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Abstract. We present a simple procedure for synthesising novel views,
using two or more basis-images as input. It is possible for the user to in-
teractively adjust the viewpoint, and for the corresponding image to be
computed and rendered in real-time. Rather than employing a 3D model,
our method is based on the linear relations which exist between images
taken with an affine camera. We show how the ‘combination of views’
proposed by Ullman and Basri [19] can be appropriately parameterised
when a sequence of five or more images is available. This is achieved by
fitting polynomial models to the coefficients of the combination, where
the latter are functions of the (unknown) camera parameters. We dis-
cuss an alternative approach, direct image-interpolation, and argue that
our method is preferable when there is a large difference in orientation
between the original gaze directions. We show the results of applying
the parameterisation to a fixating camera, using both simulated and real
input. Our observations are relevant to several applications, including
visualisation, animation, and low-bandwidth communication.

1 Introduction

The World Wide Web presents many novel opportunities for the display of infor-
mation from remote sources [10]. For example, consider the possibility of a virtual
museum, in which visitors can interactively inspect the exhibits. There are two
particularly important factors in the design of software for such applications:
Firstly, the visual appeal of the experience may be more important than the
veridicality of the display. Secondly, the widespread adoption of a visualisation
method would depend on the flexibility of the data-capture process.

These needs are well served by image-based approaches [21], as opposed to
the acquisition and rendering of 3D models. Ideally, we would like to use a small
number of input images to specify a scene, within which we can manipulate a
‘virtual viewpoint’. Although this question has been addressed before [7], we aim
to present a method which is more general than direct image-interpolation [12],
while being less complicated than tensor-reprojection [I].

Our approach is based on the linear combination of views theory, which was
originally proposed by Ullman and Basri [19] in the context of object-recognition.
As has been noted elsewhere, the orthographic camera employed by Ullman
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and Basri provides a point of contact with certain methods of visual motion
estimation [15[13]. In particular, Tomasi and Kanade [I7] have shown that the
structure-from-motion problem can be defined by assembling the feature coor-
dinates from each available image into a single matrix of measurements. The
implicit 3D structure and motion can then be recovered as a particular factori-
sation of this joint-image.

These considerations are important, because the joint-image approach ex-
tends naturally to the treatment of any number of views, obtained under per-
spective projection [I8]. However, (triplets of) perspective views are related by
trilinear equations, rather than by factorisation or direct combination [T4J3]. We
emphasise that the present work is restricted to an affine imaging model, which
admits of a more straightforward treatment.

2 Linear Combinations of Views

Consider a series of images, Z;, taken with an affine camera C at ‘times’ t =
1,2,...,T. If we allow the position, orientation and intrinsic parameters of the
camera to vary from one picture to the next, we can describe the T different
projections of a particular feature as

Tt
=C
[yt] '

where [z; y;]T are the coordinates of the scene-point [x y z 1]T, as it appears
in the ¢-th image. In accordance with the affine imaging-model, C; is a 2 x 4
matrix.

Given the T images, Ullman and Basri [19] have shown that it is also possible
to obtain [z; y;] " without direct reference to the 3D scene. This follows from the
fact that the geometry of an affine view can be represented as a linear combina-
tion of ‘1%’ other affine views. In practice, we chose to employ an overcomplete
representation, which allows for a symmetric treatment of the basis images [2].
For convenience we will define the basis images as 7' = Z; and Z” = Z, although
we could in principle make different choices and, likewise, we could employ more
than two basis images [6]. The coordinates of a particular feature in the target
image, Z;, are then expressed as

t=1,2,...,T. (1)

— N < M

Ty = ag + a1’ + agy’ + asx” + agy” )
yt = bo + bll‘/ + bgy/ + bgl’” + b4y//.

We can form these equations for every feature in Z;, and subsequently obtain
the coefficients a, and b, expressing the least-squares estimate of the target
geometry. However, it should be noted that the numerical rank of this system
is dependent on the scene, the imaging model, and the relationship between the
camera matrices C;, C’ and C” (corresponding to Z;, Z' and Z"”, respectively).
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For example, if Z; and 7’ are related by an affine transformation of the image-
plane, then Z" is redundant. For this reason, the matrix pseudoinverse is used
to obtain stable estimates of the coefficients a,, and b,,.

Several other issues must be addressed before equation (@) can be used as a
practical view-synthesis procedure. Firstly, we must identify five or more corre-
sponding features in the 7" images — this process was performed manually in
the present study. Secondly, we must derive a means of rendering the synthetic
image, while resolving those features in Z’' and Z" which are occluded from the
new viewpoint. These problems will be considered in §5.

A more serious limitation is that the coefficients a,, and b,, cannot be esti-
mated without reference to the ‘target’ coordinates [x; v;]'. In other words,
equation (2)) only allows us to synthesise those pictures which we have already
taken.

As outlined in the introduction, we would rather regard the T existing images
as samples taken from a continuous motion of the camera. Our aim then, is to
generate a convincing movie, Z(7), where certain values of the parameter 7 will
yield the original basis images, while intermediate values will yield plausible
intermediate views.

3 Image Interpolation

To formalise the definition of Z(7), suppose that 0 < 7 < 1. For consistency with
the two basis images, we impose the following conditions:

o x(r) =1 o x(r)=2"
‘O:‘{ym:y' 1:‘{y<7>=y" o

These requirements can be satisfied by a linear interpolation procedure, perfor-
med directly in the image domain:

/ 1

s —a-nn] o). (@
The problem with such a scheme is that the intermediate images are not at all
constrained by the conditions imposed via the basis views. Moreover, equation
(@) is by no means guaranteed to produce a convincing movie. For example,
consider what happens when the two cameras, C’ and C”, differ by a rotation
of 180° around the line of sight; as 7 is varied, every feature will travel linearly
through the centre of the image. Consequently, at frame Z (%)7 the image collapses
to a point.

In fact, Seitz and Dyer [I2] have shown that if C’ and C” represent parallel
camerad] then direct interpolation will produce a valid intermediate view. Ho-
wever, because it is difficult to ensure that the uncalibrated cameras are in this
configuration, it becomes necessary to rectify the basis images.

L If C” can be obtained by displacing C’ along a direction orthogonal to its optic-axis,
then the two cameras are said to be parallel.
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The disadvantage of this method is that computationally, it is both compli-
cated and expensive. The epipoles must be estimated in order to compute the
rectifying homographies@ — and these transformations remain underdetermined
without the use of further constraints. Once these have been specified, Z' and
7" must be rectified, and the interpolation performed. Finally, the novel view
has to be de-rectified. In order to generate a valid movie, the rectifying trans-
formations (as well as the images themselves) would have to be interpolated. A
detailed discussion of the rectification process can be found in [4].

Finally, we note that Pollard et al. [9] have extended just such an interpo-
lation scheme to the three-camera case, and demonstrated good results without
performing the rectification stage. However, this is not viable when there is a
large difference in orientation between C’ and C”, as is the case in many appli-
cations.

4 Parametric Synthesis

In this section we will describe an alternative approach to the generation of Z(7).
It is based on the observation that the coefficients a,, and b, in equation (@) are
functions of the camera parameters [15]. It follows that if the camera-motion
can be parameterised as C(7), then there must exist functions a,(7) and b, (7),
which link the virtual viewpoint to Z;, via (). For example, suppose that we
have a prior model of an orthographic camera, which is free to rotate through the
range 0 to ¢ in the horizontal-plane, while fixating a centrally positioned object.
If 7 is used to specify the viewing angle, then we can define the parameterised
camera-matrix

C(r) = COSE)TQS) (1) Singqﬁ) 8 . (5)

For images generated by such simple cameras, closed-form expressions can be
obtained for a, (7) and b, () [19]. However, real, uncalibrated images are unlikely
to be consistent with such a model. For this reason, we propose to derive a
parameterisation from the original image sequence.

Because the constraints given in (@) can be applied to the view-synthesis
equation (@), the unknown functions a,,(7) and b, (7) must satisfy the following
requirements:

a;(0) =1, az(1) =1, (6)
an(0) =0, n#£1, an(1) =0, n#3,

b2 (0) =1, ba(1) =1,

b(0) = 0, n # 2, ba(1) =0, n # 4.

2 In principle, affine imaging produces parallel epipolar lines within each image. Ho-
wever, this cannot be assumed in the treatment of real images.
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These conditions allow us to propose functional forms for the variation of the
coefficients. Where possible, we begin with linear models:

a1 (1) =ba(1)=1—r, (7)
as(T) =by(1) =T (8)

The remaining coeflicients are tied to zero at both extremes of 7. A simple
hypothesis generates the equations

an (1) =anm(1—=7), n#1, 3, (9)
bp(7) = knT(1 —7), n# 2, 4, (10)

where a,, and k,, are (possibly negative) scalars.

4.1 Estimating the Viewpoint Parameter

We now have prototypes for the variation of the coefficients, as functions of the
viewpoint parameter, 7. The constraints imposed above ensure that the basis-
views are correctly represented, but we also have T' — 2 intermediate samples
from each of these functions, in the form of the a and b coefficients expressing
each ‘keyframe’, Z;, in terms of Z' and Z". However, we do not know the actual
value of 7 corresponding to each image Z; — we will refer to this unknown as 7,
with t = 1,...,T, as before. In practice, we can estimate 7, by assuming that
our simple hypotheses ([ZH8) are valid, in a least-squares sense, for a or b, or for
both. For example, we can posit that as(7) = 7, and that a;(7) = 1 — 7. From
this overcomplete specification we can obtain an estimate, 7; of 7 according to

T = min((ag )4 (a+7— 1)2),

where the a coefficients (estimated via the pseudoinverse, as indicated in {2) are
particular to each target image Z;. The solution of the least-squares problem is,
of course

R 1

T = 5(1 — a1 + as), (11)
subject to the validity of equations (7)) and (§). The use of the a coefficients in the
above procedure is governed by the expectation that they will show significant
variation during a horizontally oriented motion of the camera. If the path were
closer to a vertical plane, then it would be preferable to use the b coefficients
instead. In general, we could use a least-squares estimate (if necessary, weighted)
over all four coefficients in ([ZHR), where the latter would be estimated via the
pseudoinverse, as before.

4.2 Modelling the Coefficients

Should the the hypothesised linear and quadratic equations ([HIU) prove poor
approximations to the behaviour of the coefficients, we can add further terms,
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obeying (), as follows. Consider the cubic models

a1 (1) = 1—7'—1—6(1—7')37 as(T) =7+(13, (12)
bo(t)=1—-74v(1l— 7')3, by(T) =7+ e’ (13)

and
an(T) = anm(1 = 7) + Bpom?(1 = 7) + yu7(1 = 7)%, n #1,3, (14)
bp(7) = k(1 —7) + /\n7'2(]. —7)+ pp7(1 — 7)2, n # 2,4. (15)

We summarise the fitting procedure as follows: For each target Z;, we use equa-
tion (@) to compute the coefficients of the linear combination, a,, and b,. Next
we use equation (1)) to estimate the value of 7y corresponding to each Z;, where
the latter are viewed as ‘keyframes’ in the movie, Z(7). This enables us to use
our T — 2 samples {a,, b,} to estimate the functions a,(7) and b, (7).

For example, from (I4]), we have the following cubic hypothesis for the va-
riation of coeflicient a,1,3 over the T' target images

][Rl B A
an.TQ _ T2 :7—2 T2 | T2) T2 :7—2 ﬁn ’ (16)
in (77) Fr(1 = 7p) 772(1 — 7)) #r(1 — 77)? "

Such an equation can be solved by standard least-squares techniques, such as
Cholesky decomposition. Note that the system is exactly determined when T =
5, resulting in three ‘keyframe’ equations per a,, and likewise three per b,,.

5 Rendering

Section M described a method for estimating the positions of image features in
novel views. A significant advantage of the linear-combinations approach is that
good results can be obtained from a small number of control-points (we typically
used around 30-70 points per image).

However, when we come to render the novel view, we must obtain a value for
every pixel, not just for the control-points. One way to fill-in Z(7) is to compute
the regularised optic-flow from the basis images [1], although this incurs a large
computational cost. Furthermore, the estimation of optic-flow is error-prone, and
any outlying pixels will noticeably disrupt the new image. We therefore prefer
to use a simple multiview-warping scheme [2], as described below.

5.1 Image Triangulation and Warping

In order to render the novel view, we use the estimated positions of the control-
points to determine a mapping from each of the basis images. This can be achie-
ved by performing a systematic triangulation of the control points, as they ap-
pear in the current frame of Z(7). The triangulation is then transferred to the
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control-points in each basis view, thus ensuring the consistency of the mapping
over all images.

We employed a constrained Delaunayf routine [16], which allows us to gu-
arantee that different image-regions will be represented by different triangles.
Furthermore, the constraints can be used to effectively separate the object from
the background, by imposing an arbitrary boundary on the triangulation.

Once the triangulation has been transferred to Z' and Z”, we can use it to
warp each basis-image into registration with the novel view Z(7). In fact, this
is a special case of the texture-mapping problem, and was implemented as such,
using the OpenGL graphics library [11]. Because each mapping is piecewise-
affine, the intra-triangle interpolation is linear in screen-space, which simplifies
the procedure. Finally, bilinear interpolation was used to resolve the values of
non-integer coordinates in Z' and Z"”.

5.2 Computation of Intensities

In the previous section, we showed how the basis views can be warped into
registration, such that corresponding image regions are aligned. The novel view
can now be rendered as a weighted sum of the (warped) basis images [6]:

I(r) = w'T +w"T". (17)

As will be described below, the weights w’ and w” are also functions of 7,
although this property will not be made explicit in the notation.

If the present frame of Z(7) happens to coincide with either Z’ or Z”, then the
other basis image should not contribute to the rendering process. This imposes
the following requirements on w’ and w”:

w =0
w//

w =1

e (18)

I(r)=T = { I(r)=T" = {

In fact, it makes physical sense to impose the additional constraint w’ +w"” =1,
such that equation (1) becomes a barycentric combination. Using the results of
g4, it would be possible to define the weights as w’ = 1 —7 and w” = 7. However,
this would be unsatisfactory, because 7 specifies the notional 3D viewpoint,
which may be a poor measure of the 2D image relationships. For this reason, we
follow [2], and use equation (@) to derive appropriate weights. Specifically, we
define distances d’ and d” of Z(7) from Z’ and Z"” respectively:

d'’? = az(7)? + ag(1)% 4+ b3 (7)? + ba(7)? (19)
d"?* = a1(7)? + az(7)? +b1(7)? + ba (7). (20)

3 Once the triangulation has been transferred to another point-set, only the adjacency
properties are necessarily preserved.
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As in [2l6], we then compute the weights according to

112 12
! d " d

= d'2 +d”2 wo= d'? +d//2' (21)

w
Having satisfied conditions (I8)), we can now compute the novel view, using
equation (7). This potentially slow operation was implemented via the OpenGL
accumulation buffer, which operates in hardware (where available). Clearly the
method generalises immediately to colour images, by treating each spectral band
as a luminance component [2].

5.3 Hidden-Surface Removal

An issue which must be addressed by all view-synthesis schemes is the treatment
of missing or inconsistent data during the rendering process. Clearly, it is only
possible to portray those features in Z(7) which were present in at least one
basis-image. If a new feature does appear, then the method described above
renders a mixture of the (spatially) corresponding regions in the basis-images,
thereby ensuring that, though it may be incorrect, each frame of Z(7) is at least
continuous.

The problem of consistency is more tractable, as it is possible to remove any
parts of the basis-images which are occluded from the novel viewpoint. Moreover,
although occlusion events are generated by the 3D nature of the scene, it does
not follow that we have to explicitly recover the 3D structure in order to resolve
them. Rather, it is sufficient to obtain the affine depth [5] of each control-point.
Geometrically, this quantity can be understood as the relative deviation from a
notional world plane, where the latter is defined by three distinguished points in
the scene. It is straightforward to compute the affine depth, using the positions of
the control points in two basis-images, together with the constraint that the three
distinguished points have affine depths equal to zero. Once the measurements
have been made at the control-points, we use the standard z-buffer algorithm to
interpolate the depth over each triangle, and to remove the occluded regions.

A further consequence of this process is that the combination of views (&)
can be recomputed at each of the T' — 2 keyframes, excluding those control-
points which occupy hidden surfaces in Z;. This should lead to a more accurate
synthesis, because the occluded points are likely to be outliers with respect to
the original estimate [2].

6 Results

The methods which have been described were tested by simulation, using 3D
models defined in the OpenGL environment. Several scenes (comprising arran-
gements of cubes) were imaged, while the viewpoint was subject to systematic
variation. Both perspective and affine projections were recorded, and the matrix
pseudoinverse was used to solve equation (2). As well as exact control of the ca-
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mera model, the simulation procedure provides noiseless image coordinates for
each control-point, and allows us to monitor occlusion effects.

The graphs in figures [[] and [ show how the coefficients of the linear com-
bination evolve as the (perspective) camera rotates through 90° in a horizontal
plane. In the case of real images, it is likely that these curves would be disrup-
ted by occlusion effects. As described in §5.3], it would be possible to avoid this,
although we have not yet implemented the necessary re-estimation procedure.

(1) (2) (3) (4)
1.0
a 0.5
1.
b 0.5
0.0
1 21
t

Fig. 1. Variation of the linear-combination coefficients (top; a1,a2,a3,a4; bottom;
b1,b2,b3,b4). The simulated camera was rotated through 90° around the vertical axis
of a group of six cubes. T = 21 pictures were taken in total. The functions obey the
conditions (@), as expected, though a24 and bi,3 (which were zero) have been shifted
up by 0.5 for the purpose of this display. The nonzero variation of the b2 4 coefficients
is attributable to perspective effects.

When plotted on the same axes, the fitted models (I2HI5) are indistinguis-
hable from the measured curves shown in figures [I] and 2l For reasons of space,
we proceed directly to the final error-measures, produced by using the fitted
models to position the control-points in the existing 7" images. The two graphs
in figure B] show the r.m.s. discrepancy (in x and y respectively) between the
estimated and actual control-points. For ¢ = 1 and ¢ = 21 the error is zero,
because Z' = 77 and Z" = Ty respectively.

We have not yet implemented the estimation of 7; (as described in §4T)
from a real image sequence. However, preliminary results have been obtained
by applying the functions a,(7) and b, (7), obtained by simulation, to real pairs
of basis-images. For example, we produced the novel views shown in figure Bl
by applying the functions shown in figures [l and Bl to the two framed images.
Once the polynomial models a,(7) and b, (7) have been obtained, they can be
resampled to yield an arbitrary number of intermediate images.

In the light of our comments in g3, we note that the example shown in
figure @is rather straightforward, in that the camera-motion is extremely simple.
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(0) rms-error
0.0 5.3
a -27.0 X 2.65
-54.0
0.
b -0.075 Y 0.5
-0.15 0.0
1 21 1 21
t t
Fig. 2. Variation of coefficients ag Fig. 3. Mean error of the parametric-
(top) and by (bottom). These are the synthesis, measured in z (top) and y
constant terms in the linear combina- (bottom). The units are pixels, where
tion (2), which are not of comparable the original images were of size 256 X
magnitude to the coefficients plotted in 256.

fig. [M

Nonetheless, rotation around the object is a typical requirement in visualisation
applications.

As far as the image-quality is concerned, the results seem promising; in parti-
cular, we note that the left and right edges of the mask are appropriately culled,
according to the viewpoint. The constrained triangulation also seems to perform
adequately, although there is some distortion of the top-right edge of the mask
during the early frames. This may indicate that insufficient control-points were
placed around the perimeter.

7 Conclusions and Future Work

We have described a simple method of parametric view-synthesis, developed with
the requirements of Web-based visualisation in mind. Our results are also rele-
vant to other applications of the linear combinations of views theory, including
animation [8] and low-bandwidth video-transmission [f].

In this outline we have concentrated on simple motions of the camera, because
these are typical of visualisation applications. In principle, the same approach
could be applied to general conjunctions of rotation and translation. However,
it is to be expected that arbitrary motions will add complexity to the functions
an(7) and b, (7), which may demand the addition of further polynomial terms
to the model (I2HIH)). Arbitrary camera trajectories may also require the speed
of the parameterisation to be regulated.

In future, it may be possible to extend the present method to cover a region
of the view-sphere, rather than just a particular path of the camera; this would
require two parameters, {6, ¢}, in place of 7. Because of the increased variety
of intermediate images, such an extension would also require the use of more
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Fig. 4. A simple example of parametric view-synthesis, using 74 control-points. The
basis-images are shown framed; the other thirteen views were generated as described
in the text. The viewpoint is ‘extrapolated’ slightly in the final frame.

than two basis-views. This leads to the general question of how the quality of
the results is related to the number of basis images employed, and whether it is
possible to select appropriate basis-views automatically.

If these issues can be resolved, it may be possible to extend the methods
described above to the perspective case, via the trifocal tensor [3UT5].
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