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Abstract. The lifetimes of electrons trapped in Earth’s radi-

ation belts can be calculated from quasi-linear pitch-angle

diffusion by whistler-mode waves, provided that their fre-

quency spectrum is broad enough and/or their average am-

plitude is not too large. Extensive comparisons between im-

proved analytical lifetime estimates and full numerical calcu-

lations have been performed in a broad parameter range rep-

resentative of a large part of the magnetosphere from L ∼ 2

to 6. The effects of observed very oblique whistler waves

are taken into account in both numerical and analytical cal-

culations. Analytical lifetimes (and pitch-angle diffusion co-

efficients) are found to be in good agreement with full nu-

merical calculations based on CRRES and Cluster hiss and

lightning-generated wave measurements inside the plasmas-

phere and Cluster lower-band chorus waves measurements in

the outer belt for electron energies ranging from 100 keV to

5 MeV. Comparisons with lifetimes recently obtained from

electron flux measurements on SAMPEX, SCATHA, SAC-C

and DEMETER also show reasonable agreement.

Keywords. Magnetospheric physics (Energetic particles,

precipitating; Energetic particles, trapped) – Space plasma

physics (Wave–particle interactions)

1 Introduction

Quantifying the lifetimes of electrons trapped in Earth’s ra-

diation belts has become an increasingly important goal as

scientists strive to predict high-energy particle fluxes, which

may damage spaceborne high-technology systems (Iucci

et al., 2005; Choi et al., 2011). However, observed flux vari-

ations related to the geomagnetic activity can reach orders

of magnitudes over timescales of minutes to days (e.g., see

Horne et al., 2005; Tu et al., 2010). The dynamics of the ra-

diation belts is defined by a number of competing processes

such as convection, radial diffusion driven by ultra-low fre-

quency (ULF) waves, pitch-angle, energy, and mixed diffu-

sion by whistler, magnetosonic and electromagnetic ion cy-

clotron (EMIC) waves as well as trapping by the most in-

tense waves (Thorne, 2010). While state-of-the-art numeri-

cal models of the belts attempt to treat all these phenomena

simultaneously (Barker et al., 2005; Varotsou et al., 2008;

Xiao et al., 2009; Fok et al., 2011; Subbotin et al., 2011;

Reeves et al., 2012) as required for space weather forecast-

ing, one difficulty consists in evaluating electron lifetimes by

computing quasi-linear diffusion coefficients (Lyons et al.,

1971, 1972; Lyons, 1974; Albert, 2005; Glauert and Horne,

2005; Summers, 2005; Summers et al., 2007; Albert, 2007).

Multidimensional simulations of radiation belt dynamics re-

quire computing bounce-averaged diffusion rate matrices for

a very wide variety of evolving geophysical conditions (i.e.,

for many different values of L, MLT (magnetic local time),

Kp, as well as plasma density, wave parameters, and elec-

tron energy). The diffusion rate matrix can be efficiently and
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600 A. V. Artemyev et al.: Parametric validation of analytical lifetimes

accurately computed in full diffusion codes such as the one at

UCLA, by performing dedicated MPI runs (Ni et al., 2008;

Shprits and Ni, 2009). Nevertheless, it still needs hours (at

least) to be calculated (Gu et al., 2012). Therefore, analytical

lifetime expressions can be useful substitutes to allow more

rapid global belt forecasting (Li et al., 2007; Kondrashov

et al., 2011; Reeves et al., 2012), parametric and sensitiv-

ity studies (Tu et al., 2009), as well as to facilitate attempts

at determining the relative weight of the different source,

transport, and loss processes in the Van Allen belt dynamics

(Varotsou et al., 2008; Kim et al., 2011). The analytical life-

times can also be compared with lifetimes obtained by differ-

ent data-assimilation methods (Tu et al., 2010; Kondrashov

et al., 2011), which do not provide by themselves any infor-

mation on the relative contribution of the various sources and

losses. Moreover, the rate of electron precipitation is also im-

portant to model accurately the magnetosphere–ionosphere

coupling (Gkioulidou et al., 2012). Among the different

types of wave–particle interactions that should be consid-

ered, the quasi-linear (stochastic) pitch-angle diffusion of

electrons over their bounce motion by ensembles of uncor-

related frequency-varying whistler waves of moderate aver-

aged amplitude (Tao et al., 2011) is known to play a promi-

nent role as one of the major loss mechanisms in the radiation

belts. Whistler mode waves scatter trapped electrons into the

loss cone, where they are quickly removed by collisions with

atmospheric particles (Kennel and Petschek, 1966; Trakht-

engerts, 1966). The corresponding analytical lifetime expres-

sions may be obtained either by fitting numerical calculations

(as it was done for moderately oblique chorus waves by Sh-

prits et al., 2007; Gu et al., 2012) or from complicated, ap-

proximate analytical developments (as it was done for par-

allel to very oblique hiss and chorus waves by Mourenas

and Ripoll, 2012; Mourenas et al., 2012b,a). While numer-

ical fits have their own advantages (a known accuracy over a

restricted parameter domain), they also suffer from the lim-

ited parameter range that is considered and the associated as-

sumptions on the wave and plasma conditions. On the other

hand, analytically derived formulas may be less accurate over

some domains while retaining physically (and quantitatively)

correct variations over a much broader parameter range. It

is precisely the main goal of the present paper to investi-

gate extensively the accuracy of the analytical lifetime model

introduced in earlier articles (Mourenas and Ripoll, 2012;

Mourenas et al., 2012b), by means of numerous comparisons

with full numerical calculations over a wide parameter do-

main representative of the whole inner magnetosphere. De-

termining these quasi-linear lifetimes is indeed a prerequisite

for a comprehensive radiation belt modeling in the magneto-

sphere of Earth as well as other planets (Shprits et al., 2012).

In this paper we obtain diffusion coefficients (and corre-

sponding estimates of lifetime) valid in a wide range of L

shells (L > 2). Thus, a broad range of the various wave pa-

rameters (frequency, wave-normal angles, etc.) and plasma

density is considered. To this aim, the full Appleton–Hartree

Fig. 1. Distribution of lower-band chorus occurrences in the θ–

λ space (left panel) and wave amplitude distribution (right panel)

shown for the day sector and 4 < L < 5 in the moderate to medium

geomagnetic activity range Kp < 3 (shaded regions indicate insuf-

ficient statistics). Black curves show Gendrin and resonance cone

angles for 3 kHz at L = 4.5.

whistler-mode dispersion relation is now used in our full nu-

merical calculations, allowing us to extend the domain of va-

lidity of the numerical calculations. Moreover, the new an-

alytical lifetime model presented here includes several sig-

nificative improvements over the previous model (Mourenas

and Ripoll, 2012; Mourenas et al., 2012a,b), which were all

needed to account for (1) multiple-Gaussians wave spectra

(especially inside the plasmasphere), (2) high-latitude Lan-

dau resonance at low energy and low L < 3, and (3) high-

energy, high-density cyclotron resonance at large L > 4 in

the presence of an upper latitude cutoff in the wave intensity

distribution.

In a first section, the typical frequency spectra, wave-

normal angle distribution and wave-power distribution with

latitude of whistler waves observed onboard Cluster are pre-

sented. They are later used in full numerical calculations. The

second section gives a rapid description of the complete, re-

fined analytical lifetime model. The next section is devoted

to the numerical code scheme used for calculating electron

lifetimes in the presence of oblique waves. The final sec-

tion will focus on an exhaustive comparison between the an-

alytical lifetime estimates and the full numerical solutions. It

will demonstrate that the analytical lifetime estimates remain

generally within a factor of 2 of the actual values in a very

wide parameter range.

2 Low frequency whistler waves in the magnetosphere:

a quick overview of recent statistical results

Chorus waves typically appear in two distinct frequency

bands. Lower band chorus waves appear in the range

Ann. Geophys., 31, 599–624, 2013 www.ann-geophys.net/31/599/2013/
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0.1–0.5 �c0 and upper band chorus between 0.5�c0 and

�c0 where �c is the electron cyclotron frequency and �c0

is �c evaluated at the equator (Tsurutani and Smith, 1977;

Meredith et al., 2001). These waves are supposed to be ex-

cited by the anisotropy of the distribution of electrons in-

jected into the inner magnetosphere (Meredith et al., 2001).

They can be directly generated with large wave-normal an-

gles (Santolı́k et al., 2009; Haque et al., 2011) or experience

an increase of their wave-normal angle during their propa-

gation away from the source region located near the equator

(Lauben et al., 2002; Shklyar et al., 2004; Chum and San-

tolı́k, 2005; Bortnik et al., 2011a; Breuillard et al., 2012;

Nemec et al., 2012; Chen et al., 2013). Interestingly, re-

cent works have shown that chorus waves may also be the

source (or seed) of hiss-type waves inside the plasmasphere

(Boskova et al., 1990; Hattori et al., 1991; Bortnik et al.,

2011a).

The distribution of θ angles between wave vector and the

background magnetic field as a function of latitude λ can be

obtained from the data from the STAFF-SA experiment on

Cluster (Cornilleau-Wehrlin et al., 2003). Here we present

Cluster statistics collected in the range L = 4 to 5 for lower-

band chorus waves with mean frequency ωm ≈ 0.35�c0 in

the low to medium geomagnetic activity range (see details of

statistics in Agapitov et al., 2012a). The distribution of wave

occurrences for given θ and λ is shown in Fig. 1. For each

λ the total number of wave occurrences are normalized to

one. We also show the Gendrin angle θg(λ) (Gendrin, 1961)

and resonance cone angle θr(λ) as functions of λ. It should

be noted that waves cannot be observed above θr in cold

plasma theory, although it may be possible in hot plasmas:

the corresponding points in this figure are most probably due

to uncertainties in the determination of θr (calculated here

for L = 4.5; θr can also differ slightly from arccos(ωm/�c)

due to the effect of a finite ratio �c/�pe at high latitudes,

where �pe is the plasma frequency) or to errors in the deter-

mination of θ (see discussion in Agapitov et al., 2012a). Fig-

ures 1–2 show that, at L ∼ 4 to 5, lower-band chorus waves

are rather oblique above 5–10◦ of latitude, a large portion

of their distribution being located between the Gendrin and

resonance cone angles (especially for λ > 10◦). The mean

wave-normal angle, as well as the variance, increases with

latitude. In addition, one can mention a group of parallel

waves observed at high latitudes. This group results in an

increase of the variance of the total distribution of θ angle,

g(θ), but does not change the overall tendency of growth

of the mean θ with λ. The distribution of wave amplitude

Bw(θ) and its rms value are also displayed in Fig. 2 as a func-

tion of wave-normal angle in given latitude ranges. While

the maximum amplitudes are generally obtained for mod-

erately oblique waves (θ ∼ 20◦), similar levels can also be

found between the Gendrin and resonance cone angle on the

dayside. The wave power distribution as a function of lati-

tude B2
w(λ) has already been provided and fitted by Artemyev

et al. (2012b) for dayside waves. Nightside chorus waves are

confined at latitudes lower than 20◦ but will not be consid-

ered here, because we are mostly interested in estimating the

actual loss rates of longitudinally drifting trapped electrons,

which are principally determined by dayside waves (Shprits

et al., 2007). The presented wave-normal distribution is actu-

ally representative of the dayside outer-belt region L = 3.5 to

5.5 for Kp < 3. At larger L > 5.5, lower-band chorus waves

are less oblique, although a few percent of the wave power re-

mains at very oblique angles between 10◦ and 20◦ of latitude.

The difference between L < 5.5 and L > 5.5 cases is prob-

ably related to Landau damping by suprathermal electrons,

which has been shown to produce a stronger attenuation of

oblique waves at large L > 5.5 and high latitudes (Bortnik

et al., 2006; Chen et al., 2013), although Landau damping is

presumably weaker on the dayside than on the nightside (Li

et al., 2011).

Plasmaspheric whistlers are mainly composed of hiss

waves between 100 Hz and 2 kHz and lightning-generated

whistlers between 2 and 5 kHz (Meredith et al., 2007), with

an occasional presence of waves from ground-based very

low frequency (VLF) transmitters near 20 kHz at L < 2.5

(Abel and Thorne, 1998). For plasmaspheric whistlers, we

make use of Cluster statistics at L = 2 to 2.5 to derive fits to

the wave-normal angle distribution g(θ). Figure 3 shows the

measured wave power distribution as a function of θ and lat-

itude. While the waves start as quasi-parallel at the equator,

they become more oblique at higher latitudes and the vari-

ance increases. These observations are in good agreement

with ray-tracing results from Bortnik et al. (2011b) (see their

Fig. 7), which also showed an increase of hiss wave-normal

angles during propagation to higher latitudes, as well as a

slight increase of the variance. Very oblique waves represent

a significant amount of the distribution for λ > 15◦. CRRES

measurements of amplitudes and spectra between L = 2 and

3.5 (Meredith et al., 2007, 2009) will be used for lifetime

calculations in Sect. 5. Polynomial fits to the average mean

and variance of the wave-normal angle obtained from Cluster

data will also be used (see Sect. 4). While wave-normal an-

gle satellite data may suffer from some uncertainty, it should

be noted that ray-tracing calculations of lightning-generated

whistlers have independently shown that their wave-normal

angle can be easily larger than 50◦ near L = 2 (Thorne and

Horne, 1994).

3 Analytical estimates of quasi-linear electron lifetimes

3.1 Approximate diffusion coefficients

Oblique whistler waves (Burton and Holzer, 1974;

Hayakawa et al., 1990; Tsurutani et al., 2009; Haque

et al., 2010; Agapitov et al., 2011; Li et al., 2011; Agapitov

et al., 2012b) as well as nearly parallel ones are taken into

account in estimates of pitch-angle diffusion rates by consid-

ering a double distribution g(θ) = gs(θ)+gl(θ) containing a

www.ann-geophys.net/31/599/2013/ Ann. Geophys., 31, 599–624, 2013
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Fig. 2. Distribution of lower-band chorus amplitudes at four ranges of magnetic latitude for 4 < L < 5 on the dayside when Kp < 3. Black

curves show rms levels corresponding to average intensity.

Fig. 3. Distribution of hiss amplitudes in four ranges of magnetic latitude for 2 < L < 2.5 on the dayside when Kp < 3. Black curves show

rms levels corresponding to average intensity.

non-Gaussian tail (see Fig. 1 from Mourenas et al., 2012b).

The small-θ part gs = exp(−(tanθ − tanθm)2/ tan2 1θ) is

assumed to be approximately Gaussian with a width of

1θ ≤ 45◦ and a maximum at θm ≈ 0 (corresponding in

practice to θm < 1θ ≤ 45◦), with lower and upper bounds

at θlc = 0 and θuc ∼ 1θ . The large-θ tail is taken as a step

function gl(θ) equal to a constant between the Gendrin and

resonance cone angles, being zero otherwise. It can lead

to higher electron diffusion rates by allowing higher order

cyclotron resonances with whistler waves.

Ann. Geophys., 31, 599–624, 2013 www.ann-geophys.net/31/599/2013/
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The local pitch angle quasi-linear diffusion coefficient D

of Lyons (1974) (with dimensions of s−1) has been conve-

niently rewritten by Albert (2005, 2007) in the form

D = Dαα

p2
= �c

γ 2

B2
w

B2

+∞
∑

n=−∞

∑

ω

Dαα
n

Dαα
n =

θmax
∫

θmin

sinθdθ1nGωGθ (1)

with

Gθ (ω,θ) = g(θ)
∫ θmax

θmin
dθ ′ sinθ ′Ŵ(θ ′,ω(θ))g(θ ′)

, (2)

where Gω(ω(θ),θ ′) ∼ B2
sp(ω)/

∫

B2
sp(ω)dω is a function of

the wave refractive index. One can find detailed descriptions

and analysis of properties of Gω as well as definitions of

1n and Ŵ in the works by Albert (2005, 2007). Here, B is

the local magnetic field (of equatorial value B0), and the ar-

gument x = (ωγ /�c + n) tanα tanθ of the Bessel functions

in 1n is approximated by x ∼ n tanα tanθ at low frequency

when ωγ/�c ≪ 1 ≤ n, with γ the relativistic factor. The

wave spectral density is written as B2
sp(ω) = B2

w exp(−(ω −
ωm)2/1ω2), with 1ω ≈ ωm/2. In Eq. (1), Gθ (ω,θ) and

Dαα
n are both evaluated at the resonant frequency ω corre-

sponding to a θ , a harmonic number n, and a pitch angle α

obtained from the cyclotron resonance condition

ω + n�c/γ = kv cosθ cosα, (3)

where v denotes the electron velocity and k is the wavenum-

ber. Since there may exist several roots of ω, a sum over ω

in Eq. (1) may be necessary. Finally, a bounce average over

latitudes has to be performed (Lyons et al., 1972).

For lower-band (ωm/�c < 1/2) chorus waves, hiss waves,

lightning-generated waves, or VLF waves from transmit-

ters, all of which are right-hand polarized oblique whistler-

mode waves, the Appleton–Hartree dispersion relation valid

for ω2 ≫ ω2
LH (ωLH being the lower-hybrid frequency) can

be simplified to (ck)2 = �2
peω/(�c cosθ − ω) (Helliwell,

1965) provided that �2
pe/(�cω) ≫ 1 (the high-density limit)

and sinθ(�c/�c0)(�c0/�pe) < (�c cosθ/ω)1/2 (through-

out this paper, the subscript “0” denotes equatorial values).

For moderately oblique, low frequency waves such that θ ≤
45◦ and (ω/�c0) ≪ �2

pe/(12�2
c0), the discrepancy between

the exact and approximate resonance frequencies should then

remain negligible up to latitudes λ ∼ 45◦. For �pe/�c0 > 4,

it is suitable for all moderately oblique whistler waves satis-

fying the condition ω/�c0 < 0.4, i.e., lower-band chorus (in

agreement with numerical results from Glauert and Horne,

2005), hiss, lightning-generated and VLF transmitters. The

lower the frequency ratio ω/�c0, the closer the approximate

dispersion is to the Appleton–Hartree one. Thus, the approx-

imate dispersion turns out to be almost exact for moderately

oblique plasmaspheric whistler waves (hiss and lightning-

generated waves).

For significantly oblique lower-band chorus (or any other

kind of low-frequency whistler waves) such that θ > θg, (the

Gendrin angle such that cosθg ∼ 2ωm/�c), the maximum

latitude λMM for resonance over the whole large-θ range

(from the Gendrin up to nearly the resonance cone angle

given by cosθr ∼ ωm/�c) is reached at small equatorial pitch

angles. It has been estimated from the simplified dispersion

and resonance condition by Mourenas et al. (2012b,a) as

λMM ≤ 35◦ for L = 4 to 6, implying that the approximate

dispersion can be used only for �pe/�c0 > 4 for θ ≥ θg.

The discrepancy between the approximate and exact disper-

sions becomes more important at the higher latitudes, close

to the loss-cone edge (α0 < 10◦). Nevertheless, the error in

the value of the resonance frequency merely corresponds to a

small downward shift from the actual latitude at which reso-

nance occurs at peak wave power, thanks to the rapid increase

of �c at high latitudes. Figure 4 shows that this remains true

up to the highest latitudes for �pe/�c0 > 4, while it is still

roughly the case for �pe/�c0 = 2 at latitudes smaller than

20◦, corresponding to the highest latitude of resonance at

α0 > 20◦ (Mourenas et al., 2012b). After integration over lat-

itudes, this small shift can nevertheless produce large errors

in the bounce-averaged diffusion rate 〈D〉B for α0 < 10◦, due

the significant increase with latitude of the integrated func-

tion 1nGθ in Eq. (1) in the large-θ range at high latitudes

λ > 20◦ (see Appendix A in the work by Mourenas et al.,

2012a, and the numerical comparison of the simplified and

Appleton–Hartree dispersions in Sect. 5.1). Because peak

resonance occurs at higher latitude with the full dispersion,

〈D〉B ends up to be larger for α0 < 10◦ than with the simpli-

fied dispersion. In the simplified analytical model developed

by Mourenas et al. (2012b), however, 〈D〉B is only calculated

for α0 > 15◦ and it is simply assumed to continue increas-

ing at least like 1/sinα0 towards the loss cone for α0 < 10◦

as actually observed in the full numerical simulations (see

Sect. 5.1). Since we are principally interested in lifetime es-

timates, the large-〈D〉B part at small α0 < 10◦ can then be

safely neglected in Eq. (7) below. An error concerning this

part should indeed lead to a much smaller relative error in the

lifetime estimate. It is this model of 〈D〉B (Mourenas et al.,

2012b) that will be used throughout the present paper.

As the full expression of the diffusion rate involves four

successive integrations of rather complex functions, fur-

ther approximations have to be made to enable an analyti-

cal estimation of the bounce-averaged diffusion rates. The

weighted-average reformulation of the local quasi-linear dif-

fusion coefficient introduced by Albert (2007) in his Eq. (7)

is first used to simplify the calculations. Such a reformu-

lation is justified by (1) the nearly constant resonant ω up

to θ ∼ 60–70◦ for low-frequency whistler waves using the

full dispersion relation (Albert, 2007) and (2) the narrow

width 1ω ≤ ωm/2 of the wave spectrum, which implies

that significant contributions to diffusion come principally

www.ann-geophys.net/31/599/2013/ Ann. Geophys., 31, 599–624, 2013
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Fig. 4. Resonance cone angle as a function of latitude. The approx-

imate value θr = arccos(ωm/�c) from the simplified dispersion re-

lation (solid black line) is compared with exact solutions obtained

with the Appleton–Hartree dispersion for different ratios �pe/�c0.

from frequencies close to ωm. It is then acceptable to re-

place G(ω(θ ′),θ) by G(ω(θ),θ) in Eq. (2), hence allowing

the very convenient weighted-average reformulation. Con-

trary to the mean value approximation proposed by Albert

(2007), however, the variation of the averaged function with

θ is taken into account in our analytical calculations, where

Bessel functions are replaced by their classic series expan-

sions on both sides of their first maxima (for more details, see

Mourenas and Ripoll, 2012; Mourenas et al., 2012b,a). As

concerns bounce-averaging, the latitudinal range 1λ where

resonance occurs is evaluated from Eq. (3) and adiabatic in-

variance for ω varying between ωm−1ω and ωm+1ω. This

latitudinal range being narrow and the latitudinal variation of

the integrand in the bounce integral remaining weak (see Ap-

pendix D and A from Mourenas et al., 2012b,a), the diffusion

rate integrated over 1λ can be further approximated by this

integrand taken at 〈λ〉 and ω = ωm, multiplied by 1λ and by

〈B2
sp〉ω/B2

sp(ωm) (Mourenas et al., 2012b). Finally, it is as-

sumed that the plasma density does not vary strongly with

latitude for latitudes smaller than about 40◦, in agreement

with observations between L ∼ 2 and 7 (Denton et al., 2006;

Ozhogin et al., 2012).

For the small-θ part (θ < θ s
Max < max(π/4,θg)) of the

wave-normal angle distribution, the first cyclotron reso-

nance n = −1 provides the main contribution to the diffu-

sion rate near the loss-cone edge for distributions such that

gs(θg) ≪ gs(0) and/or E ≤ 1 MeV. This contribution is es-

sentially equivalent to the parallel propagation approxima-

tion (PPA) formulated by Summers (2005). At higher equa-

torial pitch angles, the Landau resonance n = 0 and higher-

order cyclotron resonances may also contribute. For θ < 45◦,

the maximum number of significant resonances is N s
max ∼

pεm0 sin(θ s
Max) (Mourenas and Ripoll, 2012; Mourenas et al.,

2012b) with εm0 = �pe/�c0

√
ωm/�c0 and p the electron

momentum normalized on mec. For θ > max(π/4,θg) and

at the equator, θ may take any value from the Gendrin an-

gle up to nearly the resonance angle for resonances |n| ≤ Nr

with average Nr ≈ 2cosα0pεm0

√
ωm/�c0 (Mourenas et al.,

2012b,a). As the electron leaves the equator and moves to-

wards its mirror point along a magnetic field line, pitch angle

increases due to adiabatic invariance, allowing resonance to

be recovered at higher latitudes. The total effective number

of (positive and negative) contributing resonances is roughly

4 Nr. Diffusion at large wave-normal angles may increase

strongly (partly off the equator) at moderate equatorial pitch

angles due to the large number of contributing resonances

and owing to the fact that their contributions are roughly in-

dependent of n.

The full diffusion coefficient is obtained after integration

over the bounce motion (Lyons et al., 1972). For the small-θ

part, it yields near the loss-cone (LC) edge with α0 ∼ αLC:

〈

Dsmall α0

〉s

B
≈ πB2

w�c0 ωm

4γB2
01ω(pεm0)13/9 T (αLC)cos2 αLC

×

× 1λR,N(1 + 3sin2 λR)7/12(1 − ̟)
∣

∣γ̟ − 2γ̟ 2 + 1
∣

∣ |1 − γ̟ |4/9
, (4)

where ̟ = ωm/�c and the bounce period is T (α0) ≈ 1.38–

0.64sin3/4 α0 (Davidson, 1976). The latitude of resonance λR

for ω ≈ ωm can be written as

λ2
R ∼ 3

2
− 3

2

√

√

√

√1 − 16

9

(

1 −
( |1 − γ̟ |

pεm0

√
cos1θ

)1/9
)

(5)

where Eq. (5), which is obtained through a second-order ex-

pansion of cosine and sine terms, is sensibly more accu-

rate than the first-order Eq. (C7) in the work by Mourenas

and Ripoll (2012) at large density, frequency and en-

ergy (i.e., at high latitudes). 1θ denotes the width of

the Gaussian distribution gs(θ). In Eq. (4), the latitudi-

nal range of resonance corresponding to 1ω is 1λR ∼
2(

√

λ2
R + 21ω/(27ωm)/(pεm0)1/9 − λR) when waves are

present up to the highest latitudes (Mourenas et al., 2012b).

The actual latitudinal range of resonance can be written as

1λR,N ∼ max(min(λ+,λR+1λR/2)−λR+1λR/2,0) to ac-

count for the possible confinement of waves below a certain

latitude λ+, as in the case of chorus (Shprits et al., 2006; Li

et al., 2011; Artemyev et al., 2012b). For ωm/�c0 < 0.5, one

can also safely use �c/�c0 ≈ (pεm0)
2/3 in the two above

equations (Mourenas et al., 2012b), except in the case when

pεm0 < 1: then, one must simply take λR = 0 and �c = �c0.

The small-θ Landau resonance coefficient has been evaluated

by Mourenas and Ripoll (2012) for hiss waves and extended

to arbitrary ratios ωm/�c0 < 0.5 by Mourenas et al. (2012b).

The lifetime contribution of this Landau term is given explic-

itly below.
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Albert and Shprits (2009) have shown that lifetimes are

determined by the minima of the total diffusion coefficient

multiplied by tanα0. As a result, the small-θ diffusion coef-

ficient is usually the smallest either near the loss-cone angle

αLC or, at large pitch angles, between the Landau and first

cyclotron resonance peaks (Shprits et al., 2006, 2007; Albert

and Shprits, 2009; Mourenas and Ripoll, 2012). Since our

goal is to provide lifetime estimates, we can safely neglect

in the small-θ part all the resonances except for the first cy-

clotron one at small pitch angles and the Landau and first

cyclotron resonances at large pitch angles. The latter indeed

define the depth of the minimum in 〈D〉B at large pitch angles

(see next section).

For the more complicated large-θ part of g(θ), such that

θ ≥ max(π/4,θg), lifetimes are mainly determined by the

moderate to large pitch-angle region where diffusion is weak-

est. Then, many resonances n contribute to diffusion. The de-

tails of the derivation of D at pitch angles larger than 20◦ are

given in Mourenas et al. (2012b). With θ bounds taken as θg

and θr and 1ω/ωm ∼ 0.5, one gets

〈D〉lB =

(

1 + ω2
m

�2
c0

)

B2
w�c0

√
8Nr

9γB2
0 (pεm0)2 cosα0 sinα0

(6)

where the maximum latitude of resonance is generally

smaller than 35◦ (Mourenas et al., 2012b,a), i.e., smaller

than the latitude upper bound on intense oblique waves λ+ ∼
40◦ in the dayside outer belt at L < 5.5 (see Sect. 2). On

the nightside or at large L > 5.5, the presence of oblique

chorus is limited at λ < λObl ∼ 20◦ due to strong Landau

damping by suprathermals (Bortnik et al., 2006; Li et al.,

2011). From Eqs. (7)–(8) from Mourenas et al. (2012a) with

1λ ≈ λMax/2 ≈ λObl/3, 〈D〉lB becomes much smaller than

the value (Eq. 6) for sinα0 < (ωm/�c0)(�c0/�c(λObl))
3/2.

It leads to a threshold at α0 < αObl = ωm/�c0 (see also Ap-

pendix B from Mourenas et al., 2012b) where 〈D(n)〉lB de-

creases fast like (sinα0/sinαObl)
2|n|−1 until it becomes even

smaller than 〈D〉sB near the loss-cone edge for L > 4.

3.2 Lifetime expressions for multiple wave modes

We make use of the approximate reformulation of the elec-

tron lifetime by Albert and Shprits (2009), which reads as

τ ≈ σ

π/2
∫

αLC

cosα0

2 〈D〉B sinα0
dα0. (7)

The numerical coefficient σ ≈ 1 allows recovering precisely

numerical simulations: one can take σ ∼ 1/2 when the min-

imum of 〈D〉B is near the loss cone or else when a mini-

mum occurs at large pitch angles but remains moderately

deep (see Appendix A), while σ ∼ 1 is more appropriate

for the Landau part at high pitch angles (Albert and Shprits,

2009; Mourenas and Ripoll, 2012). A reasonable way to de-

rive an analytical estimate of the lifetimes consists in neglect-

ing the pitch-angle domain wherein 〈D〉B tanα0 is large. Ac-

cordingly, the large-θ part 〈D〉lB can be integrated analyti-

cally between about π/12 and π/2, while the small-θ part

〈Dsmall α0
〉sB can be integrated analytically (with T (α0) ∼

T (αLC) ∼ 1.3) from the loss-cone angle αLC up to an angle

α+ ≈ max(2.2αLC,min(7αLC,π/2−θ s
Max)) (the angle π/2−

θ s
Max represents the smallest α0 for resonance at the equator

– see details in Mourenas and Ripoll, 2012; Mourenas et al.,

2012b). At low energy or L, however, a deep minimum of

〈D〉B may occur between the peaks of first cyclotron and

Landau resonances, which can strongly increase lifetimes.

Its effect can be easily evaluated by integrating in Eq. (7)

the Landau diffusion coefficient 〈Dn=0〉sB between the Lan-

dau peak and the upper limit of the first cyclotron resonance

diffusion coefficient 〈Dn=−1〉sB.

For the sake of generality, we hereafter extend our pre-

vious model (Mourenas and Ripoll, 2012; Mourenas et al.,

2012b) to consider a spectrum consisting of two or three

Gaussians of peak frequencies ωm,i and upper cutoffs

ωUC,i < ωm,i + 21ωm,i , corresponding to different kinds of

whistler waves. The i = 1 index is also assumed to corre-

spond to the highest intensity waves, which are moreover

supposed to have the smallest mean and upper cutoff fre-

quencies. Such a situation is actually representative of typ-

ical whistler spectra inside the plasmasphere as well as in the

outer belt. Inside the plasmasphere, the i = 1 index would

correspond to hiss waves (Meredith et al., 2007, 2009). For

simplicity, the remaining whistler modes (e.g., lightning-

generated and VLF) are also classified in the same way, such

that a larger index i corresponds to a smaller intensity and

higher (mean and upper cutoff) frequencies.

Then, the different cyclotron and Landau diffusion co-

efficients (corresponding to different indices i) take on a

shape shown schematically in Fig. 5 for L < 3.5. Cyclotron

diffusion by lower-frequency, higher-intensity waves (i.e.,

hiss with i = 1) dominates at small α0 < αUC, 1, followed

at higher α0 by cyclotron diffusion by lightning-generated

waves (i = 2), and so on. Finally, cyclotron diffusion drops

down at α0 > max(αUC, i), and Landau diffusion then takes

over. As can be seen in Fig. 5, the total diffusion coefficient

can then be approximated over each successive α0-range

by one dominant individual diffusion coefficient correspond-

ing to the relevant wave index i, allowing the integration in

Eq. (7) to be performed by parts (see below).

While actual fits to the measured spectra contain some-

times Gaussians that do not follow the above-assumed clas-

sification (Meredith et al., 2007), it is always possible to

replace them by Gaussians that do comply, even if the cor-

responding approximation to the actual spectrum is slightly

less accurate. In the expression for α+, one has then θ s
Max =

θ s
Max,i=1 corresponding to i = 1 waves. All the small-θ

waves are assumed to have a Gaussian wave-normal distri-

bution gs,i(θ) = exp(− tan2 θ/ tan2 1θi), where 1θi < 45◦ is

www.ann-geophys.net/31/599/2013/ Ann. Geophys., 31, 599–624, 2013



606 A. V. Artemyev et al.: Parametric validation of analytical lifetimes

Fig. 5. Schematic representation of the cyclotron and Landau dif-

fusion coefficients for waves i = 1 (hiss, solid black line) and i = 2

(lightning-generated, solid blue line) at L < 3.5, as a function of

equatorial pitch angle. The corresponding approximate analytical

diffusion coefficients are also displayed (dotted lines).

the characteristic width of the distribution. Further assuming

that cosα0i = (pεm0,i)
−1 < sin1θi , Eq. (30) in the work by

Mourenas and Ripoll (2012) giving the cyclotron diffusion

rate at large equatorial pitch angles simplifies to

〈

Dn=−1, i, large α0

〉s

B
=

B2
w, i �c0√

3γB2
0 pεm0, i sinα0i tan1θi

. (8)

Posing cosαUC, i = min((pεUC0,i)
−1,1) (with εUC0,i =

εm0,i

√

ωUC,i/ωm,i), the small-θ -waves-only lifetime can be

written as

τs ≈ τLandau + ln(sinα+/sinαLC)

4
〈

Dsmall α0, i=1

〉s

B

+
∑

i=2,3
1τi, (9)

where

τLandau ≈
B2

0 |1 − ωm,1/�c0|−3/2 Fhl

3γB2
w,1�c0

(

p�pe

�c0

)4
tan1θi=1

sin3 αM0,1

×
π
2

− αMax
0 − 2

3
sin(2αMax

0 ) − 1
12

sin(4αMax
0 )

gs(θM0,1) + min
(

C3
i=1/11,C−1

i=1

) , (10)

where Ci=1 = pεm0,1 tan1θi=1 and αMax
0 =

max(αUC, i, αLC) are the highest equatorial pitch

angles where (first) cyclotron resonance exists.

tanθM0,1 ≈ 1.84/pεm0,i=1 is the wave-normal an-

gle at peak equatorial Landau resonance, and

cosαM0,1 ≈ |1 − ωm,1/�c0|1/2γωm,1/(�c0pεm0,1) cor-

responds to the position of the Landau peak. The multiplica-

tive term Fhl ≈ max(10 2(π/4 − αMax
0 ), 1) with Heaviside

function 2(. . .) is such that Fhl = 1, except when cyclotron

resonance becomes unavailable at moderate equatorial pitch

angles for low L inside the plasmasphere, as discussed in

Appendix B. It is also assumed here that the index i = 1

corresponds to the highest value of B2
w,i multiplied by

gs(θM0,i) + min
(

C3
i /11,C−1

i

)

so that the i = 1 waves dom-

inate in the Landau part of τs . This condition is generally

satisfied for typical plasmaspheric whistler spectra (e.g., see

Fig. 2 from Meredith et al., 2007). The filling of the trough

in pitch-angle diffusion rate between the Landau and first

cyclotron peaks from the i = 1 waves, which is provided by

the i = 2 and 3 waves, can be written from Eqs. (7)–(8) as

1τi ∼
αUC,i
∫

αUC,i−1

(1/ tanα0)

2
〈

Dn=−1, i, large α0

〉s

B

dα0

≈ (sinαUC,i − sinαUC,i−1)

2
〈

Dn=−1, i, large α0

〉s

B
(π/2)

.

(11)

Note that in a case where pεUC0,i < 21/4, such as for hiss

waves at L < 2.5 and low energy electrons, things become a

little bit more complicated. Then, the i = 1 index must be

given to the first Gaussian such that this inequality is re-

versed, except for the Landau term in Eq. (9).

Concerning the case of small- and large-θ distributions,

typical of outer belt chorus spectra, the D contributions in

Eq. (6) from different large-θ Gaussian frequency spectra

are roughly independent of ωm,i and therefore add up into

one single term 〈D〉lB, with B2
w =

∑

B2
w, i with ωm taken

as the intensity-weighted mean of ωm,i . Assume that the

large-θ part of the wave distribution represents between 5 %

and 50 % of the total wave power, as chorus observations at

L = 4 to 5.5 suggest (Burton and Holzer, 1974; Agapitov

et al., 2012b). Then, the relative weights of small- and large-θ

parts in D are made roughly similar by their weighting fac-

tors g(tanθ)
√

1 + tan2 θ tanθ , so that Dtotal ≈ (Ds + Dl)/2

(Mourenas et al., 2012b). Finally, one gets the following from

Eqs. (4)–(6) for the total g(θ) distribution:

τs+l ≈ 2τLandau + 0.5

〈D〉lB (π/4) +
〈

Dsmall α0,i=1

〉s

B

(12)

where one has now sinαMax
0 = max(sinαUC, i ,

(2ωm,1/�c0),sinαsp) in the expression in Eq. (10) for

τLandau with Fhl ∼ 1 and

cosαsp =
√

�c0

4ωUC,1

∣

∣

∣

∣

∣

max(0,1 − γωUC,1

�c0
)

pεm0,i=1

√

ωUC,1/ωm,1

∣

∣

∣

∣

∣

. (13)

In a regime of interaction with weakly oblique low-frequency

whistler waves, electron lifetimes given by Eq. (9) scale

roughly as

τs ∼ 110

B2
w

p3/2γω
7/9
m,1�

14/9
pe

�
12/9
c0

ln

(

sinα+
sinαLC

)

(14)

at high enough energy and/or density such that pεm0 > 21/4

for cyclotron resonance to prevail (see Appendix B and
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Mourenas et al., 2012b). Note that expression in Eq. (14)

should be multiplied by a factor of ∼ 2/3 for ωm/�c0 <

0.05. Here τs is given in seconds and the average (rms) wave

amplitude Bw in pT. With a ratio ωm,1/�c0 fixed, lifetimes

due to interaction with lower-band chorus then vary roughly

like E2/L at high energies E and/or L. It is worth noting that

lifetimes τs in Eq. (9) are independent of 1ω and 1θ , varying

like tan1θ(ωm,1/ωUC,1)
5/2 only at very low energies when a

deep minimum in diffusion shows up beside the Landau peak

where cyclotron resonance is not available anymore.

When large-θ whistler waves are present up to high lati-

tudes and at high enough energy to get τs+l ≪ τs , Eq. (12)

yields

τs+l ∼ 35

B2
w

γp�pe

1 + γ�c0

2p�pe

, (15)

where τs+l is given in seconds, Bw in pT, and the additional

term at the denominator stems from a slightly more accu-

rate expression of Nr at very low energy and density given in

Eq. (7) from Mourenas et al. (2012b).

Comparing Eqs. (15) and (14), one finds that τs+l/τs < 1

to ≪ 1. The eventual reduction of lifetimes brought forth

by the presence of very oblique whistler waves turns out

to be more important for higher values of �pe/�c0, i.e., at

larger L and higher energy where τs+l ∼ γp�pe. This re-

duction of lifetimes stems from the related increase of the

number of large-θ cyclotron resonances Nr at high energy. In

the night sector of the outer belt or at L > 5.5, a neat lati-

tude confinement of very oblique waves occurs due to strong

Landau damping (Bortnik et al., 2006; Li et al., 2011) with

λ ≤ λObl ∼ 20◦. The actual lifetime in Eq. (7) is then roughly

determined by small-θ diffusion between the loss-cone an-

gle αLC and α+,Obl ∼ ωm/2�c0 = αObl/2 where large-θ dif-

fusion steeply increases (see the discussion below Eq. 6).

Replacing α+ by α+,Obl in Eq. (9) with null Landau terms

gives an estimate of the lifetime for oblique lower-band cho-

rus waves strictly confined to low latitudes; corresponding

lifetimes are typically two times smaller than the small-θ -

only lifetime in Eq. (14).

4 Numerical scheme of calculation of the diffusion coef-

ficients and lifetimes

To calculate diffusion coefficients and estimate lifetimes, we

use the approach proposed by Albert (2005) and Glauert and

Horne (2005) with modifications corresponding to the depen-

dence of g(θ) distribution on λ (see Artemyev et al., 2012a)

and the dependence of the wave amplitude Bw on λ (see Arte-

myev et al., 2012b). However, in contrast to our previous cal-

culations, we use here the Appleton–Hartree dispersion rela-

tion (Helliwell, 1965) valid for arbitrary values of the ratio

�pe/�c:

(kc/ω)2 = 1 − X(1 − X)

1 − X − 1
2
ϒ sin2 θ ±

√
D

(16)

D =
(

1
2
ϒ sin2 θ

)2
+ (1 − X)2ϒ cos2 θ

ϒ = �2
c/ω

2, X = �2
pe/ω

2.

For X → ∞ one can obtain the simplified dispersion relation

(kc/ω)2 = 1−X/(1±
√

ϒ cosθ). Solving the system consist-

ing of dispersion relation in Eq. (17) and resonant condition

in Eq. (3) gives resonant frequencies and wavenumbers.

4.1 Outer-belt lower-band chorus waves

We use a distribution function g(X) with X = tanθ of wave

occurrences depending on λ: g(X) = exp(−(X−Xm)2/X2
w),

where Xm,w = Xm,w(λ) are determined from Cluster obser-

vations and approximated by polynomial functions (see Arte-

myev et al., 2012a). The recent corrections to Cluster STAFF

data (see Agapitov et al., 2012b) slightly change the approx-

imations for Xm,w(λ) in comparison with Agapitov et al.

(2011) for L = 3.5 to 5.5:

Xm = 0.33 + 0.36l − 0.23l2 + 0.086l3

Xw =
√

2
(

0.43 + 0.79l − 0.52l2 + 0.14l3
)

,
(17)

where l = λ/10◦ and a latitude upper bound on the presence

of intense chorus waves λ < λ+ = 40◦ is postulated in rough

agreement with observations (Bunch et al., 2012; Artemyev

et al., 2012b). This latitude upper cutoff presents the addi-

tional advantage that the condition ω > ωLH is satisfied ev-

erywhere as required. A comparison of the approximation in

Eq. (17) with the previous one (Artemyev et al., 2012a) is

shown in Fig. 6. The increase of the mean value Xm with

latitude corresponds to very oblique wave propagation and

results in intensification of higher order cyclotron harmonic

interaction (see, e.g., Shklyar and Matsumoto, 2009) yielding

an increase of pitch-angle diffusion (Shprits and Ni, 2009; Ni

et al., 2011; Artemyev et al., 2012a). At higher L > 5.5, the

chorus wave-normal angle distribution is less oblique, so that

the actual electron lifetimes should be comprised between

the values obtained with the above-given oblique distribu-

tion valid for L < 5.5 and with a quasi-parallel distribution.

Therefore, we shall also provide below lifetimes calculated

for a quasi-parallel distribution of lower-band chorus waves.

We perform most calculations for a constant mean ampli-

tude Bw = 100 pT of the waves. However, the increase of the

wave-normal angle θ with λ results in a progressive trans-

formation of whistler waves from an electromagnetic mode

near the equator to a quasi-electrostatic mode at very high lat-

itudes (see, e.g., Ginzburg and Rukhadze, 1975; Sazhin and

Horne, 1990). As a result, Bw should depend on λ. We take

into account this dependence by using Cluster observations

of the distribution of wave amplitudes for each λ. As a result,

we calculate diffusion coefficients and estimate lifetimes for
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Fig. 6. Mean value Xm and variance Xw from Eq. (17) are shown

by black color, while approximations from Artemyev et al. (2012a)

are shown by grey color.

various probability levels of Bw distribution depending on

λ (see details in Artemyev et al., 2012b). Besides, the mag-

netic amplitude of very oblique waves becomes smaller than

the amplitude of quasi-parallel waves in Cluster statistics at

high latitudes (see Sect. 2). To quantify this effect, some

lifetime calculations will also be performed taking into ac-

count the measured variation of Bw(θ) in the day sector for

3.5 < L < 5.5: the wave power at λ > 20◦ is then simply di-

vided by 2 to 4 for θ > 60◦.

Although the effects of a non-dipolar magnetic field could

be important in the nightside region for large L ≥ 6 (see, e.g.,

Orlova and Shprits, 2010; Ni et al., 2011; Ma et al., 2012; Ni

et al., 2012; Orlova et al., 2012), we restrict our considera-

tions to a dipole field B = B0

√

1 + 3sin2 λ/cos6 λ for aver-

aging diffusion coefficients over electron bounce oscillations

(Lyons et al., 1972). To estimate lifetimes, we use the expres-

sion in Eq. (7). For numerical calculations of diffusion coef-

ficients for chorus waves observed in L ∼ 4 to 5.5, we use

ωm = 0.35�c0, a variance 1ω = 0.15�c0, and a maximum

frequency variation of 1.51ω.

4.2 Plasmaspheric hiss and lightning-generated waves

(2 ≤ L ≤ 3)

We shall consider two cases at L = 2 and 2.5 in quiet con-

ditions, as provided by Meredith et al. (2007). For L = 2

and 2.5, one has �pe/�c0 = 5.6 and 7.3, respectively. The

Gω functions are obtained by roughly fitting the correspond-

ing CRRES average spectra, and they will be compared with

the different fits given by Meredith et al. (2007) in Sect. 5.6.

Here we use two Gaussians for hiss and lightning-generated

waves in Gω. In addition, these Gaussians are required to be

not-too-wide in order for related analytical estimates to be

valid. Approximating CRRES data at L = 2, one gets ωm,1 ∼

Table 1. Wave-normal angle models for the different wave modes.

Wave mode Wave-normal model

Hiss, lightning Eq. (18) for realistic distribution

Xm = 0 and Xw = 1 for quasi-parallel waves

Chorus Eq. (17) for realistic distribution

Xm = 0 and Xw = 1 for quasi-parallel waves

(2π)350 and 1ωm,1 = (2π)350 (in rads s−1) and ωm,2 ∼
(2π)2000 and 1ωm,2 = (2π)2000 (in rads s−1) (with cutoffs

at ωm ± 21ω in numerical calculations) for 23 pT hiss and

3 pT lightning waves. At L = 2.5, one gets ωm,1 ∼ (2π)350

and 1ωm,1 = (2π)300 (in rads s−1) and ωm,2 ∼ (2π)2000

and 1ωm,2 = (2π)1700 (in rads s−1) for 38 pT hiss and

5.5 pT lightning-generated waves. It is clear from our pre-

ceding analytical estimates (Mourenas et al., 2012b) that

very low frequency hiss wave-normal angles reach the Gen-

drin angle only above θ ∼ 88◦. On the other hand, lightning-

generated and magnetospherically reflected whistlers have a

much higher frequency than hiss (about 3 kHz), allowing the

Gendrin angle to be reached above 85◦. A sensible portion

of their power is believed to propagate at such oblique angles

(Meredith et al., 2007), as it is also the case for VLF transmit-

ters waves near 20 kHz, which may already reach the Gendrin

angle at θ > 45◦. Since the validity of our numerical and an-

alytical models requires that ω > ωLH, the upper bound on

latitude integration is limited accordingly, depending on the

mean frequency of the waves considered. VLF waves may

travel up to λ ∼ 40◦ before their reflection, while hiss waves

are considered up to λ ∼ 30◦ only. Here, the relevant calcu-

lations are performed for a constant mean amplitude of the

waves, corresponding to the average spectral intensities mea-

sured by CRRES between λ = 5◦ and 35◦ (Meredith et al.,

2007). Actually, the mean B2
w was found to vary weakly with

λ for λ < 20◦ in Cluster observations at L = 2–2.5. However,

we make use of the function g(θ) derived from fitting Cluster

data at 0.89 to 3.5 kHz (alternatively, we treat also the case

of quasi-parallel waves).

To model the g(X) distribution, we approximate Cluster

statistics (see Agapitov et al., 2012a) near 1 kHz by a poly-

nomial dependence on latitude:

Xm = 0.22 − 0.012l + 0.5l2 − 0.266l3 + 0.054l4

Xw =
√

2
(

0.19 − 0.19l + 0.51l2 − 0.24l3 + 0.044l4
)

.
(18)

The same approximations of Xm,w(λ) have been checked to

be valid for waves in the range 0.9–3.6 kHz at L ∈ [2,2.5].
A comparison of these approximations with the actual values

of Xm,w(λ) obtained from Cluster observations is shown in

Fig. 7.

Table 1 gives a quick overview of the different wave-

normal angle distributions that will be used for the different

wave modes in the full numerical calculations.
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Fig. 7. Mean value Xm and variance Xw from Eq. (18) are shown

by black color, while spacecraft observations are shown by circles.

5 Parametric comparisons with full numerical simula-

tions

5.1 Electron diffusion coefficients for interaction with

lower-band chorus waves in the outer belt

In this section we present pitch-angle diffusion coefficients

〈D〉B averaged over the bounce oscillations of resonant elec-

trons in a dipolar magnetic field (see details of the calculation

scheme in Glauert and Horne, 2005; Artemyev et al., 2012b).

We consider oblique lower-band chorus waves (ωm/�c0 =
0.35) dominant in the outer belt for L ∈ [3.5−5.5]. For these

calculations, we use the function g(X) given in Eq. (17) and

displayed in Fig. 6. For comparison, we also calculate 〈D〉B

for nearly parallel waves (Xm = 0) with Xw = 0.577, which

should be somewhat closer to the actual wave-normal an-

gle distribution of chorus at large L > 6 (these parameters

were also used by Glauert and Horne, 2005; Horne et al.,

2005). We use here a constant mean amplitude Bw = 100 pT

corresponding to dayside active conditions Kp ∼ 3 (Shprits

et al., 2007), and the equatorial magnetic field is calculated

for L = 4.5. Averaging over latitude is performed over the

region |λ| < λ+ = 40◦. For the main calculations, the full

Appleton–Hartree dispersion in Eq. (17) is used. However,

we also perform calculations of 〈D〉B with the simplified dis-

persion relation ω = �c cosθ/(1+ (�pe/kc)2) to investigate

the role of the ratio �pe/�c0 (these results are marked as

simplified DR, dispersion relation). Additionally, we show

〈D〉B calculated with a hybrid scheme where the Appleton–

Hartree dispersion is used everywhere (i.e., for the calcula-

tion of ∂ω/∂k‖ and ∂ω/∂k for the normalization of g(X)),

but the resonant roots (ωi,n,ki,n) are found from the simpli-

fied dispersion relation (these results are marked as simpli-

fied DR∗). Although the variation of the plasma frequency

�pe along field lines can be taken into account (see, e.g.,

Summers and Ni, 2008), the present analysis is restricted

to the simpler case of a constant �pe (believed to remain

roughly valid up to nearly λ+ = 40◦).

Figure 8 shows 〈D〉B for given harmonic numbers n calcu-

lated for three energies and four values of the ratio �pe/�c0.

Here, we perform a sum over |n| ≤ 60 harmonics at low en-

ergy E ≤ 1 MeV where the analytical estimate of the num-

ber of contributing (negative or positive) resonances 2Nr <

60 (see Sect. 3.1). At high energy E = 5 MeV, however,

the number of contributing resonances 2Nr reaches 160 at

�pe/�c0 = 10; then a sum over |n| ≤ 160 harmonics is per-

formed. Typically, 〈D〉B increases strongly at small equato-

rial pitch angles α0 for oblique waves as compared to nearly

parallel ones (compare black and grey solid curves). This

increase is produced by the growth of almost all the indi-

vidual rates in the vicinity of the loss cone, while only the

first resonance is available for parallel waves alone (Shkl-

yar and Matsumoto, 2009; Mourenas et al., 2012b). For large

values of �pe/�c0 > 2, we also show 〈D〉B calculated with

the simplified DR and simplified DR∗ (black dashed and

thin solid curves). One can see that 〈D〉B calculated with

the simplified DR∗ almost coincides with 〈D〉B obtained

with the Appleton–Hartree dispersion for α0 > 15◦. Elec-

trons with α0 < 10◦ can reach high latitudes, since their mir-

ror points are located at |λ| > 50◦. However, the latitude up-

per bound in our calculations is taken at |λ| = λ+ = 40◦,

where �c0/�c ≈ 1/7 and (�pe/�c)
2 ≈ (1/50)(�pe/�c0)

2.

This gives (�pe/�c)
2 < 2 for �pe/�c0 < 10. Only there,

in the close vicinity of the loss cone, can a substantial dif-

ference appear between the two calculations of 〈D〉B due

to corrections to resonant roots (ωi,n,ki,n) induced by the

modification of the dispersion relation. As a result, the lati-

tude of resonance at peak wave power decreases (see Fig. 4)

and diffusion decreases too with the simplified dispersion,

because 1nGθ in Eq. (1) increases with latitude (Mourenas

et al., 2012a). Moreover, in the presence of an oblique wave

distribution g(X) with a large variance Xw, the normaliza-

tion of g(X) in Eq. (2) can also modify 〈D〉B by up to a

factor of 2 when using the simplified dispersion relation at

medium to large pitch angles 30◦ < α0 < 75◦. In agreement

with Glauert and Horne (2005), there is no substantial dif-

ference between 〈D〉B calculated with the Appleton–Hartree

dispersion and with the simplified DR in the case of nearly

parallel waves at E ≥ 100 keV (not shown here).

The analytical estimate in Eq. (6) of 〈D〉B for oblique

waves agrees fairly well with the full numerical solutions

in Fig. 8 in the range �pe/�c0 > 4 and α0 > 10◦ where the

simplified roots are approximately correct. In particular, it is

worth noting that the 1/sinα0 decrease of analytical diffu-

sion rates with pitch angle coincides with the actual drop-off

of the numerical diffusion rates. As explained in Sect. 3, al-

though the discrepancy between analytical and numerical re-

sults near the loss-cone edge may be important, it will prove
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Fig. 8. 〈Dαα〉 for three values of electron energy and four values of the ratio �pe/�c0, for quasi-parallel and oblique chorus waves. Full

numerical solutions as well as the corresponding analytical estimates in Eqs. (4) and (6) are displayed.

negligible in lifetime calculations where 1/(tanα0〈D〉B) is

integrated over the whole pitch-angle domain (see Eq. 7).

In the lowest density case �pe/�c0 = 2, analytical estimates

still roughly match the full numerical rates for α0 > 30◦ and

E ≥ 1 MeV. Numerical rates 〈D〉B are then much larger than

the estimates at lower pitch angles, which should not lead to

large errors in analytical lifetimes. At the lowest density and

for E = 100 keV, however, the analytical estimate in Eq. (6)

significantly underestimates diffusion at α0 < 60◦, because

the corresponding estimated number of contributing reso-

nances Nr ∼ 0.9 is very small with the simplified dispersion,

while many more harmonics actually contribute with the full

dispersion (see Fig. 8). It shows that the analytical estimate

in Eq. (6) is valid at least between 100 keV and 5 MeV for

�pe/�c0 > 4, while an additional condition Nr > 2 is re-

quired for �pe/�c0 < 4, leading to a global validity limit

given approximately by E(MeV)> max(0.1,�3
c0/(�

2
peωm)).

Finally, in the case of a quasi-parallel wave distribution (θ <

45◦), the analytical estimate in Eq. (4) of 〈D〉B near the loss

cone can be seen in Fig. 8 to correspond rather well to the

full numerical solution at all densities �pe/�c0 > 2 and en-

ergies E = 100 keV to 2 MeV. It is only plotted for α0 < 40◦,

because the analytical 1/cos2 α0 variation in Eq. (4) is not ex-

pected to hold at larger pitch angles (Mourenas and Ripoll,

2012). Nevertheless, it is this low-α0, low-〈Dαα〉 range that

actually determines the lifetime value in this case (Albert and

Shprits, 2009; Mourenas and Ripoll, 2012).

For E = 5 MeV and at high density, the analytical esti-

mates of the small-θ cyclotron diffusion rates are null, simply

because the analytical estimate in Eq. (5) of λR is then such

that, analytically, resonance occurs only above the latitude

upper bound λ+ = 40◦, where wave intensity was assumed

to vanish. The latitudinal range of resonance is very narrow,

and the mean latitude of resonance is then very slightly over-

estimated by the approximate Eq. (5), leading to an under-

estimation of the cyclotron diffusion rates at 5 MeV. Without

such an upper bound λ < λ+, however, we have checked that

the analytical estimate in Eq. (4) of 〈D〉B remains accurate

even at high energy. Anyway, this discrepancy occurs only

for very low diffusion rates, corresponding to very large life-

times (see below). It is therefore not really important for most

practical applications such as lifetime estimates in months-

long numerical simulations of the radiation belts.

To explain the difference between the results obtained for

oblique waves (with g(X) from Fig. 6) and for nearly paral-

lel waves (Xm = 0, X < 1), we plot the function Ĝ(θ,λ) =
∑

ω GωGθ for particular values of particle energy, equato-

rial pitch angle and harmonic number (see Fig. 9). Note

that diffusion rates are proportional to ∼
∫

Ĝ(θ,λ)dλdθ . For

nearly parallel waves, the maximum of Ĝ corresponds to
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Fig. 9. Function Ĝ(θ,λ) for two n and particle energies (see text for details). Here �pe/�c0 = 4.5.

θ < 40◦ for all energies, pitch angles, and harmonics. This θ

range corresponds roughly to α0 > 60◦ (since the maximum

of Bessel functions occurs for α ≈ π/2 − θ ; see Mourenas

and Ripoll, 2012, and explanations above). It implies that

pitch-angle diffusion by parallel waves will be important

mainly for α0 > 60◦, as seen in Fig. 8. For oblique waves,

conversely, the maximum value of Ĝ depends on λ due to

Xm,w = Xm,w(λ). Then, the function Ĝ has finite values up

to at least θ = 80◦ and varies weakly with θ (see n = −1

harmonic for 100 keV particles and n = −10 harmonic for

1 MeV particles). In particular, Ĝ attains now finite values in

the θ domain comprised between the Gendrin and resonance

cone angles, falling sharply when θ gets close to θr(ω) as ex-

plained by Mourenas et al. (2012b) and Albert (2012). As a

result, all particles with α0 > 20◦ may be scattered with ap-

proximately the same rate (one can find a peak of 〈D〉B at in-

termediate values of α0 in Fig. 8). At high latitudes, cyclotron

resonance becomes available only between the Gendrin and

resonance cone angles. The increase of 〈D〉B for α0 < 10◦

corresponds to the sum of factors 1n over 4Nr harmonics.

Note that the nonzero value of Ĝ(θ,λ) for θ > θr(ωm) is ex-

plained by the finite range 1ω of ω variation in the calcula-

tion of Ĝ(θ,λ); i.e., ω < ωm + 1ω while θr is calculated for

ω = ωm.

To better understand the behavior of 〈D〉B, it is useful

to plot the local Dαα(θ,λ) diffusion coefficient for given

values of α0 and E (〈D〉B =
∫

DααdXdλ). Figures 10 and

11 show these local pitch-angle diffusion coefficients for

�pe/�c0 = 4.5 and 7.5, respectively, calculated with the

Appleton–Hartree DR and with the simplified DR∗. The

left-hand panels correspond to small equatorial pitch angle

α0 = 5◦ and the right-hand panels to α0 = 45◦. From top

to bottom, one considers E = 100 keV electrons for n = −1

and −5, then E = 1 MeV electrons for n = −1, −5, and −10

in both figures. The average values of θg(λ) and θr(λ) calcu-

lated at the frequency ω = ωm of peak wave power are also

indicated for convenience (solid black and dotted black lines,

respectively). It has been established theoretically (Mourenas

and Ripoll, 2012; Mourenas et al., 2012b) that the con-

tributing resonances for quasi-parallel waves alone are such

that 1 ≤ |n| ≤ N s
max (see also Sect. 3.1). For �pe/�c0 = 4.5–

7.5, one finds N s
max ∼ 1.5–2.3 and 5–8 for E = 100 keV and

1 MeV, respectively. It is plain to see in Figs. 10 and 11

that, for low-order resonances such that 1 ≤ |n| ≤ N s
max, the

most important contribution to diffusion indeed comes from

the range θ < 45◦, while, for higher-order resonances such

that |n| > N s
max, diffusion is significant only for θg ≤ θ < θr

as expected from other analytical considerations (Mourenas

et al., 2012b). The proposed approximation (Mourenas et al.,

2012b) of the wave-normal angle distribution by two distri-

butions at θ < 45◦ and θ > max(45◦,θg) appears therefore

vindicated. Oscillations in the magnitude of D can be seen

in this large-θ range for fixed n and increasing latitude λ or

wave-normal angle θ . These oscillations are due to modu-

lations of the Bessel functions Jn(x) with x ∼ n tanθ tanα

as the resonant pitch-angle value α grows with λ up to the

mirror point (where the latitude of mirror points is λb ∼√
2/(3tanα0) from adiabatic invariance (Mourenas et al.,

2012b)) or λ+, or as θ increases up to θr at a given latitude.

It is also worth noting in Figs. 10 and 11 the close agreement

between the local D calculated with the Appleton–Hartree

DR and with the simplified DR∗ for α0 = 45◦, demonstrat-

ing that the approximate roots are correct in the medium to

large pitch-angle range. As expected, the agreement between

the full DR D and the simplified one becomes better at higher

density for both values of α0.

Now, let us focus on the large-θ domain. Significantly

contributing resonances are then expected to be such that

Nr/3 ≤ |n| ≤ 3Nr, with D(n) decreasing roughly like 1/n2

for |n| ≫ Nr (Mourenas et al., 2012b). For the cases in
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Fig. 10. Local diffusion coefficient Dαα for various n, particle energies and equatorial pitch angles (see text for details). The black solid

curve shows the position of resonance cone angle θr. Black dashed curves show the position of the Gendrin angle θg. Here �pe/�c0 = 4.5.

Figs. 10 and 11, one finds Nr ∼ 2 to 3 for E = 100 keV,

while for E = 1 MeV one gets for �pe/�c0 = 4.5(7.5) that

Nr ∼ 6 (10) at α0 = 45◦ and Nr ∼ 9 (15) at α0 = 5◦. Larger

values of D are found for |n| ∼ Nr as predicted, for example

in Fig. 10 at 1 MeV for n ∼ −5 at α0 = 45◦ and for n ∼ −10

at α0 = 5◦. At higher |n|, a clear decrease can also be seen

for n = −10 ∼ −1.7Nr as compared to n = −5 for α0 = 45◦

in the same figure. In Figs. 10 and 11, D goes down to

zero for n = −1 at 1 MeV, which corresponds to the range

|n| < Nr/3. For |n| < Nr, resonance occurs farther and far-

ther away from the equator (Mourenas et al., 2012b). The up-

per latitude of diffusion obtained in both figures corresponds

to the estimate λb for α0 > 20◦, reaching λ+ = 40◦ at smaller

pitch angles. For α0 = 5◦ (a value typical of the range α0 <

10◦), D attains significant values only at high latitudes such

that λ > (2(ωm/[�c0 sinα0])2/27 − 2)1/2 (Mourenas et al.,

2012a). With the roots from the simplified dispersion rela-

tion, the maximum latitude where D is important agrees well

with the analytical estimate λMM ∼ 35◦ (Mourenas et al.,

2012a). With the full Appleton–Hartree DR, however, D re-

mains high up to λ+ = 40◦. With the simplified DR∗, reso-

nance in the vicinity of the loss cone is therefore shifted to

lower latitudes, and this shift results in a decrease of diffu-

sion. However, this difference between the two DRs is only

important near the loss cone at the highest latitudes.

The above-discussed variation of individual bounce-

averaged diffusion coefficients 〈Dn〉B as a function of n

for quasi-parallel or oblique chorus waves is emphasized in

Fig. 12. The main result in Fig. 12 is the very large increase of

the number of contributing resonances with oblique whistler

waves (|n| ∼ 2Nr) as compared to nearly parallel waves

(|n| < N s
Max < Nr). It explains the higher diffusion rates pre-

sented in Fig. 8 for oblique waves. In general, diffusion by

nearly parallel waves occurs only for |n| ≤ N s
Max, while dif-

fusion by oblique waves occurs principally for Nr/3 ≤ |n| ≤
2Nr, with a progressive but steep decrease above Nr as well

as below Nr/3 as expected (Mourenas et al., 2012b). Near the

loss-cone edge (for α0 < 10◦), however, more intense high-

order resonances become available for diffusion by oblique

waves when the density decreases with the full Appleton–

Hartree DR than from the simple estimate < 2Nr obtained

with the simplified DR. At such small equatorial pitch angles

α0 < π/2−1θ , only the first cyclotron resonance contributes

in the case of quasi-parallel waves (see the grey curve in the

left panels of Fig. 12), while at larger pitch angles, all the

|n| < N s
Max resonances can then be important (see right pan-

els in Fig. 12 and discussion in Mourenas and Ripoll, 2012).
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Fig. 11. Local diffusion coefficient Dαα for various n, particle energies and equatorial pitch angles (see text for details). The black solid

curve shows the position of resonance cone angle θr. Black dashed curves show the position of the Gendrin angle θg. Here �pe/�c0 = 7.5.

5.2 Electron lifetimes in the outer belt and scaling laws

The analytical lifetime estimates provided in Eq. (9) for

quasi-parallel waves and in Eq. (12) for oblique waves are

compared with the numerically calculated electron lifetimes

in Figs. 13, 14 over a broad parameter range representative

of the outer belt (similar to Fig. 8). Equation (9) for quasi-

parallel waves reproduces rather accurately the full numer-

ical lifetimes over the whole parameter range. The discrep-

ancy is most often smaller than a factor of 1.5. At the highest

energies (and at higher energy for smaller density), a sud-

den increase of the lifetimes can be noticed: it is due to the

reduction of the latitudinal range of cyclotron resonance, as

resonance occurs at higher and higher latitude correspond-

ing to �c(λ)/�c0 ≈ (pεm0)
2/3 (Mourenas and Ripoll, 2012;

Mourenas et al., 2012b). When cyclotron resonance is not

anymore available below the assumed latitude upper bound

λ+ = 40◦ of wave presence, only Landau resonance remains

and the corresponding lifetimes are much larger (Horne et al.,

2005). The energy threshold for this steep increase of lifetime

is rather accurately predicted by the analytical second-order

estimate in Eq. (5) of the latitude of resonance (within 15 %

of the actual value). From Eqs. (4)–(5), the increase of life-

times should occur at a nearly constant value of pεm0, i.e., at

energies such that p ∝ �c0/�pe for fixed chorus frequency,

which is exactly what is observed in Fig. 13. This situation

corresponds to very large lifetimes near or above 100 days

for high-amplitude 100 pT waves (lifetimes would be even

larger for smaller amplitudes). Moreover, we have checked

that if we remove this assumed upper latitude cutoff at λ+,

analytical lifetimes remain correct even at higher energies.

As concerns oblique waves, the analytical lifetime es-

timate in Eq. (12) is also found to be in good agree-

ment with the full numerical calculations over most of

the considered parameter domain, i.e., for E (MeV)>

max(0.1,�3
c0/(�

2
peωm)). This corresponds to the whole den-

sity (or L shell) outer-belt domain for E ≥ 1 MeV and to

�pe/�c0 > 4 for E > 100 keV. In this domain, the discrep-

ancy between analytical estimates and the numerical life-

times remains smaller than a factor of 2. This is much smaller

than the uncertainties associated with outer-belt density mod-

els (Sheeley et al., 2001; Denton et al., 2006; Ozhogin et al.,

2012) and chorus intensity models (Meredith et al., 2001;

Shprits et al., 2007; Li et al., 2011; Artemyev et al., 2012b).

Therefore, the proposed analytical lifetimes could prove use-

ful for performing extensive numerical simulations of the
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radiation belts or to investigate in detail the sensibility of

global belt simulations to various parameters. As noted be-

fore, the simplified dispersion used in the analytical calcula-

tions is more accurate at higher density. The agreement of an-

alytical lifetimes with full numerical results is thus expected

to improve steadily as �pe/�c0 increases. It is exactly the

behavior that is observed in Figs. 13 and 14. In the latter fig-

ure, lifetimes are seen to vary asymptotically like τs ∝ �
14/9
pe

and τs+l ∝ �pe at high density, as predicted in Eqs. (14)–

(15). Finally, Fig. 15 shows that lifetimes (both analytical

and numerical) are weakly dependent on the mean lower-

band chorus frequency for typical values ωm/�c0 = 0.15 to

0.4 (Horne et al., 2005; Shprits et al., 2007), especially at

high energy. For ωm/�c0 > 0.45, a significant portion of the

wave power lies inside the upper-band chorus range, not cov-

ered by the present analytical estimates. Actually, the ap-

proximation γω/�c ≪ |n| used to simplify the argument

of the Bessel functions in Eq. (1) becomes less reliable for

ω = ωm +1ω > 0.5�c0. An application of our analytical es-

timates for upper-band chorus must therefore be ruled out. It

is probably the explanation for the steeper increase of life-

times in full numerical solutions than in the analytical es-

timates at ωm/�c0 > 0.45 for oblique waves. Lifetimes are

generally one order of magnitude smaller with very oblique

waves included than with quasi-parallel waves alone. Such

a strong reduction of timescales might actually contribute to

explain the large and rapid trapped electron density dropouts

observed in the outer radiation belt during high geomagnetic

activity periods at L = 4 to 5 (Tu et al., 2010; Kim et al.,

2011).

5.3 Role of very oblique waves

Still, the preceding lifetimes were evaluated for constant

wave amplitudes. For more realistic calculations, the wave

power distribution B2
w(θ) as a function of θ should also be

taken into account. It leads to a reduced amount of wave

power at large wave-normal angles as compared to θ < 45◦

(see Fig. 2). Therefore, the effect of oblique waves in life-

times should be reduced. The bounce-averaged diffusion co-

efficient calculated by multiplying the θ distribution g(θ) by

a function B2
w(θ) is displayed in Fig. 16 for the same oblique

wave distribution g(θ) as before and E = 1 MeV (similar re-

sults are obtained for E = 0.1 to 5 MeV, not shown here).

The wave intensity B2
w at λ > 20◦ is divided (via g(θ)) by

factors 1.5, 2, 5, 20 and 100 for θ > 60◦ to demonstrate

this effect. The corresponding reduction of pitch-angle dif-

fusion occurs for α0 < ωm/�c0 (i.e., α0 < 20◦) only, as pre-

dicted in Sect. 3. Moreover, when oblique wave amplitudes

at λ > 20◦ are reduced by less than a factor of 2, the diffu-

sion rate is almost unaffected. Actual lifetimes at L ∼ 4 to

5.5 can therefore be calculated without any reduction factor,

like in Fig. 13, and they are well estimated by Eqs. (12)–(15).

At larger L > 5.5, they should be comprised between 30 and

Fig. 12. Individual bounce-averaged diffusion coefficient 〈Dn〉 as a

function of n. The black solid and black dashed vertical lines show

the values of N s
Max and Nr, respectively. Here E = 1 MeV and α0 =

5◦, 45◦.

60 % of the quasi-parallel-wave lifetime (Eqs. 9–14) (see the

end of Sect. 3).

5.4 Role of mean amplitude Bw variation with λ

The preceding comparisons have been achieved for a (mean)

wave intensity independent of latitude. It is important to

check if full numerical lifetimes obtained with a realistic

latitude-varying wave intensity B2
w(λ) (see Artemyev et al.,

2012b) can also be recovered with the approximate analyti-

cal model by means of using only an average intensity. Fig-

ure 17 shows the full numerical 〈D〉B calculated for Kp < 3

for different values of energy and plasma density. We use the

same parameter range as before and a distribution g(X), with

Bw(θ) kept fixed in order to demonstrate each effect sepa-

rately. One can see that the approximation of a constant rms

amplitude Bw = 6 pT (corresponding to Fig. 2) gives diffu-

sion rates very similar to the diffusion rates calculated with

a realistic distribution B2
w(λ). However, due to a significant

minimum in wave power B2
w(λ) in the vicinity of the equa-

tor on the dayside in Cluster statistics (see, e.g., Artemyev

et al., 2012b; Agapitov et al., 2012a), the realistic diffusion

rate is significantly smaller than 〈D〉B calculated with a fixed

Bw at very large pitch angles α0 > 80◦, especially for low

energy E ∼ 100 keV. The corresponding lifetimes are almost

identical to numerical lifetimes evaluated with a constant Bw

for medium to high energy electrons (as for E = 1 MeV), but

sensibly increased at low energy E ∼ 100 keV (by a factor
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Fig. 13. Electron lifetimes for four values of the ratio �pe/�c0, for

quasi-parallel and oblique chorus waves. Full numerical solutions

as well as the corresponding analytical estimates in Eqs. (9) and

(12) are displayed.

of 5 to 10). Nonetheless, it is worth emphasizing that Cluster

statistics are probably slightly biased near the equator due to

poorer orbital coverage there (Agapitov et al., 2011). It could

easily lead to a factor of 2 underestimation of wave ampli-

Fig. 14. Electron lifetimes for two values of particle energy, for

quasi-parallel and oblique chorus waves. Full numerical solutions

as well as the corresponding analytical estimates in Eqs. (9) and

(12) are displayed as a function of �pe.

tudes there, so that actual lifetimes may be expected to re-

main within a factor of 2 of the ones obtained for a constant

Bw even at low energy E ∼ 100 keV (moreover, nightside

chorus is generally slightly more intense near the equator in

Cluster data than the dayside chorus considered here, which

dominates at higher latitudes; see Artemyev et al., 2012b).

Since analytical lifetimes are slightly larger than full numer-

ical values for constant Bw(λ) and low to medium energy

electrons, they should represent good estimates of the actual

lifetimes.

5.5 Comparison with a numerical parameterization of

lifetimes in the outer belt

The analytical estimate in Eq. (9) of electron lifetimes for

small θ -waves is compared with parameterized lifetimes re-

cently obtained by fitting numerical calculations for an inter-

action with lower-band chorus waves dominant in the outer

radiation belt. We use the same initial conditions as Shprits

et al. (2007) and Gu et al. (2012): 100 pT storm-time chorus

waves, dayside plasma trough density Ne ∼ 100(3/L)4 cm−3

for L > 3 from Sheeley et al. (2001), and θ < π/4. More-

over, chorus waves are assumed here to be uniformly present

up to λ+ ≈ 40◦, while in reality intensity peaks between

λ ≈ 15◦ and λ ≈ 30◦ on the dayside (Gu et al., 2012). While

upper-band chorus is also assumed to be present in the
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Fig. 15. Electron lifetimes for two values of ratio �pe/�c0, for

quasi-parallel (diamonds) and oblique (red crosses) chorus waves.

Full numerical solutions as well as the corresponding analytical es-

timates in Eqs. (9) and (12) are displayed as a function of mean

frequency ωm.

Fig. 16. Comparison of bounce-averaged pitch-angle diffusion co-

efficients for �pe/�c0 = 4.5 and 1 MeV electrons, obtained for dif-

ferent reduced levels of oblique chorus wave intensity at λ > 20◦.

Fig. 17. Diffusion coefficients calculated with realistic root-mean-

square wave amplitudes Bw(λ) for L = 4 to 5 for Kp < 3 are shown

by red curves. Black and grey curves show 〈D〉B calculated with

a constant rms Bw = 6 pT with a realistic g(θ) and with 〈θ〉 ∼ 0,

respectively.

numerical simulations by Gu et al. (2012), its effect on life-

times consists mainly in the suppression of the deep gap in

diffusion between the Landau and first cyclotron resonance

peaks. In such a case, Landau resonance is unimportant in

lifetimes for moderately oblique waves at E > 100 keV, as

noted by Gu et al. (2012). Upper-band chorus actually plays

the same role in the outer belt as lightning-generated waves in

the plasmasphere (which fill the trough in diffusion between

Landau and cyclotron peaks of hiss waves; see Meredith

et al., 2007). For analytical estimates, only the cyclotron part

of the lifetime in Eq. (9) is therefore considered here.

The numerically parameterized lifetime (Gu et al., 2012)

(of 50 % accuracy) is fairly recovered by the analytical es-

timate in Eq. (9)–(14) in Fig. 18, in spite of our very rough

approximation of initial conditions. Moreover, the variations

with density and L shell given by Gu et al. (2012) have also

been checked to be similar (or identical as concerns B0 de-

pendency) to the variations of our analytical lifetimes. Note

that part of the discrepancy may also originate in the assump-

tion made by Gu et al. (2012) that lifetimes can be calculated

as τ ≈ 1/〈D〉(αLC). While the latter formula is generally ac-

curate in the considered cases, it can lead to some differences

with Eq. (7), which is used in our analytical and numerical

calculations and is thought to be more consistently accurate

(Albert and Shprits, 2009).
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Fig. 18. Comparison of analytical lifetime with parameterized life-

times obtained by fitting numerical simulations for �pe/�c0 = 4.5

at L = 4.5 as a function of energy on the dayside. The analytical

estimate in Eq. (9) is plotted (blue line for 100 pT average intensity

lower-band chorus with ωm/�c0 ∼ 0.3) as well as the parameter-

ized lifetime (solid black circles) for moderately oblique waves.

5.6 Interaction with plasmaspheric hiss and lightning-

generated waves

Meredith et al. (2007) have shown that the Gω distribution

of whistler waves in the slot region (L ∈ [2,3]) can be ap-

proximated by a sum of three Gaussians with different mean

values and variances. Here we compare diffusion coefficients

calculated with this approximation and with an approxima-

tion of Gω by a sum of two Gaussians (see description in

Sect. 4.2). We consider a g(θ) distribution obtained from

Cluster data (see Eq. 18) and the simplified approximation

from Meredith et al. (2007) with 〈θ〉 = 0 and Xw = 0.36.

All calculations in Fig. 19 are performed for L = 2.0. We

can conclude that approximating Gω by a sum of two Gaus-

sians gives almost the same diffusion coefficients as for three

Gaussians (Meredith et al., 2007). Moreover, including the

oblique waves observed by Cluster does not change 〈D〉B

substantially (compare left and right columns in Fig. 19).

Therefore, one can safely use a quasi-parallel approxima-

tion of wave propagation for the calculation of analytical

lifetimes. The effect of oblique waves is less important here

than in the case of chorus at L ∼ 4 (see Sect. 5), because the

portion of wave power inside the large-θ range (above the

Gendrin angle) is much smaller for lower-frequency hiss and

lightning-generated waves.

Analytical and full numerical lifetimes in the slot region

at L = 2 and 2.5 under quiet geomagnetic conditions are dis-

played in Fig. 20 as a function of energy (with plasma/wave

parameters given in Sect. 4.2; see Meredith et al., 2007).

CRRES spectra were fitted by two Gaussians correspond-

ing respectively to hiss and lightning-generated waves (see

Sect. 4). Here we use g(θ) determined by Eq. (18) from

Cluster statistics. However, comparisons with numerical life-

times obtained by Meredith et al. (2007, 2009) show also a

Fig. 19. 〈D〉B for three values of electron energy (L = 2.0,

�pe/�c0 = 5.6). Approximation of Gω by three and two exponents

are used (see text for details). Left column show data obtained with

approximation of g(θ) distribution in Eq. (18). Right column shows

data for parallel wave propagation.

good agreement. Analytical lifetimes reproduce rather pre-

cisely the full numerical solutions at medium to high energy

where both cyclotron and Landau resonance are present. At

lower energy where the Landau resonance contributes alone,

actual lifetimes are less accurately estimated by the analyti-

cal formulas (as explained in Appendix B). But this occurs

only for very long lifetimes (which are therefore practically

useless).

To sum up the results of our numerous comparisons with

numerical simulations, Table 2 provides a brief overview of

the parameter ranges where analytical lifetime estimates can

be considered as good approximations of the full numerical

calculations in the plasmasphere as well as in the outer belt.
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Fig. 20. Analytical lifetimes at L = 2 and 2.5 given by Eq. (9)

(dashed blue curve) are compared with those obtained by the numer-

ical scheme: black diamonds show results obtained with a realistic

θ distribution and |n| ≤ 25 (Nr < 10). Electron energy varies be-

tween 100 keV and 5 MeV. Hiss and lightning-generated whistlers

are considered.

5.7 Global analytical lifetimes compared to recent mea-

surements at E ∼ 300 keV and 2 MeV

It is interesting to compare the analytical lifetime estimates

discussed above with recent statistics of lifetimes obtained

from SAC-C and DEMETER satellites for L < 5 (Benck

et al., 2010) and from the SCATHA/SC3 satellite at L > 5

(Su et al., 2012) for 300 keV electrons, and with SAM-

PEX lifetimes for E ∼ 2 MeV (Meredith et al., 2009; Tu

et al., 2010). To this aim, the root-mean-square amplitudes

of lower-band chorus measured by Cluster in the dayside

outer belt (L > 4) during moderate geomagnetic activity pe-

riods (Kp ∼ 1.5 to 2) have been fitted by a formula Bw ∼
20pT · exp(−|L − 7|/2), showing a maximum of wave in-

tensity at L ∼ 7 and yielding the same values as in Fig. 2

for L ∼ 4.5. For L > 4, the outer-belt density model Ne ∼
100(3/L)4 cm−3 from Sheeley et al. (2001) is used. To bet-

ter model a smooth transition between oblique chorus and

more quasi-parallel chorus from L = 5 to 6, Eq. (15) is used

to estimate lifetimes for L = 4 to 5, while for L > 5 we use

a rough approximation τ ∼ τs+l + (τs/2)min(L−5,1) from

Eqs. (14)–(15). This way, τ ∼ τs/2 ≫ τs+l for L > 5.5. In-

side the plasmasphere (L < 3.5), we consider the quiet-time

hiss and lightning-generated whistler spectra (and plasma

densities) supplied by Meredith et al. (2007) from CRRES

observations and lifetime estimates in Eqs. (9) and (14) for

weakly oblique waves.

The quiet-time lifetimes measured in the outer belt are rea-

sonably well recovered by the analytical estimates in Fig. 21.

Analytical estimates of the lifetimes of 300 keV electrons re-

main within a factor of 2 of the actual lifetimes for L = 4 to 8

and roughly reproduce their overall decline toward higher L

shells (Su et al., 2012; Benck et al., 2010). For 2 MeV elec-

trons, we only took lifetimes estimated from optimum model

fitting to SAMPEX data during two pre-storm periods shown

Table 2. Parameter domains where analytical lifetime estimates are

a good approximation for the full numerical simulations.

Spatial region Validity range of analytical estimates

2 ≤ L < 3 (plasmasphere) 0.25 < E (MeV)≤ 5

with only hiss and lightning-generated waves (100 Hz to 6 kHz)

4 ≤ L < 7 (outer belt) ωm/�c0 = 0.1 to 0.5

�pe/�c0 = 2 to 10

Oblique chorus max(0.1,�3
c0

/(�2
peωm)) < E (MeV)< 5

Quasi-parallel chorus 0.1 ≤ E (MeV)≤ 5

in Figs. 5 and 7 in the work by Tu et al. (2010), corresponding

to low geomagnetic activity. Although experimental lifetimes

may then vary by a factor of 5 (Borovsky and Denton, 2009),

analytical lifetime estimates remain within a factor of 2 of

the average values inferred from model fitting to measure-

ments in these two cases. The increase of analytical lifetimes

with energy in the region 4 < L < 6.6 is also in qualitative

agreement with observations (Su et al., 2012; Meredith et al.,

2007).

For L = 2 to 3, Fig. 22 shows that analytical lifetime esti-

mates derived for hiss and lightning-generated waves such

that 1θ = 30◦ and θ s
Max = 45◦ (Meredith et al., 2007) are

again in reasonable agreement with the measured lifetimes

for E = 2 MeV, although the fitting of the actual spectra that

is used (only two Gaussians; see Sect. 4.2) may be too rough

and the (quiet-time) wave intensities used slightly too small.

It is also clear from Eqs. (9) and (11) that small lifetimes at

L < 2.5 obtain only for small 1θ < 45◦ at α0 > 70◦, in or-

der for the minimum of diffusion between the cyclotron peak

and the Landau peak to be not too deep. The presence of a

multiplicative factor tan1θ at the numerator of Eq. (11) in

analytical lifetimes, which comes from Eq. (8), actually ex-

plains the larger lifetimes obtained by Meredith et al. (2009)

in numerical simulations when considering high-frequency

waves with 1θ > 45◦. Moreover, cyclotron resonance for

α0 > 70◦ occurs only at λ < 10◦ (from adiabatic invariance).

The small lifetimes measured at L = 2 to 3 therefore require

high-frequency whistlers such that 1θ < 30◦ at λ < 10◦. It

is precisely what was observed onboard CRRES and Cluster

(see Fig. 3). In fact, lightning-induced whistlers do not need

to be guided at λ > 10◦ to yield small lifetimes; they must

only be quasi-parallel near the equator. For high energies

E > 1 MeV, the Landau term τLandau in Eq. (9) is actually

negligible at L > 2, and hiss and lightning-generated waves

seem to be sufficient to explain quiet-time electron losses

in the slot region (Meredith et al., 2007, 2009; Kim et al.,

2011). At lower energies E < 1 MeV, it is not true anymore if

one considers only hiss and lightning-generated waves such

that f < 6 kHz as in CRRES spectra from Meredith et al.

(2007). Nevertheless, VLF waves from ground transmitters

are also important at L < 3 (Abel and Thorne, 1998; Starks

et al., 2008; Breneman et al., 2011; Cohen et al., 2012), as

well as magnetosonic waves at L > 2 (Meredith et al., 2009).
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Fig. 21. Analytical lifetime estimates from L = 4 to 8 (blue curves)

are compared with actual lifetimes measured by SAC-C, DEME-

TER, and SCATHA (Benck et al., 2010; Su et al., 2012) for 300 keV

electrons and with lifetimes obtained during two pre-storm periods

by model fitting to SAMPEX data (Tu et al., 2010) for 2 MeV elec-

trons. Lifetimes are estimated for lower-band chorus wave average

amplitudes obtained from Cluster for moderate geomagnetic activ-

ity (Kp ∼ 2).

Both these kinds of waves play essentially the same role as

lightning-generated whistler waves in filling the gap in dif-

fusion rate between the Landau and cyclotron peaks cor-

responding to hiss waves, but at higher pitch angles (near

α0 = 90◦) or in the same range of pitch angles at smaller

energy. Although the exact level of these waves is not well

known (highly variable), we simply assume here that it is

sufficient to get τLandau ≪ τs in Eq. (9). This corresponds

to additional wave amplitudes around 3–5 pT typically. In

Fig. 22, analytical lifetime estimates for E = 300 keV are

therefore plotted assuming that this term τLandau is negligi-

ble in Eq. (9). With this assumption, the increase of mea-

sured lifetimes as energy decreases for L < 2.6 can be un-

derstood from analytical estimates. The decrease with E

of the maximum equatorial pitch angle (cosαUC,1 ∝ 1/p)

where cyclotron resonance can occur for the low-frequency

part of the spectrum (hiss waves) first leads to an increase

of the important 1τi term (from lightning-generated waves)

in Eqs. (11) and (9), because (1 − sinαUC,1) increases faster

than 1/p. At still smaller energies (300 keV), cyclotron reso-

nance is not available anymore for hiss waves: the cyclotron

term in Eq. (9) from hiss waves is replaced by the same term

from higher-frequency and much smaller intensity lightning-

generated waves, leading to an even greater increase of life-

times.

6 Conclusions

In this paper, analytical estimates of energetic electron life-

times in the radiation belts have been compared extensively

with full numerical simulations. We consider low-frequency

(�ci ≪ ω < �c/2, ω�c ≪ �2
pe) nearly parallel as well as

oblique whistler waves, such as those observed in the inner

Fig. 22. Analytical lifetime estimates from Eq. (9) for L = 2 to 3 are

compared with actual lifetimes measured by SAC-C and DEME-

TER (Benck et al., 2010) for 300 keV electrons and by SAMPEX

(Meredith et al., 2007) for 2 MeV electrons. Lifetimes are esti-

mated for interaction with quiet-time hiss and lightning-generated

whistlers, with an additional contribution from higher-frequency

whistler waves or magnetosonic waves required at low energy (see

text). Blue color is for 2 MeV and red color for 300 keV, with

squares indicating measured values. The dashed line shows the life-

times from Eq. (14) alone.

belt by CRRES (Meredith et al., 2007) and in the outer belt

by Cluster and THEMIS (Agapitov et al., 2012b; Li et al.,

2011). The considered wave-normal distribution, frequency

spectra, and wave power latitudinal distribution have been

obtained from statistics of various satellite measurements.

The analytical model relies mainly on the possibility of rep-

resenting the spectra as a sum of relatively narrow Gaus-

sians such that 1ω ∼ ωm/2, on the approximation of Bessel

functions by their series expansions around their first max-

ima, and on the use of a simplified dispersion relation (which

should remain valid for wave-normal angles not too close to

the resonance cone angle at very high latitudes). The refined

analytical model described here captures many features of

the full numerical solution in a wide parameter range. The

main results of the present study are summarized below:

1. Inside the plasmasphere, the analytical model repro-

duces accurately numerical lifetime variations over a

few decades as a function of energy (0.1 < E (MeV)≤
5) and L ∼ 2 to 3 (corresponding to �pe/�c0 ∼ 5 to

8), when considering a realistic spectrum composed of

hiss (ω/�c0 ∼ 0.005 to 0.02) and lightning-generated

(ω/�c0 ∼ 0.01 to 0.1) whistler-mode waves of realistic

latitude-varying obliqueness (obtained from Cluster and

CRRES statistics during relatively quiet periods).

2. In the outer belt at L ∼ 4 to 5.5, the analytical model

recovers rather accurately lifetime variations over a few

decades as a function of energy (E = 0.1 to 5 MeV),

density (�pe/�c0 ∼ 2 to 10), and mean frequency
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ω/�c0 = 0.1 to 0.5, when considering realistic oblique

chorus waves obtained from Cluster statistics during

moderately disturbed periods.

3. When considering quasi-parallel chorus waves corre-

sponding to quiet-time Cluster statistics at L ∼ 5.5 to

7, the analytical lifetime estimates are very accurate in

general in the same ranges of energy, density, and fre-

quency as above.

4. Numerical as well as analytical calculations show that

timescales are strongly reduced at L = 4 to 5.5 when

chorus waves reach large wave-normal angles, between

the Gendrin and resonance angles. Such very oblique

whistler waves are often present at moderate to high lat-

itudes, where they represent from 10 % to 50 % of re-

ported chorus occurrences (Burton and Holzer, 1974;

Hayakawa et al., 1990; Santolı́k et al., 2009; Agapitov

et al., 2012b; Haque et al., 2010, 2011). The damping

of oblique chorus waves by suprathermals is much more

efficient on the nightside and at L > 5.5 than at L < 5.5

on the dayside (Chen et al., 2013), which probably ex-

plains why their intensity remains similar to the inten-

sity of quasi-parallel waves in the latter case for Kp < 3

in the Cluster statistics presented here.

5. At L = 4 to 7, lifetime estimates obtained for average

chorus intensities and wave-normal distributions are in

reasonable agreement with lifetimes measured during

relatively quiet periods, for both 300 keV and 2 MeV

electrons.

6. With very oblique chorus waves, the strong diffusion

regime can be reached easily in the dayside outer belt

at times of high geomagnetic activity. This could corre-

spond to some of the very rapid drop-outs in trapped

electron density at L = 4 to 5.5 observed by various

satellites during disturbed periods.

7. Inside the plasmasphere (2 < L < 3), the small life-

times measured by satellites require high-frequency

whistler waves (lightning-induced and VLF) that have

to remain very moderately oblique at latitudes within

10◦ of the equator, as actually observed by Cluster.

Measured lifetimes are in good agreement with ana-

lytical estimates for 2 MeV electrons when considering

only hiss and lightning-generated waves. For 300 keV

electrons at L ≤ 2.5, higher-frequency VLF waves must

be added to hiss and lightning-generated waves to re-

cover the observed lifetimes.

Space weather forecasting and nowcasting capabilities are

very much in demand today to help safeguard important

satellite assets from strong particle flux hazards linked to

solar activity. In this context, the proposed analytical esti-

mates may prove useful for quickly evaluating the sensi-

tivity of global radiation belt codes results to insufficiently

known wave and plasma parameters, for thorough investiga-

tions of different processes, as well as more simply to speed

up the calculations. Although analytical estimates cannot be

expected to be as accurate as full numerical calculations,

analytical lifetimes have been demonstrated here to remain

within a factor of 2 of the exact solutions over a very wide

parameter range. Such a discrepancy is much smaller than

the uncertainties associated with wave and plasma models.

Since the analytical lifetime model provides estimates as a

function of all the different wave and plasma parameters, it

can be used with any plasma density profile and with any

average wave intensity distribution (as a function of MLT,

L, and geomagnetic conditions). Parameterized wave ampli-

tudes inferred from CRRES observations as a function of ge-

omagnetic activity (Kp) have already been supplied by Sh-

prits et al. (2007) in their Eq. (6) for dayside chorus. De-

pending on the actual MLT repartition of chorus waves, the

resulting lifetimes should be multiplied in addition by a fac-

tor of 2 to 4. Inside the plasmasphere, typical wave spectra

and intensities can be found in the work by Meredith et al.

(2007) for L = 2 to 3.

The proposed estimates could also help to fully take ad-

vantage of future space weather satellite measurements, al-

lowing immediate evaluation of diffusion coefficients and

lifetimes directly inside global radiation belt forecasting

codes as a function of time-varying (with geomagnetic ac-

tivity) wave spectra and wave-normal distributions as soon

as they become available. Nevertheless, magnetosonic and

EMIC waves may also play an important role in the dynamics

of the radiation belts (Summers et al., 2007; Li et al., 2007;

Meredith et al., 2009). It would be interesting to derive simi-

lar analytical models for these waves in a future work.

Appendix A

On the evaluation of lifetimes from diffusion coefficients

Albert and Shprits (2009) have derived a simplified and very

useful formula for calculating the lifetime of electrons via

the simple integration of the inverse of the bounce-averaged

pitch-angle diffusion coefficient multiplied by tanα0. How-

ever, for typical cases of interest, their expression in Eq. (11)

is only valid to within a factor of 2, since their own fully nu-

merical lifetimes are generally roughly 2 times smaller when

the minimum of 〈D〉B tanα0 occurs at small to moderate

pitch angles. Hence the multiplying factor σ ∼ 1/2 is used

in Mourenas et al. (2012b) as well as here in Eqs. (7)–(12). It

is worth noting that, for oblique lower-band chorus–electron

interaction, a simplified form of the bounce-averaged cy-

clotron diffusion coefficient can be derived, such that 〈D〉B ∼
〈D(π/4)〉B(sin(π/4)/sin(α0))

P , with P = 1 to 2 from ana-

lytical calculations in Mourenas et al. (2012b,a). In this case,

it is actually possible to estimate rather accurately the life-

time as the inverse of the lowest eigenvalue of the diffusion
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operator (see details in Schulz, 1991). With the new vari-

able y = sinα0, one gets 〈Dzz〉B = (1−y2)(yT (y))2〈D〉B ∝
(1−y2) = z (compare with Eqs. (190) to (197) from Schulz,

1991). One then finds the following (analytically for P = 2

as well as numerically for P = 1) from Eqs. (194) and (197)

in the work by Schulz (1991):

τ ∼







1
∫

sinαMin

4 dy/(3π)
√

(1 − y2) 〈D〉B







2

∼ 32 cos2 αMin

9π2 〈D〉B (π/4)
,

where cosαMin ∼ 0.96 for L > 3.5 for a lower bound of in-

tegration αMin ≤ π/12 (Mourenas et al., 2012b) and 3π/4 is

the first zero of the Bessel function J0. From Eqs. (3), (15),

and (16) from Mourenas et al. (2012b), one obtains a new es-

timate of the multiplying factor σ ≈ 64cos2(π/12)/(9π2) ≈
2/3. Nevertheless, exact numerical calculation of the life-

times yields generally slightly smaller lifetimes than the in-

verse of the lowest eigenvalue, as can be seen in Fig. 1 in

the work by Albert and Shprits (2009) for a model diffu-

sion coefficient corresponding precisely to such an eigen-

function decomposition. In fact, one may expect the actual

lifetime to be slightly smaller because of the effect of the

other, higher eigenvalues. The numerical lifetime plotted in

Fig. 1 in the work by Albert and Shprits (2009) is actually

0.8 times smaller than the theoretical one, yielding finally

σ ≈ 5/9, which is very close to our assumed value σ ≈ 1/2

for the cyclotron terms related to oblique chorus waves. Turn-

ing now to nearly parallel hiss waves near the loss cone at

L < 3.5, one gets now D ∝ D(αLC)/cos2 α0 from Eq. (33)

in the work by Mourenas and Ripoll (2012), leading to a mul-

tiplying factor σ ≈ 0.8(8/π2) ≈ 1/2 again for the cyclotron

part.

Appendix B

Rough evaluation of high-latitude Landau resonance ef-

fects at low L

It is worth noting that the analytical model of Landau reso-

nance lifetime provided in Eq. (9) with Fhl = 1 (equivalent

to Eq. 36 in the work by Mourenas and Ripoll, 2012) is cor-

rect only when Landau resonance occurs not too far from

the equator. Since the resonant value of pitch angle αR from

the combination of Eq. (3) and simplified dispersion relation

with n = 0 is given by tanαR ≈ sinα0�c0pεm0/(γωm) (see

Mourenas et al., 2012b), resonance occurs off the equator

(sinαR > sinα0) when cosα0 > γωm/(�c0pεm0). Further-

more, taking into account the inequalities p < γ and ωm ≪
�c0 for hiss, lightning-generated waves, and lower-band

chorus, together with the resonance condition, implies that

tanαR ≫ sinα0 and therefore sinαR ∼ 1 in general. Now,

D(n = 0,λ) varies roughly like (�c/�c0)
1/2 for pεm0 >

1.84/ tan1θ and like (�c0/�c)
4 for pεm0 < 1.84/ tan1θ

(where one must take also 1θ ≤ 45◦ for these formulas to

be valid; see Mourenas and Ripoll, 2012). Consequently, a

significant effect from off-equatorial resonance can occur

only for small values of pεm0 < 1.84 (i.e., small energy, den-

sity and frequency). The magnitude of 〈D〉(n = 0) will be

noticeably modified when �c/�c0 ≥ 1.5 to 2. Using adia-

batic invariance with sinαR ∼ 1, this last condition is equiv-

alent to α0 < 45–55◦. However, if cyclotron resonance is ef-

fective enough (with a significant diffusion rate such that

D(n < 0) > D(n = 0)) for α0 > 45◦ − 55◦, there will be no

consequence on the lifetime estimate. This means that life-

time estimates in Eqs. (9)–(12) remain roughly correct as

long as max(pεm0, i) > 21/4, in order for cyclotron resonance

to be important enough at moderate pitch angles. In the oppo-

site limit, Eq. (10) for the Landau part with Fhl = 1 leads to

very long lifetimes (typically > 100 days inside the plasmas-

phere), which can nevertheless be sometimes strongly under-

estimated. Equations (34)–(36) in the work by Mourenas and

Ripoll (2012) have indeed been derived under the assump-

tion that the Landau resonance part of D makes a signifi-

cant contribution in lifetimes only at not too high latitudes.

When this assumption is violated at moderate α0 and low

L inside the plasmasphere, one must integrate in the life-

time Eq. (7) a term 1/(〈D〉B tanα0) ∝ cos4 α0/sin8 α0 (in-

stead of cos4 α0) coming from the last term of Eq. (25) in

the work by Mourenas and Ripoll (2012) (where gs ∼ 0 and

�c(λmin)/�c0 ≈ 1/sin2 α0). This leads to a lifetime multi-

plicative factor ≈ 1/(10sin7 αMax
0 ) varying between 10 and

5000 for a lower bound of integration αMax
0 = αLC ∼ 9◦

to 30◦ at L ∼ 1.5 to 3.5. But radiation belt simulations

are rarely run over more than one-year duration (Subbotin

et al., 2011). Thus, using an approximate multiplicative fac-

tor Fhl ≈ max(10 2(π/4 −αMax
0 ), 1) (with 2 the Heaviside

function, such that 2(x) = 0 for x < 0 and 2 = 1 other-

wise) should be sufficient in general for calculations over

less than one year. Moreover, higher-frequency waves (such

as lightning-generated whistlers or VLF; see Meredith et al.,

2009) should most often prevent lifetimes from becoming

too large, in agreement with recent satellite measurements

of electron lifetimes (see Sect. 5.7).

Acknowledgements. The authors would like to thank the reviewers

for valuable suggestions to improve the manuscript. The work of

K.V.V. was partially supported by The Ministry of Education and

Science of Russian Federation, project 8527.

Topical Editor L. Blomberg thanks two anonymous referees for

their help in evaluating this paper.

The publication of this article is financed by CNRS-INSU.

www.ann-geophys.net/31/599/2013/ Ann. Geophys., 31, 599–624, 2013



622 A. V. Artemyev et al.: Parametric validation of analytical lifetimes

References

Abel, B. and Thorne, R. M.: Electron scattering loss in Earth’s in-

ner magnetosphere 1. Dominant physical processes, J. Geophys.

Res., 103, 2385–2396, doi:10.1029/97JA02919, 1998.

Agapitov, O., Krasnoselskikh, V., Khotyaintsev, Y. V., and Rol-

land, G.: A statistical study of the propagation characteristics of

whistler waves observed by Cluster, Geophys. Res. Lett., 382,

L20103, doi:10.1029/2011GL049597, 2011.

Agapitov, O., Artemyev, A., Krasnoselskikh, V., Khotyaintsev,

Y. V.,Mourenas, D., Breuillard, H., Balikhin, M., and Rolland,

G.: Statistics of Whistler-Mode Waves in the Outer Radiation

Belt: Cluster STAFF-SA measurements, J. Geophys. Res., sub-

mitted, 2013a.

Agapitov, O., Krasnoselskikh, V., Khotyaintsev, Y. V., and Rolland,

G.: Correction to “A statistical study of the propagation charac-

teristics of whistler waves observed by Cluster”, Geophys. Res.

Lett., 39, L24102, doi:10.1029/2012GL054320, 2012b.

Albert, J. M.: Evaluation of quasi-linear diffusion coefficients for

whistler mode waves in a plasma with arbitrary density ratio, J.

Geophys. Res., 110, A03218, doi:10.1029/2004JA010844, 2005.

Albert, J. M.: Simple approximations of quasi-linear dif-

fusion coefficients, J. Geophys. Res., 112, A12202,

doi:10.1029/2007JA012551, 2007.

Albert, J. M.: Dependence of quasi-linear diffusion coeffi-

cients on wave parameters, J. Geophys. Res., 117, A09224,

doi:10.1029/2012JA017718, 2012.

Albert, J. M. and Shprits, Y. Y.: Estimates of lifetimes against pitch

angle diffusion, Journal of Atmospheric and Solar-Terrestrial

Physics, 71, 1647–1652, doi:10.1016/j.jastp.2008.07.004, 2009.

Artemyev, A., Agapitov, O., Breuillard, H., Krasnoselskikh, V., and

Rolland, G.: Electron pitch-angle diffusion in radiation belts:

The effects of whistler wave oblique propagation, Geophys. Res.

Lett., 39, L08105, doi:10.1029/2012GL051393, 2012a.

Artemyev, A., Agapitov, O., Krasnoselskikh, V., Breuillard, H.,

and Rolland, G.: Statistical model of electron pitch-angle diffu-

sion in the outer radiation belt, J. Geophys. Res., 117, A08219,

doi:10.1029/2012JA017826, 2012b.

Barker, A. B., Li, X., and Selesnick, R. S.: Modeling the radia-

tion belt electrons with radial diffusion driven by the solar wind,

Space Weather, 3, S10003, doi:10.1029/2004SW000118, 2005.

Benck, S., Mazzino, L., Cyamukungu, M., Cabrera, J., and Pierrard,

V.: Low altitude energetic electron lifetimes after enhanced mag-

netic activity as deduced from SAC-C and DEMETER data, Ann.

Geophys., 28, 849–859, doi:10.5194/angeo-28-849-2010, 2010.

Borovsky, J. E. and Denton, M. H.: Electron loss rates from the

outer radiation belt caused by the filling of the outer plas-

masphere: The calm before the storm, J. Geophys. Res., 114,

A11203, doi:10.1029/2009JA014063, 2009.

Bortnik, J., Inan, U. S., and Bell, T. F.: Landau damping and resul-

tant unidirectional propagation of chorus waves, Geophys. Res.

Lett., 33, L03102, doi:10.1029/2005GL024553, 2006.

Bortnik, J., Chen, L., Li, W., Thorne, R. M., and Horne, R. B.:

Modeling the evolution of chorus waves into plasmaspheric hiss,

J. Geophys. Res., 116, A08221, doi:10.1029/2011JA016499,

2011a.

Bortnik, J., Chen, L., Li, W., Thorne, R. M., Meredith, N. P., and

Horne, R. B.: Modeling the wave power distribution and charac-

teristics of plasmaspheric hiss, J. Geophys. Res., 116, A12209,

doi:10.1029/2011JA016862, 2011b.

Boskova, J., Jiricek, F., Triska, P., Lundin, B. V., and Shkliar, D. R.:

A possible common nature of equatorial half-gyrofrequency VLF

emissions and discrete plasmaspheric emissions, Ann. Geophys.,

8, 755–763, 1990.

Breneman, A., Cattell, C., Wygant, J., Kersten, K., Wilson,

III, L. B., Schreiner, S., Kellogg, P. J., and Goetz, K.:

Large-amplitude transmitter-associated and lightning-associated

whistler waves in the Earth’s inner plasmasphere at L > 2, J.

Geophys. Res., 116, A06310, doi:10.1029/2010JA016288, 2011.

Breuillard, H., Zaliznyak, Y., Krasnoselskikh, V., Agapitov, O.,

Artemyev, A., and Rolland, G.: Chorus wave-normal statistics in

the Earth’s radiation belts from ray tracing technique, Ann. Geo-

phys., 30, 1223–1233, doi:10.5194/angeo-30-1223-2012, 2012.

Bunch, N. L., Spasojevic, M., and Shprits, Y. Y.: Off-Equatorial

Chorus Occurrence and Wave Amplitude Distributions as Ob-

served by the Polar Plasma Wave Instrument, J. Geophys. Res.,

117, A04205, doi:10.1029/2011JA017228, 2012.

Burton, R. K. and Holzer, R. E.: The Origin and Propagation of

Chorus in the Outer Magnetosphere, J. Geophys. Res., 79, 1014–

1023, doi:10.1029/JA079i007p01014, 1974.

Chen, L., Thorne, R. M., Li, W., and Bortnik, J.: Modeling the Wave

Normal Distribution of Chorus Waves, J. Geophys. Res., in press,

doi:10.1002/jgra.50086, 2013.

Choi, H.-S., Lee, J., Cho, K.-S., Kwak, Y.-S., Cho, I.-H., Park, Y.-

D., Kim, Y.-H., Baker, D. N., Reeves, G. D., and Lee, D.-K.:

Analysis of GEO spacecraft anomalies: Space weather relation-

ships, Space Weather, 9, S06001, doi:10.1029/2010SW000597,

2011.

Chum, J. and Santolı́k, O.: Propagation of whistler-mode chorus

to low altitudes: divergent ray trajectories and ground accessibil-

ity, Ann. Geophys., 23, 3727–3738, doi:10.5194/angeo-23-3727-

2005, 2005.

Cohen, M. B., Lehtinen, N. G., and Inan, U. S.: Mod-

els of Ionospheric VLF Absorption of Powerful Ground

Based Transmitters, Geophys. Res. Lett., 39, L24101,

doi:10.1029/2012GL054437, 2012.

Cornilleau-Wehrlin, N., Chanteur, G., Perraut, S., Rezeau, L.,

Robert, P., Roux, A., de Villedary, C., Canu, P., Maksimovic, M.,

de Conchy, Y., Hubert, D., Lacombe, C., Lefeuvre, F., Parrot, M.,
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