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The method of normal forms is used to study the nonlinear response of two-degree-of­
freedom systems with repeated natural frequencies and cubic nonlinearity to a princi­
pal parametric excitation. The linear part of the system has a nonsemisimple one-to­
one resonance. The character of the stability and various types of bifurcation 
including the formation of a homoclinic orbit are analyzed. The results are applied to 
the flutter of a simply supported panel in a supersonic airstream. © 1995 John Wiley & 

Sons, Inc. 

INTRODUCTION 

Parametrically excited two-degree-of-freedom 

(2-D OF) systems with a nonsemisimple one-to­

one resonance are analyzed by the method of 

normal forms. A system with repeated frequen­

cies is said to have a nonsemisimple one-to-one 

resonance if its linearized part cannot be 
diagonalized. The nonlinearity is cubic and the 

excitation is harmonic. Principal parametric res­

onance is investigated. The results are applied to 

the flutter of an isotropic panel in a supersonic 

airstream, in which case the nonlinearity is due 

to midplane stretching. The following brief sur­

vey serves as an introduction. For a comprehen­

sive review, we refer the reader to Evan­
Iwanowski (1976), Nayfeh and Mook (1979), 

Ibrahim (1985), Schmidt and Tondl (1986), and 

Nayfeh and Balachandran (1989, 1995). 
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Parametrically excited 2-DOF systems with 

quadratic nonlinearities and two-to-one auto­

parametric resonances were studied by Miles 

(1985), Nayfeh (1983b,c, 1987a), Nayfeh and 

Zavodney (1986), Streit et al. (1988), and Asrar 

(1991). Distributed-parameter systems with qua­

dratic nonlinearities and two-to-one internal res­

onances were studied by Miles (1984), Ibrahim 

and Barr (1975), Holmes (1986), Nayfeh (1987b), 

Gu and Sethna (1987), and Nayfeh and Nayfeh 

(1990). 

Tso and Asmis (1974) analyzed the response 

of a 2-DOF system with cubic nonlinearities for a 

principal parametric resonance of the first mode. 

Tezak et al. (1978) treated the nonlinear response 

of a hinged-clamped beam for principal and com­

bination parametric resonances. 

Parametrically excited systems with one-to­

one internal resonances whose linear parts are 
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diagonal were studied by Asmis and Tso (1972), 
Ciliberto and Gollub (1985), Meron and Procac­
cia (1986), Simonelli and Gollub (1989), Feng and 
Sethna (1989), and Nayfeh and Pai (1989). 

Parametrically excited systems having non­
semisimple linear structures were studied by Fu 
and Nemat-Nasser (1972a,b), Nayfeh and Mook 
(1979), Tezak et al. (1982), Nayfeh (1983a), Na­
machchivaya and Malhotra (1992), and Nayfeh 
(1993). Fu and Nemat-Nasser used Floquet the­
ory to analyze the response of linear multi-DOF 
systems with two repeated frequencies. Nayfeh 
and Mook (1979) used the method of mUltiple 
scales to analyze the response of linear multi­
DOF systems with two repeated frequencies for 
principal, fundamental, and combination para­
metric resonances. Nayfeh (1983a) used the 
method of multiple scales to analyze the re­
sponse of linear systems with three repeated fre­
quencies. Tezak et al. (1982) used the method of 
multiple scales to determine the response of non­
linear multi-DOF systems with two repeated fre­
quencies for principal parametric resonances. 
They applied the results to the flutter of a panel 
in a supersonic stream. Namachchivaya and 
Malhotra (1992) used the method of normal 
forms to analyze the response of general nonlin­
ear 2-DOF systems with two repeated frequen­
cies for a principal parametric resonance. They 
found some interesting phenomena, such as ho­
moclinic bifurcations near the Bogdanov-Takens 
bifurcation point. Nayfeh (1993) used the meth­
ods of normal forms and multiple scales to derive 
normal forms for multi-DOF systems with two 
repeated frequencies and quadratic and cubic 
nonlinearities for principal, fundamental, and 
combination parametric resonances. 

In this article we use the method of normal 
forms to reexamine the panel-flutter problem in­
vestigated by Tezak et al. (1982). We show that, 
in the case of a simply supported panel in a su­
personic airstream, only heteroclinic orbits can 
be observed near the Bogdanov-Takens bifurca­
tion point, whereas a homoclinic bifurcation can 
occur, resulting in ajump phenomenon. The the­
orem of Shilnikov (1970) is used to interpret 
these results. Some of the analytical results are 
verified by numerical integration of the governing 

equations. 

EQUATION OF MOTION 

The aeroelastic equations of motion for plates 
and shells are well established (Dowell, 1975; 

Dowell and llgamov, 1988). The motion of a 
panel under a harmonic in-plane load in a super­
sonic airstream is governed by the following 
equation (Dowell, 1975): 

where 

N = Eh fa (oW)2 d~ 
x 2a Jo o~ 

(2) 

is the tension due to the bending-induced stretch­
ing ofthe panel, D is the flexural rigidity, w is the 
transverse deflection, x is the stream-wise spatial 
coordinate, t is the time, N~ is the in-plane har­
monic loading, E is the modulus of elasticity, h is 
the panel thickness, a is the panel length, and Pm 
and JLm are the material density and damping, 
respectively. On the right-hand side of Eq. (1), 
piston theory is used to approximate the super­

sonic aerodynamic loads on the panel, where P"" 

Uoo, and Moo are the density, speed, and Mach 
number in the free stream. 

Equation (1) can be rewritten in the following 

dimensionless form: 

where 

= [R: + a* f: e;:r d~*] ~;: (3) 

ow* 
- 2JL*­

ot* 

w* = (a/h2)w, x* = (2/a)x, 

t* = [4DI/2/a2(Pmh)1/2]t, A* = pxU~a3/8MxD, 

R: = N~a2/4D = F cos 0*1*, 

a* = Eh5/4a2D, 

2JL* = (a2/4(PmhD)1/2)(JLm + p",U",/M",). 

Following the Galerkin procedure, Tezak et al. 

(1982) expressed the deflection as an expansion 
in terms of the linear free-vibration modes and 
obtained a system of ordinary differential equa-



tions for the time-dependent coefficients (also 
called modal amplitudes) in this expansion. For 
flutter, two natural frequencies coalesce and the 

corresponding modal amplitudes Ui are governed 
by equations having the following form: 

iii + UI + 2fllul + Allul + AI2u2 

+ (2 cos fiT)(JiIUI + J12U2) + allu~ 
+ a12uju2 + aI3UIU~ + al4u~ = 0 (4) 

ii2 + UI + U2 + 2fl2U2 + A 21 uI + A 22u2 

+ (2 cos fiT)(!zIUI + J22U2) + a2lu~ 
+ a22uju2 + a23ulu~ + a24u~ = 0 (5) 

where T = w*t* is the new independent variable; 
w* is the dimensionless natural frequency; the 
ratio of the excitation frequency to the natural 

frequency fi is close to 2; the Aij = (A * - A:)Cij 

are the aerodynamic detuning parameters; the Cij 

are constants; A: is the critical value that causes 
two natural frequencies to merge and flutter to 

ensue; and the fli' Jij, and aik are constants re­
lated to the damping, in-plane loading, and non­
linear terms in Eq. (1), respectively. The case of 
a one-to-one internal resonance and a principal 
parametric excitation are studied. 

Nayfeh and Mook (1979) showed that, in the 
presence of damping, all modes that are not di­
rectly or indirectly excited by an internal reso­
nance decay with time. 

METHOD OF SOLUTION 

Tezak et al. (1982) used the method of multiple 
scales to obtain an approximate solution to Eqs. 
(4) and (5). One can obtain the same results by 
the method of normal forms, as we demonstrate 
in this section. 

Scaling 

Due to the nonsemisimple structure of the linear 
undamped operator, U2 is much larger than U I . 

Hence, after introducing e as a bookkeeping de­

vice, one assumes that 

UI = eVI, U2 = e'-6'v2, fli = e62p.,i 

Aij = e83 Aij, Jij = e8'fij, aik = e8saik 

(6) 

for i = 1, 2,j = 1,2, k = 1,2,3,4, where the 6m 

are unspecified (for the present) positive con­

stants. Substituting Eq. (6) into Eqs. (4) and (5) 
yields 
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VI + VI + e 822JLIVI + e 83(AII VI + e-8'A I2V2) 

+ (2 cos fiT)e 8'(filvl + e-8'fi2v2) 

+ e 85+2(all v~ + e-8'al2viV2 

+ e-26'aI3vlv~ + e-36'aI4v~) = 0 (7) 

V2 + e8'vi + V2 + e 622p.,2 v2 

+ e 83(e8'A21 VI + A 22V2) 

+ (2 cos fiT) e 8'(e 6121 VI + f22V2) 

+ e 85+2(e8'a21 V~ + a22vjv2 

+ e-8'a23VI V~ + e-28'a24V~) = O. (8) 

Keeping only the dominant terms, we have 

VI + VI + e 822JLIVI + e8,-8'A12V2 

+ e8.-8'(2 cos fh)fl2 V2 + e85+2-38'aI4v~ 
+ ... = 0 (9) 

To make the damping, aerodynamic loading, 
parametric resonance, and nonlinearity interact 
in the first approximation, we let 

62 = 63 - 61 = 64 - 61 = 65 + 2 - 361 = 61• 

(11) 

Hence, for an arbitrary 61, say 1, 

and the scaled Eqs. (9) and (10) become 

VI + VI + 2ep.,1 VI + eAI2v2 

+ e(2 cos fiT)f12 V2 + eal4v~ + . = 0 (13) 

V2 + eVI + V2 + 2ep.,2v2 + ... = o. (14) 

Method of Normal Forms 

To simplifY Eqs. (13) and (14), using the method 
of normal forms (Nayfeh, 1993), we first recast 
them in complex-valued form using the following 

transformation: 

Vj = 'Y/j + YiJ, Vj = i(rlJ - YiJ), j = 1,2 (15) 

where YiJ is the complex conjugate of r/j. Solving 

for "f/j and YiJ, we obtain 

'rI. = .!. (v· - iv·) and 
'0 2 J J 

_ 1 ( .. ) 
"f/j = 2 Vj + lUj • (16) 

Differentiating the first of Eqs. (16) with respect 
to T and using Eqs. (13)-(15), we find 
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7j1 = i'YJl + i si[i2JLI('YJ1 - ill) 

+ Ad'YJz + ilz) + Idz + Z)('YJz + ilz) (17) 
+ aI4('YJZ + 77Z)3] + ... 

7j2 = i'YJz + i si['YJ1 + ill + i2JLz('YJz - ilz)] 
(18) 

+ ... 

where z = e iflT • Next, we introduce the near­

identity transformation 

'YJj = ~j + shj(~m' [m, Z, z) + . 

m = 1, 2 for each j = 1, 2 
(19) 

into Eqs. (17) and (18) and choose the hj so that 

the resulting equations take the simplest possible 

form, the so-called normal form: 

ij = i~j + sgj(~m' [m, Z, z) + . 

m = 1, 2 for each j = 1, 2 
(20) 

where the gj consist of the resonance and near­

resonance terms. After substituting Eqs. (19) and 

(20) into Eq. (17) and equating the coefficients of 

s, we obtain 

Choosing hi to eliminate the nonresonance terms 

in Eq. (21) leaves gl with the resonance and near­

resonance terms; that is, 

1 . 2--
gl = -JLl~l + "2 I(A12~Z + 3al466 + 112Z6). 

(22) 

The term proportional to z[z is a near-resonance 

term because 0 = 2 and the rest of the terms on 

the right-hand side of Eq. (22) are resonance 

terms. After substituting Eqs. (19) and (20) into 

Eq. (18), equating the coefficients of s, and 

choosing h2 to eliminate the nonresonance terms, 

we obtain 

(23) 

Substituting Eqs. (22) and (23) into Eq. (20) 

yields the normal form 

il = i~1 - SJLI~I 

1 z--
+ "2 is(A126 + 3al466 + 112Z6) 

(24) 

(25) 

Next, we introduce a detuning parameter fI 

defined by 

0= 2 + SfI (26) 

where SfI is small compared with 1. Moreover, 

we express the ~j in the polar form 

(27) 

recall that z = e iOT , separate Eqs. (24) and (25) 

into real and imaginary parts, and obtain 

Iii . -"2 12a 2Sm 'Yz 

(29) 
1 

+ "2 fiZa2cos 'Yz 

(30) 

(31) 

where the prime is the derivative with respect to 

TI = S'T, 

'YI = {32 - {31 and 'Y2 = fITI - {3z - {31. (32) 

A comparison between the numerical time inte­

gration ofthe modulation equations and the origi­

nal governing equations is shown in Figs. 1-3. In 

Fig. 1, we show the effect of s, which appears in 

the scaling process. Clearly, the accuracy of the 

perturbation solution improves as S decreases. 

Good agreement between the perturbation and 

exact solution is reached when S = 0.01, which is 

also used for the results obtained in Figs. 2 and 3. 
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FIGURE 1 Comparison between the numerical time 

integration of the modulation equations (+) and the 

original governing equations for (A, F) = (0, 500) and 

(0, 1000) (outer loop); (a) B = 0_1; (b) B = 0_01. 

FIGURE 2 Comparison between the numerical time 

integration of the modulation equations (+) and the 

original governing equations for B = 0.01; (a) A = 0, 

F = 500, 5000, and 50000 (outer loop); (b) F = 500, 

A = -500, 1000, 2000, and 5000 (outer loop). 

8 (a) 
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FIGURE 3 Comparison between the numerical time integration of the modulation equa­

tions (left) and the original governing equations (right). (A, F) = (600, 379) for (a) and (b); 

(A, F) = (600, 329) for (c) and (d). 
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By introducing this e, one can observe that U2 is 

much larger than UI, which is consistent with the 

inherent nonsemisimple structure of the system 

under investigation. 

EQUILIBRIUM SOLUTIONS AND THEIR 

STABILITY 

The equilibrium solutions of Eqs. (28)-(32) cor­

respond to aJ = 0 and yJ = O. There are two 
possibilities: a trivial solution: 

(33) 

and a nontrivial solution: 

(34) 

(35) 

In the example considered below, £X14 is positive 

and AI2 decreases with Mx and is zero at the 

critical Mx. 

The trivial solution always exists, although it 

may not always be stable. The nontrivial solution 

exists when a~ is positive. One requirement is 

(36) 

In addition, when 

cr2 - Al2 - 4/LI/L2 > Vliz - 4cr2(/LI + fJ.,2)2 

(37a) 

there are two possible nonzero values for a~ and 

when 

Vn2 - 4cr2(fJ.,1 + fJ.,2)2 > Icr2 - Al2 - 4/LlfJ.,21 
(37b) 

there is only one nonzero value for a~. Condition 
(37b) applies for both positive and negative val­

ues of cr2 - Al2 - 4fJ.,1/L2. 
Next, we examine the stability of the various 

solutions. We are particularly interested in the 

boundaries separating the stable combinations of 

parameters from the unstable ones. 

Stability of Trivial Solution 

Determining the limits of stability for the trivial 

solution is equivalent to determining the flutter 

boundaries. We introduce the Cartesian form 

to transform the nonautonomous system (24) and 

(25) into the four-dimensional autonomous sys­

tem 

(39) 

where 

PI q2 

ql 3 2 2 -P2 
x= N = "8 £X14(P2 + q2) , (40) 

P2 0 

q2 0 

and 

-2/LI -cr 0 AI2 - 112 

L=! 
cr -2/LI -Al2 - 112 0 

2 0 1 -2/L2 -cr 

-1 0 cr -2/L2 

(41) 

The eigenvalues A of the matrix L satisfy the 
characteristic equation 

(42) 

where 

rl = 2(fJ.,1 + fJ.,2) (43a) 

2 2 1 
r2 = fJ.,1 + fJ.,2 + 4fJ.,1/L2 + 2 (Al2 + cr2) (43b) 

r3 = (/LI + fJ.,2) (2/LI/L2 + ~ Al2 + ~ cr2) (43c) 

1 
r4 = 4 cr2(/LI + /L2)2 

(43d) 

( 1 1)2 1 
+ /LlfJ.,2 + 4 Al2 - 4 cr2 - 16112. 

According to the Routh-Hurwitz criterion, at 

least one root of Eq. (42) has a positive real part 

if at least one of the following conditions is not 

satisfied: 



'I > 0, '1'2 - '3 > 0, 

'3('1'2 - '3) - rj'4 > 0, '4 > o. 
(44) 

The flutter boundaries separating stable and un­

stable regions for the case of a simply supported 

panel can then be constructed to form the bifur­

cation diagram, as shown in Fig. 4. Stable trivial 

solutions exist in regions I and II only. As a con­

trol parameter is varied, the trivial equilibrium 

solution can undergo a variety of bifurcations. 

The qualitative dynamical behavior near these bi­

furcation curves can be analyzed by a combina­

tion of center manifold theory and the method of 

normal forms. 

Static Bifurcations of Trivial Solution. The P 
curve in Fig. 4 corresponds to the condition'4 = 

0, where '4 is defined in Eq. (43d). Thus, along 

this bifurcation curve, the linear operator L has a 
zero eigenvalue. As F crosses the P curve di­

rectly from region I into region III at a fixed A, a 

supercritical pitchfork bifurcation occurs, which 

can be identified by the normal form (Nayfeh and 
Balachandran, 1994) 

y' = 81(F - Fer)Y + alY\ 

81 > 0 and al < 0 (45) 

where Fer is the bifurcation value. If F crosses 

from region II into region III, a subcritical pitch­

fork bifurcation occurs. It can be identified by 

800...-----------------, 

600 

III v 
F400 

p 

200 IV 

O+--~_.-~-._-~_.-~~ 

-1000 -500 o 500 1000 

A 

FIGURE 4 Various regions of interest obtained from 

the linear and nonlinear stability analyses for a simply 

supported panel, w* = 8.1076, (T = 25/w*, ILl = IL2 = 

lO/w*, AI2 = -99.2A/w*4,fI2 = 202.5F/w*4, and 0!14 = 
5729/w*4. The P and H curves define the linear flutter 

boundaries. The P curve corresponds to pitchfork bi­

furcations, the H curve corresponds to Hopf bifurca­

tions, and the S curve corresponds to saddle-node bi­

furcations. 
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the normal form (Nayfeh and Balachandran, 
1994) 

y' = 82(F - Fer)Y + a2Y\ 

82 > 0 and a2 > o. (46) 

In the case of supercritical bifurcation, the stable 

trivial solution loses stability and gives way to a 

stable nontrivial constant solution (or periodic 

solution of the original system) that smoothly 

grows with F, as shown in Fig. 5(a) , where (81, 

al) = (0.0033, -0.001) when (A, Fer) = (-300, 

332.92). In the case of subcritical bifurcation, the 

solution jumps from a trivial to a nontrivial value 

as F increases past the bifurcation value, as 

shown in Fig. 5(b), where (82, (2) = (0.0058, 
0.0028) when (A, Fer) = (100, 346.79). 

Hopf Bifurcation of Trivial Solution. The H 
curve in Fig. 4 corresponds to the condition 

'3('1'2 - '3) - rj'4 = 0, where the'j are defined in 
Eqs. (43). The linear operator L has a pair of 

purely imaginary eigenvalues along this bifurca­

tion curve. As A crosses the H curve from region 
I into region IV or from region II into region V at 

a fixed F, a supercritical Hopf bifurcation occurs 

that can be identified by the normal form (Nayfeh 
and Balachandran, 1994) 

" = 83(A - Aer)' + a3'3, 

83 > 0 and a3 < 0 (47a) 

()' = p + a4,2, p2 = '3/'1 and a4 < 0 (47b) 

where Aer is the bifurcation value. In Fig. 6(a,b), 

the variation of the amplitUde of the second 

mode with the aerodynamic detuning for two val­

ues of the excitation amplitude is shown. 

When F = 200 and A is increased slowly, the 

stable trivial solution loses stability across the 

Hopf bifurcation curve at Aer = 326.41, where 

(83, (3) = (0.0026, -0.0475) and (p, (4) = (1.423, 

-0.0053). The amplitude of the periodic solution 

of the modulation equations (or quasiperiodic so­

lution of the original system) gradually grows 

with increasing A, as shown in Figs. 6(a) and 

7(c,d). 

We show the results for F = 350 in Fig. 6(b). 

When A is increased from a low value, the trivial 

solution loses stability at A = -416 (point B) and 

a stable nontrivial constant solution (which 

passes through points F and A) starts to grow as 

A continues to increase. When A = 118 (point E), 

a second, unstable nontrivial constant solution is 
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FIGURE 5 Variation of the amplitude of the second mode a2 with the amplitude of the 

parametric excitation: (a) A = -300; (b) A = 100; (c) A = 300; (d) A = 500; (e) A = 679.2; 

and (f) A = 1000. Thin-solid lines denote stable constant solutions, dotted lines denote 

unstable constant solutions, and thick-solid lines denote mean amplitude of the periodic 

solutions. 

possible and the unstable trivial solution regains 

its stability. It remains stable until A = 453 (point 
D), where (83, (X3) = (0.0032, -0.04) and (p, (X4) 

== (1.140, -0.0158) a supercritical Hopf bifurca­

tion occurs and a periodic solution of the modu­

lation equations emerges. The amplitude of the 

periodic (limit-cycle) solution of the modulation 

equations grows as A continues to increase, as 

indicated by the heavy line from D to C in Fig. 

6(b). In the region of multiple stable solutions, 

the response depends on the initial conditions. 

Starting from a stable nontrivial constant solu­

tion at a large value of A, point A in Fig. 6(b), and 

then gradually decreasing A, one finds that the 

amplitUde of the nontrivial solution decreases 

through point F until a stable trivial solution is 

reached at point B. Starting from a periodic solu­

tion at a large value of A, point C, and gradually 

decreasing A, one finds that the amplitude of the 

limit-cycle solution decreases until a reverse 

Hopf bifurcation to a stable trivial solution oc­

curs at point D. However, as A continues to de­

crease, a jump occurs at the reverse pitchfork 

bifurcation, point E, to the stable nontrivial solu­

tion, point F, which is the only realizable solu­

tion. As A decreases further, the solution follows 

the stable branch from point F to point B. 

Stability of Nontrivial Solutions 

The Jacobian matrix of the autonomous system 

defined by Eqs. (28)-(32) evaluated at the nontri-
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FIGURE 6 Variation of the amplitude of the second mode a2 with the aerodynamic 

detuning: (a) F = 200; (b) F = 350. Thin-solid lines denote stable constant solutions, dotted 

lines denote unstable constant solutions, and thick-solid lines denote the mean amplitude of 

the periodic solutions. 
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FIGURE 7 A two-dimensional projection of the phase portrait onto the a2 - at plane: 

(A, F) = (a) (679.2, 340); (b) (1000, 340); (c) (679.2, 200); and (d) (1000, 200). 
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vial fixed points can be expressed as 

J= 

where 

1 . 
2 sm 'YI 

1 
- cos 'YI 
a2 

J 12 

-11-2 

J 32 

(J" 

- + J 32 
a2 

I (A 9 2)' lJi' J I2 = - 2 12 + 4: al4a2 sm 'YI - 2 I2sm "2 

(48b) 

(48c) 

J32 = - ~I [( AI2 + ~ aI4a~) cos 'YI + fl2COS 'Y2] 

(48d) 

(48e) 

The stability of a nontrivial equilibrium solution 
depends on the real parts of the eigenvalues of 
the matrix J. If the real part of each eigenvalue is 
negative, the corresponding equilibrium solution 
is asymptotically stable. If the real part of at least 
one of the eigenvalues is positive, the corre­
sponding equilibrium solution is unstable. In re­
gions II and V of Fig. 4, there are two nontrivial 
constant solutions: one is stable and one is unsta­
ble. And in region III, there is one nontrivial con­
stant solution, which is stable. If the equilibrium 
solution becomes nonhyperbolic, a similar bifur­

cation analysis can be conducted near the nontri­
vial fixed point by using the center manifold the­
ory and the method of normal forms. As F is 

decreased across the line S, where F = Fcr , be­
tween regions I and II (or IV and V) for a fixed A, 

one real eigenvalue becomes positive and a sad­
dle-node bifurcation occurs; it can be identified 
by the normal form 

In Fig. 5(b-f), as F decreases past the bifurcation 

point, the stable nontrivial constant solution no 

Jl3 

1 
2 alcos 'YI o 

(48a) 

J 33 

al . 
- sm 'YI + J 33 
a2 

longer exists and either jumps down to a stable 
trivial constant solution or a2 becomes a periodic 
function. The unstable branch of nontrivial con­
stant solutions is unrealizable in both numerical 

and physical experiments. 

Stability of Periodic Solutions 

Using Floquet theory to check the stability ofthe 
periodic solutions in regions IV and V, one finds 
that only stable periodic solutions exist in region 
IV, whereas stable periodic solutions and stable 
nontrivial constant solutions coexist in part of 
region V, as shown in Figs. 5(e,f) and 6. In the 
latter case, the response depends on the initial 
conditions. In Figs. 5(c,d) and 8, the mean value 
of the amplitude of the periodic solution de­
creases while its period increases as F increases, 
and eventually a reverse Hopf bifurcation pro­
duces a stable trivial solution. In Fig. 5(e,f), 

when A is either near the value where the 
Bogdanov-Takens bifurcation occurs or away 
from the Hopf-bifurcation curve, the mean value 
of the amplitude of the periodic solution first de­
creases with F, then starts to increase some­
where beneath the unstable branch of nontrivial 
constant solutions (saddles). At this point, the 
periodic solution is stable in a sense that the cor­
responding Floquet mUltipliers lie within the unit 

circle. However, as shown in Fig. 8 for fixed 
values of A, the period of the limit cycle tends to 
infinity as F increases, suggesting the occurrence 

of a homo clinic orbit. 
If a system has an orbit homoclinic to a saddle 

focus, which has one positive real eigenvalue AI. 

A2 = ~3 = -a + iw, and Real( -Ai) > a for i = 4, 
5, ... ,n, where a and ware positive, Shilnikov 

(1970) showed that the system has a stable peri­

odic orbit on one side of the homoclinic orbit and 
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FIGURE 8 Variation of the period of the periodic 

motion with the amplitude of the parametric excita­

tion. (0) A = 500; (0) A = 600; (+) A = 679; (M A = 
700; (*) A = 1000. 

no recurrent behavior on the other if the eigen­
values of this saddle satisfy the inequality 

a == a/AI> 1, (50) 

which is the case in the current study. 

The projections of the unstable manifolds of 
the saddle focus are shown in Fig. 9 for A = 

1000. Before the homoclinicity condition is 

reached, the unstable manifold leads to a limit 

cycle in one direction and to a sink in the other, 

as shown in part (a) for F = 330. As F increases, 

6 (a) 

2+-----~-----.----~-----~ 

6 (e) -

2+-----~----_r----~----~ 
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FIGURE 10 Variation of the period of the periodic 

motion with the aerodynamic detuning. (0) F = 100; 

(A) F = 200; (0) F = 300; (+) F = 325; (*) F = 400. 

the limit cycle grows and its period increases, as 

shown in part (b) for F = 335. At F = Fh = 

340.853, the periodic orbit passes through the 

saddle focus, forming the homoclinic orbit. The 

eigenvalues of the saddle focus are AI = 0.4656, 

A2,3 = -1.2334 ± 4.2036i, and A4 = -2.9324. 

Hence, a = 2.649 > 1. Therefore, according to 
the Shilnikov theorem, when F < F h , the system 

has a stable limit cycle, and when F > Fh it has 

no recurrent behavior, explaining the results in 
Fig. 9. 

In Fig. 10, when A increases from approxi-

(b) 

(d) 

3 13 23 3 13 23 

a l a l 

FIGURE 9 A two-dimensional projection of an unstable manifold onto the a2 - al plane 

for A = 1000 and F = (a) 330 (both directions are included); (b) 335; (c) 340.853; (d) 350. (+) 

denotes a saddle and (*) denotes a sink. 
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FIGURE 11 A two-dimensional projection of an unstable manifold onto the az - a, plane 

for F = 400 and A = (a) 530 (both directions are included); (b) 630; (c) 734.161; (d) 830. (+) 

denotes a saddle and (*) denotes a sink. 

mately 510.5 for F = 400, where a supercritical 

Hopf bifurcation occurs and a limit cycle is born, 

the period of the limit cycle increases and tends 

to infinity as A -i> Ah = 734.16. In Fig. 1 1 (a) for 

A = 530, the unstable manifold of the saddle 
leads to a limit cycle in one direction and to a 

sink in the other. As A increases further, the limit 

cycle grows and approaches the homoclinic or­

bit, as shown in part (b) for A = 630 and part (c) 

for A = 734.1614, respectively. The eigenvalues 

of the saddle focus at A = Ah , where a homo­

clinic orbit occurs, are AI = 0.7262, A2,3 = 
-1.2334 ± 3.0807;, and A4 = -3.193. Clearly, a 
= 1.698 > 1. Therefore, according to the Shilni­

kov theorem, the system has a stable limit cycle 

for A < Ah and no recurrent behavior for A > Ah, 
again explaining the results in Fig. 11. 

Bogdanov-Takens Bifurcation 

of Trivial Solution 

Analyzing a similar type of system, Namachchi­

vaya and Malhotra (1992) observed an interesting 

phenomenon: a homoc1inic bifurcation near the 

Bogdanov-Takens bifurcation point, which is 

the intersection of two codimension-one bifurca­

tion varieties, the static bifurcation and the Hopf 

bifurcation. The corresponding linear operator 
has a double-zero eigenvalue. 

For the case of a simply supported panel in a 

supersonic stream, the critical values Acr = 679.2 

and Fcr = 519.6 at point c in Fig. 4 are obtained 
by satisfying the two conditions r3 = 0 and r4 = 0, 

where r3 and r4 are defined in (43c,d). The corre­

sponding linear operator Ler has the Jordan form 

j = P-'LerP 

0 1 0 0 

0 0 0 0 

0 0 - (f-LI + f-L2) 
(51) 

0 0 0 - (f-LI + f-L2) 

Center manifold theory (Carr, 1981) can then be 

applied near this nonhyperbolic fixed point to re­

duce the fourth-order system to a second-order 

equation defined on a two-dimensional center 

manifold. Substituting:! = Py into Eq. (39) and 
premultiplying by p-I yields -

t = j~ + P-I(L - Ler)P~ + P-IN(P~). (52) 

The center manifold of the decoupled system has 

the form 

Y3 = hl(YI, Y2, A, F) (53a) 

Y4 = h2(y" Y2, A, F) (53b) 



Because the nonlinearities are cubic, this center 

manifold can be approximated by cubic func­

tions. Therefore, the dynamics of the center 

manifold is governed by equations of the follow­

ing form: 

where 

J = [~ ~l 
(55) 

and E is a 2 x 2 sub matrix of P-I(L - Lcr)P. 

Letting 

B = J + E = [b ll b12
] , 

b21 b22 (56) 

det B = b ll b22 - b21 b12 , and tr B = b ll + b22 

one can introduce the transformation 

(57) 

to transform Eq. (54) into the following form: 

['11;] [0 1 ] ['111] _ , = + !i('I11, '112). (58) 
'112 - det B tr B '112 

Again, one can use the method of normal forms 

to simplify Eq. (58). 

For the time being, one can drop det Band tr B 

because they are sufficiently small. Then, we 

consider 

(59) 

and introduce a near-identity transformation as 

well as the normal form 

'11 = g + eh(g) + . (60a) 
- - --

f = Jg + eg(g) + . . . . (60b) 
- -

Substituting Eqs. (60) into (59) yields 
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[gl] + [~~: ~~~] [0 
g2 ah2 ah2 0 

- -
iJg l iJ6 

-[~ ~] [:J (61) 

= [al g~ + a2gj 6 + a3g1 g~ + a4g~]. 

a5g~ + a6gj6 + a7glg~ + a8g~ 

The form of the nonlinearity suggests seeking the 

gi and hi in the following forms: 

hI = flg~ + f 2gj6 + f3g1g~ + r4g~ 

h2 = r 5gj + r 6gj6 + r7g1g~ + fsg~ 

(62a) 

(62b) 

gl = A1gj + A2gj6 + A3g1g~ + A4g~ (62c) 

g2 = A5g~ + A6gi6 + A76g~ + Asg~. (62d) 

Substituting Eq. (62) into (61) yields 

Alg~ + A2gj6 + A36g~ + ~g~ 

+ 6(3flgj + 2f2g1g2 + r3g~) 

- (r5g~ + f 6gj6 + r7glg~ + fsg~) 

= alg~ + a2gi6 + a3glg~ + a4g~ (63) 

A5gj + A6gj6 + A7g1g~ + A8g~ 

+ g2(3r5gj + 2f6g16 + r7g~) 

= a5gj + a6gi6 + a7g1g~ + asgt (64) 

Equating the coefficients of gi, gi6, glgL and g~ 
on both sides of Eqs. (63) and (64), one has 

Cf = a - A (65) 

where 

0 0 0 0 -1 0 0 0 

3 0 0 0 0 -1 0 0 

0 2 0 0 0 0 -1 0 

0 0 1 0 0 0 0 -1 
C= . (66) 

0 0 0 0 0 0 0 0 

0 0 0 0 3 0 0 0 

0 0 0 0 0 2 0 0 

0 0 0 0 0 0 1 0 
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Here I, ~, and !1 are column vectors having the 
components r m, am, and Am, respectively. 

Because C is a singular matrix, the system (65) 

has a solution if and only if ~ - ~ is orthogonal to 
every nontrivial solution!!: of the adjoint homo­
geneous problem; that is, CT!!: = Q. One then has 

!!: = (0, 0, 0, 0, 1,0,0, O)T and 
(3, 0, 0, 0, 0, 1, 0, O)T 

and accordingly obtains 

A5 = as (67a) 

3AI + A6 = 3al + a6. (67b) 

One can solve Eq. (65) for I for all values of the 
am, and hence Ak, k = 2,3,4,7, and 8 can be set 
equal to zero. If one has AI = 0 and accounts for 
the two unfolding parameters, {31 = -det Band 
{32 = tr B, the corresponding truncated normal 
form of Eq. (58) can be expressed as 

g; = g2 (68a) 

g~ = {3lgl + {326 + Ylgi + Y2gj6 (68b) 

where 

(31 = -0.009(A - Aer) + 0.023(F - Fer) (69a) 

(32 = 0.012(A - Aer) - 0.019(F - Fer) (69b) 

YI = eas = 0.028 

Y2 = e(3a l + (6) = -0.097. 

(69c) 

(69d) 

The global bifurcation behavior arising from this 

local codimension-two bifurcation is well known 
(Guckenheimer and Holmes, 1983). 

SUMMARY 

The nonlinear response of 2-DOF systems with 
one-to-one internal and principal parametric res­

onances is obtained by the method of normal 
forms. The same technique along with center 

manifold theory is used to analyze the bifurcation 
behavior near the nonhyperbolic fixed points. 
Because the stability of hyperbolic fixed points 
or periodic solutions can be studied by the corre­
sponding eigenvalues or Floquet multipliers, re­
spectively, one would then obtain a clearer pic­

ture of the dynamic behavior from the bifurcation 

diagram. In the case of a simply supported panel 

in a supersonic stream, qualitative changes can 
be predicted when either the forcing amplitude or 
the aerodynamic pressure is varied across a bi­
furcation curve. It is shown that the trivial solu­

tions can lose stability through three types of bi­
furcations: supercritical and subcritical pitchfork 
bifurcations, supercritical Hopfbifurcations, and 
Bogdanov-Takens bifurcations. The stability of 
the equilibrium and periodic solutions are inves­
tigated. The Shilnikov theorem is used to explain 
the numerical results obtained near the formation 
of an orbit homoclinic to a saddle-focus fixed 
point. 

This work was supported by the Air Force Office of 

Scientific Research under Grant No. F49620-92-J-

0197. 

REFERENCES 

Asmis, K. G., and Tso, W. K., 1972, "Combination 

Resonance in a Nonlinear Two-Degree-of-Freedom 

System," Journal of Applied Mechanics, Vol. E39, 

pp. 832-834. 

Asrar, W., 1991, "Two-Degree-of-Freedom Systems 

with Quadratic Non-Linearities Subjected to Para­

metric and Self Excitation," Journal of Sound and 

Vibration, Vol. 150, pp. 447-456. 

Carr, J., 1981, Applications of Center Manifold The­

ory, Applied Mathematical Sciences, Vol. 35, 

Springer-Verlag, New York. 

Ciliberto, S., and Gollub, J. P., 1985, "Chaotic Mode 

Competition in Parametrically Forced Surface 

Waves," Journal of Fluid Mechanics, Vol. 158, pp. 

381-398. 

Dowell, E. H., 1975, Aeroelasticity of Plates and 

Shells, Noordhoff, Leyden. 

Dowell, E. H., and Ilgamov, M., 1988, Studies in Non­

linear Aeroelasticity, Springer-Verlag, New York. 

Evan-Iwanowski, R. M., 1976, Resonance Oscilla­

tions in Mechanical Systems, Elsevier, New York. 

Feng, Z. c., and Sethna, P. R., 1989, "Symmetry­

Breaking Bifurcations in Resonant Surface Waves," 

Journal of Fluid Mechanics, Vol. 199, pp. 495-518. 

Fu, F. C. L., and Nemat-Nasser, S., 1972a, "On the 

Stability of Steady-State Response of Certain Non­

linear Dynamic Systems Subjected to Harmonic Ex­

citations," Ingenieur-Archiv, Vol. 41, pp. 407-420. 

Fu, F. C. L., and Nemat-Nasser, S., 1972b, "Stabil­

ity of Solution of Systems of Linear Differential 

Equations with Harmonic Coefficients," AlAA J., 

Vol. 10, pp. 30-36. 

Gu, X. M., and Sethna, P. R., 1987, "Resonant Sur­

face Waves and Chaotic Phenomena," Journal of 

Fluid Mechanics, Vol. 183, pp. 543-565. 



Guckenheimer, J., and Holmes, P. J., 1983, Dynami­

cal Systems and Bifurcations of Vector Fields, 

Springer-Verlag, New York. 

Holmes, P. J., 1986, "Chaotic Motions in a Weakly 

Nonlinear Model for Surface Waves," Journal of 

Fluid Mechanics, Vol. 162, pp. 365-388. 

Ibrahim, R. A., 1985, Parametric Random Vibration, 

Wiley, New York. 

Ibrahim, R. A., and Barr, A. D. S., 1975, "Autopara­

metric Resonance in a Structure Containing a Liq­

uid. Part I: Two Mode Interaction," Journal of 

Sound and Vibration, Vol. 42, pp. 159-179. 

Meron, E., and Procaccia, I., 1986, "Low-Dimen­

sional Chaos in Surface Waves: Theoretical Analy­

sis of an Experiment," Physical Review, Vol. A34, 

pp. 3221-3237. 

Miles, J. W., 1984, "Nonlinear Faraday Resonance," 

Journal of Fluid Mechanics, Vol. 146, pp. 285-302. 

Miles, J. W., 1985, "Parametric Excitation of an Inter­

nally Resonant Double Pendulum," Journal of Ap­

plied Mathematics and Physics (ZAMP), Vol. 36, 

pp. 337-345. 

Namachchivaya, N. S., and Malhotra, N., 1992, 

"Parametrically Excited Hopf Bifurcation with 

Non-Semisimple 1: 1 Resonance," Nonlinear Vi­

brations, DE-Vol. 50/AMD-Vol. 144, pp. 29-46. 

Nayfeh, A. H., 1983a, "Parametrically Excited Multi­

degree-of-Freedom Systems with Repeated Fre­

quencies," Journal of Sound and Vibration, Vol. 

88, pp. 145-150. 

Nayfeh, A. H., 1983b, "The Response of Multidegree­

of-Freedom Systems with Quadratic Nonlinearities 

to a Harmonic Parametric Resonance," Journal of 

Sound and Vibration, Vol. 90, pp. 237-244. 

Nayfeh, A. H., 1983c, "The Response of a Two-De­

gree-of-Freedom Systems with Quadratic Nonlin­

earities to a Parametric Excitation, " Journal of 

Sound and Vibration, Vol. 88, pp. 547-557. 

Nayfeh, A. H., 1987a, "Parametric Excitation of Two 

Internally Resonant Oscillators," Journal of Sound 

and Vibration, Vol. 119, pp. 95-109. 

Nayfeh, A. H., 1987b, "Surface Waves in Closed Ba­

sins under Parametric and Internal Resonances," 

Physics of Fluids, Vol. 30, pp. 2976-2982. 

Nayfeh, A. H., 1993, Method of Normal Forms, Wi­

ley, New York. 

Nayfeh, A. H., and Balachandran, B., 1989, "Modal 

Interactions in Dynamical and Structural Systems," 

Applied Mechanics Reviews, Vol. 42, pp. 175-201. 

2-DOF Systems 57 

Nayfeh, A. H., and Balachandran, B., 1994, Applied 

Nonlinear Dynamics, Wiley, New York. 

Nayfeh, A. H., and Balachandran, B., 1995, Nonlin­

ear Interactions, Wiley, New York, to appear. 

Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear 

Oscillations, Wiley, New York. 

Nayfeh, A. H., and Nayfeh, J. F., 1990, "Surface 

Waves in Closed Basins Under Principal and Auto­

parametric Resonances," Physics of Fluids, Vol. 

A2, pp. 1635-1648. 

Nayfeh, A. H., and Pai, P. F., 1989, "Non-Linear 

Non-Planar Parametric Responses of an Inexten­

sional Beam," International Journal of Non-Linear 

Mechanics, Vol. 24, pp. l39-158. 

Nayfeh, A. H., and Zavodney, L. D., 1986, "The Re­

sponse of Two-Degree-of-Freedom Systems with 

Quadratic Non-Linearities to a Combination Para­

metric Resonance," Journal of Sound and Vibra­

tion, Vol. 107, pp. 329-350. 

Schmidt, G., and Tondl, A., 1986, Nonlinear Vibra­

tions, Akademie-Verlag, Berlin. 

Shilnikov, L. P., 1970, "A Contribution to the Prob­

lem of the Structure of an Extended Neighborhood 

of a Rough Equilibrium State of Saddle-Focus 

Type," Mathematics of the USSR-Sbornik, Vol. 10, 

pp.91-102. 

Simonelli, F., and Gollub, J. P., 1989, "Surface Wave 

Mode Interactions: Effects of Symmetry and De­

generacy," Journal of Fluid Mechanics, Vol. 199, 

pp. 471-494. 

Streit, D. A., Bajaj, A. K., and Krousgrill, C. M., 

1988, "Combination Parametric Resonance Leading 

to Periodic and Chaotic Response in Two-Degree­

of-Freedom Systems with Quadratic Nonlineari­

ties," Journal of Sound and Vibration, Vol. 124, pp. 

297-314. 

Tezak, E. G., Mook, D. T., and Nayfeh, A. H., 1978, 

"Nonlinear Analysis of the Lateral Response of 

Columns to Periodic Loads," Journal of Mechani­

cal Design, Vol. 100, pp. 651-659. 

Tezak, E. G., Nayfeh, A. H., and Mook, D. T., 1982, 

"Parametrically Excited Nonlinear Multidegree-of­

Freedom Systems with Repeated Natural Frequen­

cies," Journal of Sound and Vibration, Vol. 85, pp. 

459-472. 

Tso, W. K., and Asmis, K. G., 1974, "Multiple Para­

metric Resonance in a Non-Linear Two Degree of 

Freedom System," International Journal of Non­

Linear Mechanics, Vol. 9, pp. 269-277. 



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


