the covariance of the residual
being constant over time was fairly restrictive. In order
go beyond these restrictions we base our approach on the
generalized least squares approach (also ML) which includes
temporal variation in covariance of the residuals. If we let
2 denote the covariance matrix for the N residuals, the
solution for the trajectory parameters, ﬁ;, associated with
feature 4, (assuming 2 is known), is given by



Bi=[Z 9722 9 e, i=1,...,D  (32)

where €; is that part of Q relevant to the i** feature. The
only difficulty is that €2 is not known. The approach that
we followed was to first restrict the class of covariance ma-
trices that we were interested in. Then we employed an
iterative procedure for estimating €2 and reestimating the
model parameters. (Note that knowledge of the € and the
trajectory parameters of the model permits computation of
the likelhoods of segments based on the Gaussian model
since we then have a fully specified multivariate Gaussian
model.)

We restricted the time-variation of the covariance to be
limited to having three different covariance matrices exist-
ing over a segment i.e., we allowed a different covariance
matrix for each third of a segment. The first step in the es-
timation procedure was to obtain parameter estimates from
Equation 14, in order to build our initial models. Using
the parameters obtained from this estimation process were
then able to estimate the residuals at all times along the
trajectory. The estimated residuals then permitted us to
compute separate covariance matrices for each of the des-
ignated segments of the trajectory. This step provides us
with our estimate € to be used in Equation 32. In this
Equation €; will simply be a diagonal matrix with three
different variances along the diagonal.

5. A VOWEL CLASSIFICATION
EXPERIMENT

To evaluate the trajectory model, we performed experi-
ments on a speaker independent vowel classification task.
The corpus for this task consists of 16 vowels: 13
monothongs /iy, ih, ey, eh, ae, aa, ah, ao, ow, uw, uh, ux, er/
and 3 diphthongs /ay, oy, aw/. The vowels are excised, us-
ing the given phonetic segmentations, from the acoustically
phonetically compact portion of the TIMIT corpus with-
out any restrictions on the phonetic contexts of the vowels.
From the 420 available speakers, 370 are used for training
and the remaining 50 are used for testing. The test speakers
are the same as those used in [5]. There is a total of 15,116
training tokens and 1,871 test tokens.

After the tokens are extracted, segment statistics are
computed for each token several trajectory models are
trained for each of the 16 vowels The models that we have
trained and evaluated are

1. Gaussian with diagonal covariance matrix for the resid-
uals
2. Gaussian with full covariance matrix for the residuals
3. Gaussian mixture model
4. Gaussian with the time-varying covariance.
Since the segment boundaries are known, the maximum

a posteriori probability rule is used for classification of an
unknown test segment k coming from model m:

mna}x [L(ﬁk, ik|Bm7 Em)p(N|m)p(m)] (33)

where p(IN|m) is the probability that phoneme m has length
N, and is computed as a histogram of the training segment
durations. In order to match the dynamic ranges of the

Model Diag-Cov  Full-Cov  Mixt. Time-var.
Quadratic 61.94 64.29 65.74 66.06
Linear 61.09 63.65 63.81 62.10
Constant 57.83 61.67 61.89 58.52

Table 1. Percent correct performance of different trajectory
models for different degree polynomials for vowel classifica-
tion.

likelihood term and p(IV|m), an exponential weighting fac-
tor is placed on the duration term and selected to optimize
performance on the training set.

The results of our experiments are presented in Table 1.
We note that the mixture model employed full covariance
Gaussians and that the number of terms in each mixture
varied, depending on the amount of data, but typically
contained about eight terms. The clustering for initializ-
ing the mixture models was done by building and cutting
dendrograms. We can see that the quadratic is best under
all modeling situations and that the time-varying quadratic
gave the best performance. Why the time-varying approach
fared relatively poorly for the linear and constant trajecto-
ries needs futher investigation.

6. DISCUSSION

We have reviewed our approach to trajectory modeling and
have presented a new way to generalize its capabilities. In
particular we developed a method for modeling the time-
varying covariances associated with a trajectory which re-
flects our uncertainty about the trajectory location. This
approach was compared to our original model as well as tra-
jectory mixture model. In addition we described our metric
for measuring distance between trajectories.

We observe that the advanced methods that we have
developed, mixture models and time-varying covariances,
have the potential for being combined, i.e., having a Gaus-
sian mixture models of trajectories in which the individual
Gaussians have time-varying covariances.
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