
Research Article

Parametric Vibration Analysis of a Six-Degree-of-Freedom
Electro-Hydraulic Stewart Platform

Xiaoming Yuan , Yue Tang , Weiqi Wang, and Lijie Zhang

Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University,
Qinhuangdao 066004, China

Correspondence should be addressed to Xiaoming Yuan; yuanxiaoming@ysu.edu.cn

Received 16 March 2021; Revised 1 July 2021; Accepted 30 July 2021; Published 12 August 2021

Academic Editor: Ling Zhou

Copyright © 2021 Xiaoming Yuan et al. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Electro-hydraulic Stewart 6-DOF platform is a 6-DOF parallel mechanism combined with the electro-hydraulic servo control
system, which is widely used in the field of construction machinery. In actual working conditions, the flow and pressure pulsation
of the hydraulic oil output from the hydraulic leg of the electro-hydraulic Stewart platform are inevitable, so the equivalent
stiffness of the platform leg will change, and the stiffness parameters of the transmission system will change, resulting in vibration,
which will affect the accuracy of the platform. )is paper considering the fluid unit equivalent stiffness cyclical fluctuations
and leg, on the basis of the relationship between hydraulic stiffness, constructs the electric hydraulic Stewart platform
machine vibration dynamics equation, fluid coupling parameters of vibration parameters using the method of the multiscale
approximate analytic formula of the main resonance and combination resonance are derived, and the system parameters
vibration time-domain response and frequency response under two different poses are discussed. Results show that the
system first to six order natural frequency and the first to the sixth order natural frequency and frequency of hydraulic oil
equivalent stiffness of the combination of frequency will have an effect on the parameters of the system vibration. In the main
resonance, the dominant frequency is mainly the first to sixth order natural frequency of the system; in the combined
resonance, the dominant frequency is the combined frequency. )rough the parameter vibration analysis of two different
positions of the platform, it is concluded that when the platform is in an asymmetric position, each leg of the system is more
involved in vibration.)is study can provide the reference for the subsequent dynamic optimization and reliability analysis of
the electro-hydraulic Stewart platform.

1. Introduction

)e Stewart 6-DOF platform is a typical parallel mechanism,
which connects the base and the moving platform through
six kinematic chains and controls the movement of the
platform. Because its design and research involve a series of
high and new technology fields such as machinery [1],
hydraulic [2–4], control [5], computer, signal [6], and sensor
[7], it has integrated the knowledge of multiple disciplines
such as electromechanical and hydraulic and has been at-
tached great importance by the academic circles [8]. In
addition, compared with the series mechanism, the platform
has the advantages of stable structure and high precision [9]
and is widely applied to machine tools [10], vehicles [11],

medical equipment [12], sensors [13], spacecraft [14, 15],
telescopes [16], and other fields. )erefore, the Stewart
platform also has a strong attraction to the industry. )e
platform becomes an electro-hydraulic Stewart platform
when the hydraulic legs of the Stewart platform are in-
corporated into the electro-hydraulic servo control system.
)e electro-hydraulic platform has strong coupling; the
platform mass and the equivalent stiffness of the leg will
affect the dynamic characteristics of the platform [17].
When the legs are driven by electro-hydraulic servo, the
controllability of the platform can be increased. However,
compared with the mechanical leg, the equivalent stiffness
of the hydraulic leg oil is lower, which leads to the change
of the dynamic characteristics of the platform [18–20].
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Under the condition that the external excitation freq-
uency approaches to the natural frequency of the
platform, vibration and failure will be caused [21, 22].
)erefore, the analysis of platform dynamics is of great
significance.

In real conditions, the pressure pulsation of the hy-
draulic oil output by the hydraulic cylinder on the leg of
the electro-hydraulic Stewart platform is inevitable, so the
equivalent stiffness of the hydraulic oil will change, and
the stiffness parameters of the transmission system will
change, leading to the generation of vibration [23]. )e
vibration induced by the time-varying parameters (stiff-
ness, damping, mass, or moment of mass inertia) of the
system is called parametric vibration. )e time-varying
excitation appears in the system differential equation as an
inhomogeneous term, which is called the external exci-
tation. When it appears as a coefficient in the equation of
motion, it is called a parametric excitation. )e main
resonance occurs when the natural frequency of the
system is close to the excitation frequency of the external
excitation. When the natural frequency of the system is
close to the sum of the excitation frequency of the external
excitation and the pulsation frequency of the equivalent
stiffness of the fluid, the combined resonance phenom-
enon occurs. With the development of science, equipment
in various fields have higher requirements for operating
accuracy, so it is necessary to reduce the negative impact
of vibration on equipment accuracy [24, 25]. )erefore, it
is of great significance to study the problem of parametric
vibration to reduce system vibration.

For parametric vibration problems, scholars mainly
use the numerical method and analytical method to solve
them, among which the analytical method includes the
L-P method [26] (Lindstedt–Poincare method), multi-
scale method [27], and many other approximate analytical
solutions. )e multiscale method is an improved ap-
proximate analytical method for nonlinear differential
equations based on the average method. For the solution
of different problems, the multiscale method has a high
versatility, so it has been widely used in recent years
[28, 29]. He et al. adopted the multiscale method and
obtained the nonlinear natural frequency, amplitude-
frequency equation, and time history of the beam under
the hinged boundary condition by Galerkin approxima-
tion discretization [30]. Chen et al. studied the transverse
nonlinear vibration of axially accelerated viscoelastic
beams with principal parameter resonance and applied
the multiscale method to the governing equation to de-
termine the steady-state response [31].

)is paper considering the hydraulic oil equivalent
stiffness cyclical fluctuations and leg, on the basis of rela-
tionship between hydraulic stiffness, constructs the electric
hydraulic Stewart platform machine vibration dynamics
equation, fluid coupling parameters of vibration parameters
using the method of the multiscale approximate analytic
formula of the primary resonance and combination reso-
nance are derived, and the system parameters vibration
time-domain response and frequency response under two
different poses are discussed.

2. Dynamic Modeling of Electro-Hydraulic
Stewart Platform

2.1. Position Analysis of Electro-Hydraulic Platform. )e
geometrical structure diagram of the electro-hydraulic
Stewart 6-DOF platform is shown in Figure 1. )e electro-
hydraulic Stewart 6-DOF platform consists of three parts: a
top platform, a base platform, and six legs of the same size.
Among them, the top platform is a moving platform, and the
base platform is a fixed platform. )e six supporting legs are
connected with the upper and base platforms, respectively,
through ball hinges and universal joints. )e six legs are
composed of hydraulic cylinders and sensors that provide
input excitation to the legs to ensure movement of the
platform.

)e motional coordinate system A-XYZ is established
at the nature heart of the top platform, while the static
one B-xyz is established at the nature heart of the base
platform. A and B are the nature heart of the top platform
and the base one, respectively. )e distribution of six balls
hinged on the top platform is determined by using ai
(i � 1, 2, . . ., 6), and the six universal joints on the base
platform are bi (i � 1, 2, . . ., 6). By using Ra and E, the
rotation matrix and displacement matrix of the motional
coordinate system relative to the static one can be
expressed. We assumed that m is the mass of the top
platform, while Ix, Iy, and Iz are, respectively, the rotation
inertia of the top platform about the XYZ axis.

By using Px, Py, and Pz, the movement of the moving
coordinate system A-XYZ in three directions relative to
the absolute static coordinate system B-xyz can be rep-
resented. By using α, β, and c, the rotation in three di-
rections of the moving coordinate system A-XYZ with
respect to the absolute static coordinate system B-xyz can
be expressed. )e above six variables determine the po-
sition of the platform.

)erefore, the expression of the rotation matrix Ra and
displacement matrix E is as follows:

Ra �
cccβ ccsβsα − sccα scsα + ccsβcα
sccβ cccα + scsβsα scsβcα − cccα
− sβ cβsα cβcα

 ,
E � Px Py Pz( )T,

(1)

where sα � sin α and cα � cos α.
)e expression of the six leg positions is as follows:

li � Ra × Ai + E − ai, (2)

where i� 1, 2, . . ., 6.
In this paper, the two poses’ parameter vibration is

analyzed. )e parameters of the two poses are as follows:
Pose 1:

x � Px, Py, Pz, α, β, c( )T
� 0 0 2

�
3

√
0 0 0( )T. (3)

Pose 2:
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x � Px, Py, Pz, α, β, c( )T
� 1 1 2

�
3

√
5 5 10( )T. (4)

)e initial position of the platform which is shown in
Figure 1 is represented by pose 1, and it is symmetrical.
Furthermore, the general position of the platform, which has
no symmetry, is represented by pose 2, and the position
parameters are all changed. )rough the analysis of the
dynamic characteristics of different postures, whether the
change of the platform position has an effect on its pa-
rameter vibration is judged.

Physical parameters of the six-degree-of-freedom elec-
tro-hydraulic platform are shown in Table 1:

2.2. Dynamic Equation of Electro-Hydraulic Stewart 6-DOF
Platform Transmission System. )e dynamic model of the
electro-hydraulic platform established in this paper adopts
the following assumptions.

)e dynamic model of the electro-hydraulic Stewart
platform adopts the following assumptions:

(1) )e components of the Stewart platform are all rigid
bodies, that is, the elastic deformation of other
components is not considered

(2) In the machine construction of the platform, the
supporting legs work as a linear spring along the
longitudinal direction of the legs

(3) )e leg mass is much smaller than the top platform
mass, so the effect caused by the leg mass would
become negligible

(4) )e friction which is caused by the moving com-
ponents can be neglected

(5) Ignore the processing error and assembly error of
each component

2.2.1. Velocity Analysis and Jacobian Matrix of Electro-Hy-
draulic Platform. Set the generalized coordinates of the
platform to

x � Px, Py, Pz, α, β, c( )T. (5)

)us, the velocityV and angular velocityω of themoving
platform can be expressed as

V � _P � _Px _Py _Pz( ),
ω � _θ �( _α, _β, _c).

(6)

By assuming that r is the vector diameter of spherical
hinge points relative to the nature heart of the top platform,
VS is the speed of ball hinge points, e is the unit direction
vector of the leg, and v is the change rate of the length of the
leg rod; thus, the expression of them is as follows:

ri � RaAi, (7)

Vai � V + ω × ri, (8)

vi � Vai · ei, (9)

where i� 1, 2, . . ., 6.
Substituting (8) into (9), we can obtain

vi � eTi ri × ei( )T[ ] V

ω
[ ]. (10)

)en, the speed of the six legs is

v1

v2

v3

v4

v5

v6




�

eT1 r1 × e1( )T
eT2 r2 × e2( )T
eT3 r3 × e3( )T
eT4 r4 × e4( )T
eT5 r5 × e5( )T
eT6 r6 × e6( )T





V

ω
[ ]. (11)

)e shorthand for which is

v[ ] �[J] V ω[ ]T, (12)

where [J] is the Jacobian matrix.

2.2.2. Dynamic Equation for Constructing Electro-Hydraulic
Platform. )e equivalent stiffness of oil in the six-leg hy-
draulic cylinder is determined by ki (i� 1, 2, . . ., 6), damping
is expressed by ci (i� 1, 2, . . ., 6), and output force of the leg
hydraulic cylinder is fai (i� 1, 2, . . ., 6).

)e inertial force and its virtual power received by the
platform are sorted and calculated, and according to the
principle of virtual power, the following can be obtained:

δp � fa − kΔl − c _l( ) · δ_l +(− m€p) · δ _p

+ − Ia _ω − ω × Iaω( ) · δω � 0.
(13)

Z

X
Y

y

z

x

B

A

a3

a2

a1
a6

a5 a4

b1

b6

b4

b3

b5

b2

Figure 1: Schematic diagram of the 6-DOF platform structure.
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)e Coriolis force and centrifugal force on the platform
are ignored. Equation (13) can be simplified to

δp � fa − kJx − cJ _x( )TJδ _x −
m€p

Ia _ω
( )Tδ _x � 0. (14)

In the formula above, _x � _p ω( )T. )e components of
δ _x have no effect on each other, so the coefficients are all
zero; thus, the dynamic equation can be expressed as

M€x + C _x + Kx � J
T
fa, (15)

where M � mI3×3 0
0 Ia

[ ], K � JTkJ, C � JTcJ, k �

diag k1 k2 k3 k4 k5 k6[ ]( ),
c � diag c1 c2 c3 c4 c5 c6[ ]( ), and

fa � fa1 fa2 fa3 fa4 fa5 fa6( )T.
3. Parametric Vibration Equation of Electro-
Hydraulic Stewart 6-DOF Platform
Transmission System

3.1. Time-Varying Equivalent Stiffness of Gas-LiquidMixture.
Under actual working conditions, the pressure fluctuation of
the hydraulic oil output by the hydraulic cylinder on the leg
of the electro-hydraulic Stewart platform is inevitable; thus,
the hydraulic oil equivalent stiffness will change. Assuming
that the dynamic pressure changes in accordance with co-
sine, then the expression of the instantaneous pressure
pulsation can be obtained as

p � p + Δp ejωot + e− jωot[ ], (16)

where p represents steady-state pressure (Pa), Δp represents
pressure pulsation amplitude (Pa), and ωo represents
pressure pulsation angular frequency (rad/s).

It is known that the hydraulic oil stiffness is a function of
the hydraulic oil pressure and the initial gas content under
isothermal conditions. )erefore, under a certain initial gas
content, the equivalent stiffness fluctuation of hydraulic oil is

similar to the pressure fluctuation of hydraulic oil and can be
expressed as

kf � kf + kfv cos ωet � kf 1 + εejωet + cc[ ], (17)

where kf represents steady-state fluid stiffness (N/m), kfv
represents dynamic fluid stiffness amplitude (N/m), ε rep-
resents small parameter, ε � kfv/2kf, ωe represents angular
frequency of fluid stiffness fluctuation (rad/s), and cc rep-
resents the complex conjugate.

Fluid density is a function of fluid pressure, and
the pressure fluctuation is bound to cause the change of
fluid mass, but the change of fluid mass is very small
under the steady condition. )erefore, parametric vi-
bration analysis mainly studies the system parametric
vibration response when the equivalent stiffness of fluid
changes.

3.2. Construct Parametric Vibration Equations. Based on the
lumped parameter method, the fluid pressure is uniformly
distributed in the whole control body, and its variation law is
consistent. Because of the pressure pulsation, the motion of
the platform leg is affected by the dynamic pressure. As-
suming that the dynamic pressure is in the law of cosine
change and expressed as an exponential function, the system
parameter vibration differential equation is shown as follows:

δp � ejωot + e− jωot( )Fo − kf 1 + εejωet + cc( )Jx − cJ _x( )TJδ _x
−

m€p

Ia _ω
( )Tδ _x � 0,

(18)
whereFo represents the pressure pulsation amplitude matrix
and F0 � Δfa1 Δfa2 Δfa3 Δfa4 Δfa5 Δfa6[ ]T.

Equation (18) is expressed in the matrix form as

m€x + c _x + kx � ΔF − Δkx, (19)

Table 1: Physical parameters of the electro-hydraulic Stewart platform (Unit: Si).

Name Symbol Value

Top platform radius R 2
)ickness of top platform D 0.2
Quality of top platform m 20
Inertia of the top platform about the X axis Ix 20.07
Inertia of the top platform about the Y axis Iy 20.07
Inertia of top platform about the Z axis Iz 40
Universal joint at position 1 b1 (1/2)R (

�
3

√
/2)R 0[ ]T

Universal joint at position 2 b2 (1/2)R (
�
3

√
/2)R 0[ ]T

Universal joint at position 3 b3 (1/2)R − (
�
3

√
/2)R 0[ ]T

Universal joint at position 4 b4 (1/2)R − (
�
3

√
/2)R 0[ ]T

Universal joint at position 5 b5 − R 0 0[ ]T
Universal joint at position 6 b6 − R 0 0[ ]T
Ball hinge position 1 a1 − (1/2)R (

�
3

√
/2)R 0[ ]T

Ball hinge position 2 a2 R 0 0[ ]T
Ball hinge position 3 a3 R 0 0[ ]T
Ball hinge position 4 a4 − (1/2)R − (

�
3

√
/2)R 0[ ]T

Ball hinge position 5 a5 − (1/2)R − (
�
3

√
/2)R 0[ ]T

Ball hinge position 6 a6 − (1/2)R (
�
3

√
/2)R 0[ ]T
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where k represents the steady-state stiffness matrix,

k � kfJTJ, ΔF represents the excitation force vector, ΔF �
(ejωot + e− jωot)JTFo, Δk represents the incremental stiffness

matrix, and Δk � kfε(ejωet + e− jωet)JTJ.

4. Derivation of Approximate Analytical
Formula for Parametric Vibration of Electro-
Hydraulic Stewart Platform

)rough the relevant knowledge of vibration mechanics, the
regular mode ψ and spectral matrix Λ of the system of the
platform transmission system are solved, and equation (19)
is regularized to obtain

€η + CN _η + Λη � ΔQ − ΔkNη, (20)

where η represents the regular generalized displacement

vector, η � η1 η2 η3 η4 η5 η6[ ]T, CN represents the

canonical damping matrix, CN �
CN11 · · · CN16

⋮ ⋱ ⋮
CN61 · · · CN66

 , ΔQ
represents the regularly excited force vector,

ΔQ � (ejωot + e− jωot)ψTJTFo, ΔkN represents the regular
stiffness increment matrix, and ΔkN �

ε(ejωet + e− jωet)
ΔkN11 · · · ΔkN16

⋮ ⋱ ⋮
ΔkN61 · · · ΔkN66

 .
4.1. Approximate Analytical Derivation of Main Resonance of
Transmission System of Electro-Hydraulic Platform. By using
the multiscale method, the quadratic approximate solution,
as shown in the following equation, is introduced:

ηi(t) � ηi0 T0, T1( ) + εηi1 T0, T1( ), (21)

where T0 � t and T1 � εt.

For convenience of derivation, the following
parameters are introduced into small parameters to
obtain

cNij � εcNij′ ,

Fo � εFo′.
 (22)

Substitute the above equation into equation (20), and
using the same power coefficient equal, the equation of zero
power term can be calculated as

d2η10

dT2
0

+ ω2
n1η10 � 0,

d2η20

dT2
0

+ ω2
n2η20 � 0,

d2η30

dT2
0

+ ω2
n3η30 � 0,

d2η40

dT2
0

+ ω2
n4η40 � 0,

d2η50

dT2
0

+ ω2
n5η50 � 0,

d2η60

dT2
0

+ ω2
n6η60 � 0.



(23)

)e first power term is
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d2η11

dT2
0

+ ω2
n1η11 � − 2

z2η10
zT0zT1

+ e
jωot

2
∑6
j�1
∑6
i�1
ψi1JjiFj′ − e

jωet∑6
i�1
Δk1iηi0 − ∑6

i�1
CN1i
′ zηi0

zT0

+ cc,

d2η21

dT2
0

+ ω2
n2η21 � − 2

z2η20
zT0zT1

+ e
jωot

2
∑6
j�1
∑6
i�1
ψi2JjiFj′ − e

jωet∑6
i�1
Δk2iηi0 − ∑6

i�1
CN2i
′ zηi0

zT0

+ cc,

d2η31

dT2
0

+ ω2
n3η31 � − 2

z2η30
zT0zT1

+ e
jωot

2
∑6
j�1
∑6
i�1
ψi3JjiFj′ − e

jωet∑6
i�1
Δk3iηi0 − ∑6

i�1
CN3i
′ zηi0

zT0

+ cc,

d2η41

dT2
0

+ ω2
n4η41 � − 2

z2η40
zT0zT1

+ ejωot

2
∑6
j�1
∑6
i�1
ψi4JjiFj′ − e

jωet∑6
i�1
Δk4iηi0 − ∑6

i�1
CN4i
′ zηi0

zT0

+ cc,

d2η51

dT2
0

+ ω2
n5η51 � − 2

z2η50
zT0zT1

+ e
jωot

2
∑6
j�1
∑6
i�1
ψi5JjiFj′ − e

jωet∑6
i�1
Δk5iηi0 − ∑6

i�1
CN5i
′ zηi0

zT0

+ cc,

d2η61

dT2
0

+ ω2
n6η61 � − 2

z2η60
zT0zT1

+ e
jωot

2
∑6
j�1
∑6
i�1
ψi6JjiFj′ − e

jωet∑6
i�1
Δk6iηi0 − ∑6

i�1
CN6i
′ zηi0

zT0

+ cc,



(24)

where cc represents the complex conjugate.
Let the solution of equation (24) be

ηi0 � Aie
jωniT0 + cc, (25)

where Ai is an unknown function, and the solution can be
substituted into equation (24):

d2η11

dT2
0

+ ω2
n1η11 � − 2jωn1

dA1

dT1

ejωn1T0 + e
jωot

2
∑6
j�1
∑6
i�1
ψi1JjiFj′ − ∑6

i�1
CN1i
′ jωniAie

jωniT0 − ∑6
i�1
Δk1iAiej ωni+ωe( )T0 + cc,

d2η21

dT2
0

+ ω2
n2η21 � − 2jωn2

dA1

dT1

ejωn2T0 + e
jωot

2
∑6
j�1
∑6
i�1
ψi2JjiFj′ − ∑6

i�1
CN2i
′ jωniAie

jωniT0 − ∑6
i�1
Δk2iAiej ωni+ωe( )T0 + cc,

d2η31

dT2
0

+ ω2
n3η31 � − 2jωn3

dA1

dT1

ejωn3T0 + e
jωot

2
∑6
j�1
∑6
i�1
ψi3JjiFj′ − ∑6

i�1
CN3i
′ jωniAie

jωniT0 − ∑6
i�1
Δk3iAiej ωni+ωe( )T0 + cc,

d2η41

dT2
0

+ ω2
n4η41 � − 2jωn4

dA1

dT1

ejωn4T0 + e
jωot

2
∑6
j�1
∑6
i�1
ψi4JjiFj′ − ∑6

i�1
CN4i
′ jωniAie

jωniT0 − ∑6
i�1
Δk4iAiej ωni+ωe( )T0 + cc,

d2η51

dT2
0

+ ω2
n5η51 � − 2jωn5

dA1

dT1

ejωn5T0 + e
jωot

2
∑6
j�1
∑6
i�1
ψi5JjiFj′ − ∑6

i�1
CN5i
′ jωniAie

jωniT0 − ∑6
i�1
Δk5iAiej ωni+ωe( )T0 + cc,

d2η61

dT2
0

+ ω2
n6η61 � − 2jωn6

dA1

dT1

ejωn6T0 + e
jωot

2
∑6
j�1
∑6
i�1
ψi6JjiFj′ − ∑6

i�1
CN6i
′ jωniAie

jωniT0 − ∑6
i�1
Δk6iAiej ωni+ωe( )T0 + cc.



(26)
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When ωo approaches ωn1, the harmonic parameter σ is
introduced, and the frequency relationship of each angle is
shown in the following formula:

ωo � ωn1 + εσ. (27)

Substitute equation (27) into equation (26) and eliminate
the perpetual term:

− jωn1 2
dA1

dT1

+ cN11
′ A1( ) +∑6

j�1
∑6
i�1
ψi1JjiFj′

ejσT1

2
� 0,

− jωn2 2
dA2

dT1

+ cN22
′ A2( ) � 0,

− jωn3 2
dA3

dT1

+ cN33
′ A3( ) � 0,

− jωn4 2
dA4

dT1

+ cN44
′ A4( ) � 0,

− jωn5 2
dA5

dT1

+ cN55
′ A5( ) � 0,

− jωn6 2
dA6

dT1

+ cN66
′ A6( ) � 0.


(28)

)e solution of equation (28) is obtained by using the
constant conversion method:

A1 � C1e
− CN11
′ T1/2( ) +

∑6
j�1∑6

i�1 ψi1JjiFJ′
j2ωn1 2Jσ + CN11

′( )ejσT1 ,

A2 � C2e
− CN22
′ T1/2( ),

A3 � C3e
− CN33
′ T1/2( ),

A4 � C4e
− CN44
′ T1/2( ),

A5 � C5e
− CN55
′ T1/2( ),

A6 � C6e
− CN66
′ T1/2( ),



(29)

where C1, . . ., C6 are constant.
By using the relationship between trigonometric

functions and complex numbers and combining with
Euler’s formula, the first equation in equation (29) can be
reduced to

A1 � C1e
− CN11
′ /2( )T1 −

∑6
j�1∑6

i�1 ψi1JjiFJ′

2ωn1

������������
CN11
′( )2 + 4σ2

√ ej θ+σT1( ),

(30)

where θ � arctan(CN11
′ /2σ).

With the increase of time, equation (29) will gradually
approach zero. )erefore, by substituting equation (29) into
equation (25), the steady-state zeroth degree approximate
analytical solution of the electro-hydraulic platform system
can be obtained as
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η10 � −
∑6
j�1∑6

i�1 ψi1JjiFJ′

ωn1

������������
CN11
′( )2 + 4σ2

√
cos θ + ωn1 + εσ( )t( ),

η20 � 0,

η30 � 0,

η40 � 0,

η50 � 0,

η60 � 0.



(31)

Substituting equations (29) and (30) into equation (26),
the first-order approximate analytical solution of the steady-
state electro-hydraulic system can be obtained as

η11 � − 2ΔkN11A1

cos ωn1 − ωe( )t
ωe 2ωn1 − ωe( ) − cos ωn1 − ωe( )t

ωe 2ωn1 + ωe( )( ),

η21 �
∑6
j�1∑6

i�1 ψi2JjiFJ′ cos ω0t( )
ω2
n2 − ω

2
0

− 2

ΔkN21A1

cos ωn1 + ωe( )t
ω2
n2 − ωn1 + ωe( )2 + cos ωn1 − ωe( )t

ω2
n2 − ωn1 − ωe( )2 

− CN21
′ ωn1A1 sin ωn1t

ω2
n2 − ω

2
n1




,

η31 �
∑6
j�1∑6

i�1 ψi3JjiFJ′ cos ω0t( )
ω2
n3 − ω

2
0

− 2

ΔkN31A1

cos ωn1 + ωe( )t
ω2
n3 − ωn1 + ωe( )2 + cos ωn1 − ωe( )t

ω2
n3 − ωn1 − ωe( )2 

− CN31
′ ωn1A1 sin ωn1t

ω2
n3 − ω

2
n1




,

η41 �
∑6
j�1∑6

i�1 ψi4JjiFJ′ cos ω0t( )
ω2
n4 − ω

2
0

− 2

ΔkN41A1

cos ωn1 + ωe( )t
ω2
n4 − ωn1 + ωe( )2 + cos ωn1 − ωe( )t

ω2
n4 − ωn1 − ωe( )2 

− CN41
′ ωn1A1 sin ωn1t

ω2
n4 − ω

2
n1




,

η51 �
∑6
j�1∑6

i�1 ψi5JjiFJ′ cos ω0t( )
ω2
n5 − ω

2
0

− 2

ΔkN51A1

cos ωn1 + ωe( )t
ω2
n5 − ωn1 + ωe( )2 + cos ωn1 − ωe( )t

ω2
n5 − ωn1 − ωe( )2 

− CN51
′ ωn1A1 sin ωn1t

ω2
n5 − ω

2
n1




,

η61 �
∑6
j�1∑6

i�1 ψi6JjiFJ′ cos ω0t( )
ω2
n6 − ω

2
0

− 2

ΔkN61A1

cos ωn1 + ωe( )t
ω2
n6 − ωn1 + ωe( )2 + cos ωn1 − ωe( )t

ω2
n6 − ωn1 − ωe( )2 

− CN61
′ ωn1A1 sin ωn1t

ω2
n6 − ω

2
n1




.

(32)

8 Shock and Vibration



)en, the steady-state response of the main resonance of
the electro-hydraulic platform system in rectangular coor-
dinates is

x � ψ η0 + εη1( ). (33)

In the same way, the main resonance responses can be
obtained, while the external excitation frequency approaches
to the second-order to the sixth-order natural frequency of
the current electro-hydraulic platform system.

4.2. Approximate Analytical Derivation of Combined Reso-
nance of Electro-Hydraulic Platform Transmission System.

)e combined resonance response of the electro-hydraulic
platform transmission system is derived by the multiscale
method, which can be expressed as

ηi T0, T1( ) � ηi0 T0, T1( ) + εηi1 T0, T1( ), (34)

where T0 � t and T1 � εt.
A small parameter is introduced into the damping:

cNij � εcNij′. (35)

Substituting equations (34) and (35) into equation (20),
the zeroth power term is sorted out and the equation is
shown as follows:

z2η10

zT2
0

+ ω2
n1η10 �

ejωoT0

2
∑6
j�1
∑6
i�1
ψi1JjiFj + cc,

z2η20

zT2
0

+ ω2
n2η20 �

ejωoT0

2
∑6
j�1
∑6
i�1
ψi2JjiFj + cc,

z2η30

zT2
0

+ ω2
n3η30 �

ejωoT0

2
∑6
j�1
∑6
i�1
ψi3JjiFj + cc,

z2η40

zT2
0

+ ω2
n4η40 �

ejωoT0

2
∑6
j�1
∑6
i�1
ψi4JjiFj + cc,

z2η50

zT2
0

+ ω2
n5η50 �

ejωoT0

2
∑6
j�1
∑6
i�1
ψi5JjiFj + cc,

z2η60

zT2
0

+ ω2
n6η60 �

ejωoT0

2
∑6
j�1
∑6
i�1
ψi6JjiFj + cc.



(36)
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)e equation for sorting out the first power term is
shown as follows:

z2η11

zT2
0

+ ω2
n1η11 � − 2

z2η10
zT0zT1

− ejωet∑6
i�1
Δk1iηi0 − ∑6

i�1
CN1i
′ zηi0

zT0

+ cc,

z2η21

zT2
0

+ ω2
n2η21 � − 2

z2η20
zT0zT1

− ejωet∑6
i�1
Δk2iηi0 − ∑6

i�1
CN2i
′ zηi0

zT0

+ cc,

z2η31

zT2
0

+ ω2
n3η31 � − 2

z2η30
zT0zT1

− ejωet∑6
i�1
Δk3iηi0 − ∑6

i�1
CN3i
′ zηi0

zT0

+ cc,

z2η41

zT2
0

+ ω2
n4η41 � − 2

z2η40
zT0zT1

− ejωet∑6
i�1
Δk4iηi0 − ∑6

i�1
CN4i
′ zηi0

zT0

+ cc,

z2η51

zT2
0

+ ω2
n5η51 � − 2

z2η50
zT0zT1

− ejωet∑6
i�1
Δk5iηi0 − ∑6

i�1
CN5i
′ zηi0

zT0

+ cc,

z2η61

zT2
0

+ ω2
n6η61 � − 2

z2η60
zT0zT1

− ejωet∑6
i�1
Δk6iηi0 − ∑6

i�1
CN6i
′ zηi0

zT0

+ cc,



(37)

where ccrepresents the complex conjugate.
Let the analytic solution of equation (37) be as follows:

ηi0 � Bie
jωniT0 +Die

jω0T0 + cc, (38)

where Di � ((∑6
j�1∑6

i�1 ψi1JjiFj)/2(ω2
ni − ω2

o)).
Substitute equation (38) into equation (37) to obtain the

equation as shown below:

d2η11

dT2
0

+ ω2
n1η11 � − 2jωn1

dB1

dT1

ejωn1T0 − ∑6
i�1
CN1i
′ jωniBie

jωniT0 + jω0Die
jω0T0( ) − ∑6

i�1
Δk1i Biej ωni+ωe( )T0 +Die

j ω0+ωe( )T0( ) + cc,

d2η21

dT2
0

+ ω2
n2η21 � − 2jωn2

dB2

dT1

ejωn2T0 − ∑6
i�1
CN2i
′ jωniBie

jωniT0 + jω0Die
jω0T0( ) − ∑6

i�1
Δk2i Biej ωni+ωe( )T0 +Die

j ω0+ωe( )T0( ) + cc,

d2η31

dT2
0

+ ω2
n3η31 � − 2jωn3

dB3

dT1

ejωn3T0 − ∑6
i�1
CN3i
′ jωniBie

jωniT0 + jω0Die
jω0T0( ) − ∑6

i�1
Δk3i Biej ωni+ωe( )T0 +Die

j ω0+ωe( )T0( ) + cc,

d2η41

dT2
0

+ ω2
n4η41 � − 2jωn4

dB4

dT1

ejωn4T0 − ∑6
i�1
CN4i
′ jωniBie

jωniT0 + jω0Die
jω0T0( ) − ∑6

i�1
Δk4i Biej ωni+ωe( )T0 +Die

j ω0+ωe( )T0( ) + cc,

d2η51

dT2
0

+ ω2
n5η51 � − 2jωn5

dB5

dT1

ejωn5T0 − ∑6
i�1
CN5i
′ jωniBie

jωniT0 + jω0Die
jω0T0( ) − ∑6

i�1
Δk5i Biej ωni+ωe( )T0 +Die

j ω0+ωe( )T0( ) + cc,

d2η61

dT2
0

+ ω2
n6η61 � − 2jωn6

dB6

dT1

ejωn6T0 − ∑6
i�1
CN6i
′ jωniBie

jωniT0 + jω0Die
jω0T0( ) − ∑6

i�1
Δk6i Biej ωni+ωe( )T0 +Die

j ω0+ωe( )T0( ) + cc.


(39)
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By analyzing the above equation, we can see that when
ωo ≈ ωni, the main resonance occurs in the system. In ad-
dition, when ω0 ≈ ωni ± ωe, the system will also have
combinatorial resonance. Under the condition that the
external excitation frequency approaches to the sum of the
first-order natural frequency and the equivalent stiffness
pulsation frequency of hydraulic oil, the harmonic param-
eters are introduced as follows:

ω0 � ωn1 + ωe + εσ. (40)

Substitute equation (40) into equation (39) and eliminate
the perpetual term:

2jωn1 2
dB1

dT1

+ CN11
′ B1( ) +∑6

i�1
Δk1iDie

jσT1 � 0,

2jωn2 2
dB2

dT1

+ CN22
′ B2( ) � 0,

2jωn3 2
dB3

dT1

+ CN33
′ B3( ) � 0,

2jωn4 2
dB4

dT1

+ CN44
′ B4( ) � 0,

2jωn5 2
dB5

dT1

+ CN55
′ B5( ) � 0,

2jωn6 2
dB6

dT1

+ CN66
′ B6( ) � 0.



(41)

)e general solution of equation (41) is

B1 � E1e
− CN11
′ /2( )T1 + ∑6

i�1 ΔkN1iDi

ωn1

�����������
4σ2 + CN11

′( )2√ ej θ+σT1( ),

B2 � E2e
− CN22
′ /2( )T1 ,

B3 � E3e
− CN33
′ /2( )T1 ,

B4 � E4e
− CN44
′ /2( )T1 ,

B5 � E5e
− CN55
′ /2( )T1 ,

B6 � E6e
− CN66
′ /2( )T1 ,


(42)

where E1, . . ., E6 are constant and θ � arctan(CN11
′ /2σ).

Similar to the principal vibration analysis, by
substituting equation (42) into equation (38), the zeroth
degree approximate analytical solution of the combined
resonance of the 6-DOF platform system can be obtained as
follows:

η10 � 2 × ∑6
i�1 ΔkN1iDi

ωn1

�����������
4σ2 + CN11

′( )2√ cos θ + ωn1 + εσ( )t[ ] + 2D1 cos ω0t,

η20 � 2D2 cos ω0t,

η30 � 2D3 cos ω0t,

η40 � 2D4 cos ω0t,

η50 � 2D5 cos ω0t,

η60 � 2D6 cos ω0t.


(43)

Substituting equation (42) into equation (39), the steady-
state first-order approximate analytical solution of the
combined resonance of the transmission system can be
obtained as follows:

η11 � − 2 ηa1 + ηb1 − ηc1( ),
η21 � − 2 ηa2 + ηb2 − ηc2 −

ωn1CN21
′ B1 sin ωn1t( )
ω2
n2 − ω

2
n1

[ ],

η31 � − 2 ηa3 + ηb3 − ηc3 −
ωn1CN31
′ B1 sin ωn1t( )
ω2
n3 − ω

2
n1

[ ],

η21 � − 2 ηa4 + ηb4 − ηc4 −
ωn1CN41
′ B1 sin ωn1t( )
ω2
n4 − ω

2
n1

[ ],

η21 � − 2 ηa5 + ηb5 − ηc5 −
ωn1CN51
′ B1 sin ωn1t( )
ω2
n5 − ω

2
n1

[ ],

η21 � − 2 ηa6 + ηb6 − ηc6 −
ωn1CN61
′ B1 sin ωn1t( )
ω2
n6 − ω

2
n1

[ ],


(44)

where
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ηa1 � ΔkN11B1

cos ωn1 − ωf( )t
ωf 2ωn1 − ωf( ) −

cos ωn1 + ωf( )t
ωf 2ωn1 + ωf( ) ,

ηa2 � ΔkN21B1

cos ωn1 + ωf( )t
ω2
n2 − ωn1 + ωf( )2 −

cos ωn1 − ωf( )t
ω2
n2 − ωn1 − ωf( )2 ,

ηa3 � ΔkN31B1

cos ωn1 + ωf( )t
ω2
n3 − ωn1 + ωf( )2 −

cos ωn1 − ωf( )t
ω2
n3 − ωn1 − ωf( )2 ,

ηa4 � ΔkN41B1

cos ωn1 + ωf( )t
ω2
n4 − ωn1 + ωf( )2 −

cos ωn1 − ωf( )t
ω2
n4 − ωn1 − ωf( )2 ,

ηa5 � ΔkN51B1

cos ωn1 + ωf( )t
ω2
n5 − ωn1 + ωf( )2 −

cos ωn1 − ωf( )t
ω2
n5 − ωn1 − ωf( )2 ,

ηa6 � ΔkN61B1

cos ωn1 + ωf( )t
ω2
n6 − ωn1 + ωf( )2 −

cos ωn1 − ωf( )t
ω2
n6 − ωn1 − ωf( )2 ,

ηb1 �
∑6
i�1 ΔkN1iDi cos ωn1 − ωf( )t

ω2
n1 − ωn1 + ωf( )2 ,

ηb2 �∑6
i�1
ΔkN2iDi

cos ωn1 + ωf( )t
ω2
n2 − ωn1 + ωf( )2 +

cos ωn1 − ωf( )t
ω2
n2 − ωn1 − ωf( )2 ,

ηb3 �∑6
i�1
ΔkN3iDi

cos ωn1 + ωf( )t
ω2
n3 − ωn1 + ωf( )2 +

cos ωn1 − ωf( )t
ω2
n3 − ωn1 − ωf( )2 ,

ηb4 �∑6
i�1
ΔkN4iDi

cos ωn1 + ωf( )t
ω2
n4 − ωn1 + ωf( )2 +

cos ωn1 − ωf( )t
ω2
n4 − ωn1 − ωf( )2 ,

ηb5 �∑6
i�1
ΔkN5iDi

cos ωn1 + ωf( )t
ω2
n5 − ωn1 + ωf( )2 +

cos ωn1 − ωf( )t
ω2
n5 − ωn1 − ωf( )2 ,

ηb6 �∑6
i�1
ΔkN6iDi

cos ωn1 + ωf( )t
ω2
n6 − ωn1 + ωf( )2 +

cos ωn1 − ωf( )t
ω2
n6 − ωn1 − ωf( )2 ,

ηc1 �
ω0∑6

i�1 CN1i
′ Di sin ω0t

ω2
n1 − ω

2
0

,

ηc2 �
ω0∑6

i�1 CN2i
′ Di sin ω0t

ω2
n2 − ω

2
0

,

ηc3 �
ω0∑6

i�1 CN3i
′ Di sin ω0t

ω2
n3 − ω

2
0

,

ηc4 �
ω0∑6

i�1 CN4i
′ Di sin ω0t

ω2
n4 − ω

2
0

,
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ηc5 �
ω0∑6

i�1 CN5i
′ Di sin ω0t

ω2
n5 − ω

2
0

,

ηc6 �
ω0∑6

i�1 CN6i
′ Di sin ω0t

ω2
n6 − ω

2
0

.

(45)

)en, the combined resonant steady-state response
of the 6-DOF platform system in rectangular coordinates is

x � ψ η0 + εη1( ). (46)

Similarly, the combined resonance response can be
obtained by referring to the above solution process, while the
external excitation frequency is close to the sum of the
second order to the sixth-order natural frequency of the 6-
DOF platform system and the equivalent stiffness fluctuation
frequency of the hydraulic oil unit.

5. ParametricVibrationResponseAnalysis of an
Electro-Hydraulic Stewart Platform

5.1. Vibration Response Analysis of System Parameters in Pose
1. Position and pose 1 parameter:

x � Px, Py, Pz, α, β, c( )T
� 0 0 2

�
3

√
0 0 0( )T. (47)

When the platform is in the position of pose 1, the
vibration response of the system parameter is analyzed.

Parameter vibration-related calculation parameters of
the 6-DOF platform transmission system are shown in
Table 2. Substituting the platform mass, leg stiffness, and
parameters shown in Table 1 into equation (20), the para-
metric vibration equation of the 6-DOF platform trans-
mission system is obtained.

5.1.1. Main Resonance Response Analysis. )e time-domain
and frequency-domain responses of the main resonance
when the external excitation frequency approaches to the
stable value of the first-order to the sixth-order natural
angular frequency of the electro-hydraulic platform
transmission system are shown in Figures 2–7. As can be
seen from Figures 2(a)–7(a), while the external excitation
frequency approaches to the steady-state value of the
natural frequency of the first to sixth order of the
transmission system, respectively, the mode corre-
sponding to the natural frequency of the system will have
a relatively intense main resonance phenomenon, and its
maximum displacement is 0.00002712mm. As can be
seen from Figures 2(b)–7(b), when the main resonance is
generated in the system, there is a spike in the frequency-
domain image, which corresponds to the external exci-
tation frequency close to the natural frequency. )is
indicates that it plays a leading role in the main resonance
of the system. In this case, the dominant frequency is the

sum of the natural frequencies of each order and the
fluctuation frequency of the equivalent stiffness of hy-
draulic oil, and other natural frequencies also reach their
maximum amplitudes at the dominant frequency.

5.1.2. Combined Resonance Response. While the external
excitation frequency approaches to the combined fre-
quency of the stable value of the first- to sixth-order
natural angular frequency of the electro-hydraulic plat-
form transmission system and the fluctuation angular
frequency of the equivalent stiffness of hydraulic oil, the
combined resonance time-domain response and fre-
quency-domain response are shown in Figures 8–13(a).
As can be seen from Figures 8(a)–13(a), the combined
resonance phenomenon occurs in the system, but its
amplitude is larger than that of the system when the main
resonance occurs, and the maximum displacement is
0.09427mm. According to Figures 8(b)–13(b), when the
system produces combined resonance, there are three
spikes in the frequency-domain image. Among them, the
combined frequency ωo ≈ωi + ωe, which is the stable value
of the natural angular frequency of each order of the
system and the fluctuation angular frequency of the
equivalent stiffness of hydraulic oil, has the highest peak,
indicating that it plays a leading role in the combined
resonance of the system, while the other frequencies play
a regulating role. )ere is a lower peak on the left and
right side of the peak corresponding to the combined
frequencies, with the left corresponding frequency ωo ≈ωi
and the right corresponding frequency ωo ≈ωi + 2ωe (i � 1,
2, . . ., 6).

5.2. Vibration Response Analysis of System Parameters in Pose
2. Position and pose 2 parameter:

x � Px, Py, Pz, α, β, c( )T � 1 1 2
�
3

√
5 5 10( )T. (48)

When the platform is in the position of pose 2,
the parameter vibration response of the system is
analyzed.

Parameter vibration-related calculation parameters of
the 6-DOF platform transmission system are shown in
Table 3. Substituting the platform mass, leg stiffness, and
parameters shown in Table 1 into equation (20), the para-
metric vibration equation of the 6-DOF platform trans-
mission system is obtained.

5.2.1. Main Resonance Response Analysis. )e time-domain
and frequency-domain responses of the main resonance,
while the external excitation frequency is close to the
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Table 2: Calculation parameters related to vibration of 6-DOF platform transmission system parameters.

Name Value

Steady-state value of the first-order natural frequency ω1 (rad·s− 1) 128.4811
Steady-state value of the second-order natural frequency ω2 (rad·s− 1) 128.4811
Steady-state value of the third-order natural frequency ω3 (rad·s− 1) 259.8076
Steady-state value of the fourth-order natural frequency ω4 (rad·s− 1) 367.4235
Steady-state value of the fifth-order natural frequency ω5 (rad·s− 1) 524.4956
Steady-state value of the sixth-order natural frequency ω6 (rad·s− 1) 524.4956
Fluctuation frequency of equivalent stiffness of fluid element ωe (rad·s− 1) 40.7150
Amplitude of external excitation F0 (N) [20 20 20 20 20 20]T

Structural damping C/N·(m/s) [20 20 20 20 20 20]T
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Figure 2: Main vibration response of the electro-hydraulic Stewart platform transmission system at ωo ≈ ω1. (a) ωo ≈ ω1 time-domain
response. (b) ωo ≈ ω1 frequency-domain response.
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Figure 3: Main vibration response of the electro-hydraulic Stewart platform transmission system at ωo ≈ ω2. (a) ωo ≈ ω2 time-domain
response. (b) ωo ≈ ω2 frequency-domain response.
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stable value of the first-order to the sixth-order natural
angular frequency of the electro-hydraulic platform
transmission system can be seen from Figures 14–19.
With the change of position and pose, the natural fre-
quency of the system changes and the main resonance
response also changes. As can be seen from
Figures 14(a)–19(a), while the external excitation fre-
quency is close to the steady-state value of the natural

frequency of the first to sixth order of the transmission
system, the system will experience a relatively intense
primary resonance with a maximum amplitude of
0.00002923 mm. Compared with pose 1, the modal am-
plitudes of the system are all increased. )is indicates
that, in the asymmetric pose, the connection between
each leg is closer, the coupling is increased, and the
degree of participation in vibration is increased. As can be
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Figure 4: Main vibration response of the electro-hydraulic Stewart platform transmission system at ωo ≈ ω3. (a) ωo ≈ ω3 time-domain
response. (b) ωo ≈ ω3 frequency-domain response.
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Figure 5: Main vibration response of the electro-hydraulic Stewart platform transmission system at ωo ≈ ω4. (a) ωo ≈ ω4 time-domain
response. (b) ωo ≈ ω4 frequency-domain response.
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seen from Figures 14(b)–19(b), when the main resonance
is generated in the system, there is a spike in the fre-
quency-domain image, and the corresponding frequency
of the peak corresponds to the approximate analytical
formula of the main resonance of the system. Its peak
corresponds to the external excitation frequency close to
the natural frequency. )is indicates that it plays a
leading role in the main resonance of the system. In this
case, the dominant frequency is the sum of the natural

frequencies of each order and the fluctuation frequency of
the equivalent stiffness of hydraulic oil, and other natural
frequencies also reach their maximum amplitudes at the
dominant frequency.

5.2.2. Combined Resonance Response. As can be seen from
Figures 20(a)–25(a), when the external excitation frequency
is close to the combination frequency of the stable value of
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Figure 6: Main vibration response of the electro-hydraulic Stewart platform transmission system at ωo ≈ ω5. (a) ωo ≈ ω5 time-domain
response. (b) ωo ≈ ω5 frequency-domain response.
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Figure 7: Main vibration response of the electro-hydraulic Stewart platform transmission system at ωo ≈ ω6. (a) ωo ≈ ω6 time-domain
response. (b) ωo ≈ ω6 frequency-domain response.
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the first to sixth order natural angular frequency of the
electro-hydraulic platform transmission system and the
fluctuation angular frequency of the equivalent stiffness of
hydraulic oil, the combined resonance phenomenon occurs
in the system and the amplitude is relatively severe. Com-
pared with pose 1, the modal amplitudes of the system are all
increased. )is indicates that, in the asymmetric pose, the
connection between each leg is closer, the coupling is in-
creased, and the degree of participation in vibration is in-
creased. )is indicates that, in the asymmetric posture, the

connection between each leg is more close, and the degree of
participation in vibration is increased. As can be seen from
Figures 20(b)–25(b), when the system produces com-
bined resonance, there are three spikes in the frequency-
domain image, and the corresponding frequencies of each
spike correspond to the approximate analytical formula
of the system’s main resonance one by one. Among them,
the peak corresponding to the combined frequency
ωo ≈ωi + ωe of the stable value of the natural angular
frequency of each order of the system and the fluctuation
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Figure 8: Combined vibration response of the electro-hydraulic Stewart platform transmission system at ωo≈ω1+ωe. (a) ωo≈ω1+ωe time-
domain response. (b) ωo≈ω1+ωe frequency-domain response.
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Figure 9: Combined vibration response of the electro-hydraulic Stewart platform transmission system at ωo≈ω2+ωe. (a) ωo≈ω2+ωe time-
domain response. (b) ωo≈ω2+ωe frequency-domain response.
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angular frequency of the equivalent stiffness of hydraulic
oil is the highest. It shows that it plays a leading role in the
combined resonance of the system and the other fre-
quencies play a regulating role. )ere is a lower peak on

the left and right side of the peak corresponding to the
combined frequencies, with the left corresponding fre-
quency ωo ≈ωi and the right corresponding frequency
ωo ≈ωi + 2ωe (i � 1, 2, . . ., 6).
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Figure 10: Combined vibration response of the electro-hydraulic Stewart platform transmission system at ωo≈ω3+ωe. (a) ωo≈ω3+ωe
time-domain response. (b) ωo≈ω3+ωe frequency-domain response.
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Figure 11: Combined vibration response of the electro-hydraulic Stewart platform transmission system at ωo≈ω4+ωe. (a) ωo≈ω4+ωe
time-domain response. (b) ωo≈ω4+ωe frequency-domain response.
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Figure 12: Combined vibration response of the electro-hydraulic Stewart platform transmission system at ωo≈ω5+ωe. (a) ωo≈ω5+ωe
time-domain response. (b) ωo≈ω5+ωe frequency-domain response.
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Figure 13: Combined vibration response of the electro-hydraulic Stewart platform transmission system at ωo≈ω6+ωe. (a) ωo≈ω6+ωe
time-domain response. (b) ωo≈ω6+ωe frequency-domain response.
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Table 3: Calculation parameters related to vibration of 6-DOF platform transmission system parameters.

Name Value

Steady-state value of the first-order natural angular frequency ω1 (rad·s− 1) 111.1024
Steady-state value of the second-order natural angular frequency ω2 (rad·s− 1) 124.4199
Steady-state value of the third-order natural angular frequency ω3 (rad·s− 1) 235.3889
Steady-state value of the fourth-order natural angular frequency ω4 (rad·s− 1) 375.2415
Steady-state value of the fifth-order natural angular frequency ω5 (rad·s− 1) 505.6999
Steady-state value of the sixth-order natural angular frequency ω6 (rad·s− 1) 518.4187
Fluctuation angular frequency of equivalent stiffness of fluid element ωe (rad·s− 1) 40.7150
Amplitude of external excitation F0 (N) [20 20 20 20 20 20]T

Structural damping C/N·(m/s) [20 20 20 20 20 20]T
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Figure 14: Main vibration response of the electro-hydraulic Stewart platform transmission system at ωo ≈ ω1. (a) ωo ≈ ω1 time-domain
response. (b) ωo ≈ ω1 frequency-domain response.
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Figure 15: Main vibration response of the electro-hydraulic Stewart platform transmission system at ωo ≈ ω2. (a) ωo ≈ ω2 time-domain
response. (b) ωo ≈ ω2 frequency-domain response.
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Figure 16: Main vibration response of the electro-hydraulic Stewart platform transmission system at ωo ≈ ω3. (a) ωo ≈ ω3 time-domain
response. (b) ωo ≈ ω3 frequency-domain response.
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Figure 17: Main vibration response of the electro-hydraulic Stewart platform transmission system at ωo ≈ ω4. (a) ωo ≈ ω4 time-domain
response. (b) ωo ≈ ω4 frequency-domain response.
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Figure 18: Main vibration response of the electro-hydraulic Stewart platform transmission system at ωo ≈ ω5. (a) ωo ≈ ω5 time-domain
response. (b) ωo ≈ ω5 frequency-domain response.
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Figure 19: Main vibration response of the electro-hydraulic Stewart platform transmission system at ωo ≈ ω6. (a) ωo ≈ ω6 time-domain
response. (b) ωo ≈ ω6 frequency-domain response.
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Figure 20: Combined vibration response of the electro-hydraulic Stewart platform transmission system at ωo≈ω1+ωe. (a) ωo≈ω1+ωe
time-domain response. (b) ωo≈ω1+ωe frequency-domain response.
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Figure 21: Combined vibration response of the electro-hydraulic Stewart platform transmission system at ωo≈ω2+ωe. (a) ωo≈ω2+ωe
time-domain response. (b) ωo≈ω2+ωe frequency-domain response.
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Figure 22: Combined vibration response of the electro-hydraulic Stewart platform transmission system at ωo≈ω3+ωe. (a) ωo≈ω3+ωe
time-domain response. (b) ωo≈ω3+ωe frequency-domain response.
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Figure 23: Combined vibration response of the electro-hydraulic Stewart platform transmission system at ωo≈ω4+ωe. (a) ωo≈ω4+ωe
time-domain response. (b) ωo≈ω4+ωe frequency-domain response.

24 Shock and Vibration



6. Conclusion

In this paper, the parametric vibration dynamics equation of
the Stewart 6-DOF platform is established. Based on the
multiscale method, the theoretical formulas of the main
resonance and the combined resonance response of the
system are derived, and the parametric vibration response
law of the system is analyzed. Its conclusions are as follows:

(1) )e response characteristics of the main resonance
response of the electro-hydraulic Stewart 6-DOF

platform transmission system are mainly determined
by the modal characteristics of the system; the com-
bined resonance response of the transmission system is
more complex. )e natural frequencies of each order
are the dominant frequencies, and the combined fre-
quencies play a regulating role in the response.

(2) )rough the platform of two different pose pa-
rameter vibration analysis, the platform position in
the asymmetrical position compared with the sym-
metric position, the time-domain response of the
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Figure 24: Combined vibration response of the electro-hydraulic Stewart platform transmission system at ωo≈ω5+ωe. (a) ωo≈ω5+ωe
time-domain response. (b) ωo≈ω5+ωe frequency-domain response.
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Figure 25: Combined vibration response of the electro-hydraulic Stewart platform transmission system at ωo≈ω6+ωe. (a) ωo≈ω6+ωe
time-domain response. (b) ωo≈ω6+ωe frequency-domain response.
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system, and the frequency response analysis is more
close to the actual situation; when the external ex-
citation frequency close to the system natural fre-
quency system of six order modal vibration
amplitude is higher, each leg of the system partici-
pate in the higher degree of vibration with enhanced
coupling.

)e results provide a theoretical basis for the resonance
phenomenon of the electro-hydraulic Stewart platform. It
provides theoretical support for subsequent dynamic opti-
mization and reliability analysis. )rough analysis, it is
suggested that the platform should be installed with a vi-
bration absorber to reduce the excitation frequency only at a
specific frequency to avoid resonance.
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