
Syracuse University Syracuse University

SURFACE SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and
Projects

College of Engineering and Computer Science

1995

Parametricity and Local Variables Parametricity and Local Variables

Peter W. O'Hearn
Syracuse University

R. D. Tennent
Queen's University - Kingston, Ontario

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

 Part of the Programming Languages and Compilers Commons

Recommended Citation Recommended Citation
O'Hearn, Peter W. and Tennent, R. D., "Parametricity and Local Variables" (1995). College of Engineering
and Computer Science - Former Departments, Centers, Institutes and Projects. 2.
https://surface.syr.edu/lcsmith_other/2

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=surface.syr.edu%2Flcsmith_other%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/2?utm_source=surface.syr.edu%2Flcsmith_other%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Parametricity and Local VariablesP. W. O'Hearn�School of Computer and Information ScienceSyracuse UniversitySyracuse, New York, U.S.A. 13244ohearn@top.cis.syr.eduR. D. TennentyDepartment of Computing and Information ScienceQueen's UniversityKingston, Ontario, Canada K7L 3N6rdt@qucis.queensu.caAbstractWe propose that the phenomenon of local state may be understood in terms of Stra-chey's concept of parametric (i.e., uniform) polymorphism. The intuitive basis for ourproposal is the following analogy: a non-local procedure is independent of locally-declaredvariables in the same way that a parametrically polymorphic function is independent oftypes to which it is instantiated.A connection between parametricity and representational abstraction was �rst sug-gested by J.C. Reynolds. Reynolds used logical relations to formalize this connection inlanguages with type variables and user-de�ned types. We use relational parametricityto construct a model for an Algol-like language in which interactions between local andnon-local entities satisfy certain relational criteria. Reasoning about local variables es-sentially involves proving properties of polymorphic functions. The new model supportsstraightforward validations of all the test equivalences that have been proposed in theliterature for local-variable semantics, and encompasses standard methods of reasoningabout data representations. It is not known whether our techniques yield fully abstractsemantics. A model based on partial equivalence relations on the natural numbers is alsobrie
y examined.Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal De�ni-tions and Theory - semantics; F.3.2 [Logics and Meanings of Programs]: Semanticsof Programming Languages - denotational semantics.General Terms: Languages, Theory.Additional Key Words and Phrases: parametric polymorphism, logical relations, Algol-like languages, local state.�This author was supported by NSF grant CCR-92110829.yThis author was supported by an operating grant from the Natural Sciences and Engineering ResearchCouncil of Canada and a research fellowship from the Science and Engineering Research Council of GreatBritain. 1

Contents1 Introduction 32 Types 92.1 Syntax : 92.2 Semantics : 92.3 Recursion : 123 Properties of Types 133.1 Basic Properties : 133.2 Expansions : 154 Valuations 165 Examples of Reasoning 206 Algebraic Aspects of First-Order Types 247 Relations and Re
exive Graphs 268 Parametric Functors and Natural Transformations 309 When Parametricity Implies Naturality 3510 The PER Model 3910.1 Store Shapes : 4010.2 Realizable Functors and Natural Transformations : : : : : : : : : : : : : : : : 4110.3 Naturality and the Groupoid Interpretation : : : : : : : : : : : : : : : : : : : 4411 Conclusion 47
2

1 IntroductionOne of the �rst things most programmers learn is how to \declare" a new assignable localvariable, and facilities to support this have been available in programming languages for overthirty years (Naur et al., 1963). It might be thought that there would by now be a satis-factory semantic interpretation for so fundamental and apparently elementary a mechanism.But existing models are not completely satisfactory (Meyer and Sieber, 1988; O'Hearn andTennent, 1992). The problems arise when block bodies can contain calls of non-local pro-cedures, and the di�culty is in de�ning precisely the sense in which non-local entities are\independent" of a locally-declared variable.For example, consider the following (Algol 60) block (Meyer and Sieber, 1988):begininteger z;procedure inc; z := z + 1;P (inc)endAlthough the unknown non-local procedure P can use its argument to change the value ofz, this value can never be read , and so the block should be equivalent to P (skip), whereskip does nothing, for every possible meaning of P . But this equivalence fails in all previousdenotational models of local variables!The reader's reaction to this example might be that it is contrived, and that it has nopractical signi�cance; after all, who would ever write such a program? But consider thefollowing slightly more complicated example:begininteger z;procedure inc; z := z + 1;integer procedure val ; val := z;z := 0;P (inc; val)endThe local variable, the two procedure declarations, and the initialization can be consideredas constituting the concrete representation of an abstract \counter" object. Procedure P;the \client," is passed only the capabilities for incrementing and evaluating the counter, andcannot access the counter representation in any other way. A more modern language wouldprovide a \sugared" syntax, and one could write something likemodule counter(exports inc; val);begininteger z;invariant z � 0;procedure inc; z := z + 1;integer procedure val ; val := z;z := 0end counter ;: : :counter. inc; : : :counter. val : : :3

but the unsugared form shows that, even without additional features, the combination oflocal variables and procedures in Algol-like languages supports a form of representationalabstraction, which is one of the main themes of modern programming methodology. (In fact,the same example is used in the Appendix of (Reynolds, 1978) to make the same point.)See (Reynolds, 1981b; Tennent, 1991) for discussion of Algol-like languages, and (Reynolds,1975; Cook, 1991) for comparisons of linguistic approaches to representational abstraction.To a certain extent, the relevance of representational abstraction to the semantics oflocal variables has already been exploited. The models described in (Meyer and Sieber,1988; O'Hearn and Tennent, 1993b) support validation of invariance principles often usedfor reasoning about data representations, as in (Hoare, 1972). For example, these modelsvalidate the following equivalence:begininteger z;procedure inc; z := z + 1;integer procedure val ; val := z;z := 0;P (inc; val);if z � 0 then divergeend � divergewhere diverge is a statement whose execution (in any state) never terminates. Because Pcan be any procedure (of the appropriate type), the equivalence demonstrates that z � 0 isan invariant of the counter representation; i.e., z � 0 is true before and after every call of incfrom P .But there is more to representational abstraction than preservation of this kind of repre-sentation invariant. Consider the following block, which uses a \non-standard" representationof a counter: begininteger z;procedure inc; z := z � 1;integer procedure val ; val := �z;z := 0;P (inc; val)endThis block should be equivalent to the block that uses the \standard" representation. Theequivalence illustrates the principle of representation independence: one concrete representa-tion of a data abstraction should be replaceable by another, provided the relevant abstractproperties are preserved; see, for example, (Mitchell, 1986). It is clearly important to be ableto validate changes of representation; but existing semantic models of local variables almostalways fail on such equivalences!This failure is especially surprising because standard informal methods for demonstratingcorrectness of data representations (Hoare, 1972)(Reynolds, 1981a, Chapter 5) can easily beadapted to proving such equivalences. For our example, consider the relation R betweenstates for the two implementations such that, if z0 and z1 are the values of the variablez in the standard and non-standard implementations, respectively, R holds if and only if�z1 = z0 � 0 and all other variables have the same values. It can be shown that4

� R is initially established by executing the two initializations (with identical non-localstates);� executions of (the two implementations of) inc preserve R; and� evaluations of (the two implementations of) val in R-related states yield the same result.The conclusion is that R holds after execution of the calls to P , and so the blocks have been\proved" to have equivalent e�ects on non-local variables. But, although there is no reasonto think these methods are invalid, they have never been rigorously veri�ed for a languagewith local-variable declarations!This discussion of data abstraction motivates our link with the concept of parametricity ,introduced by Strachey (1967) in the following remarks:There seem to be two main classes [of polymorphism], which can be calledad hoc polymorphism and parametric polymorphism.In ad hoc polymorphism there is no single systematic way of determining thetype of the result from the type of the arguments. There may be several rules oflimited extent which reduce the number of cases, but these are themselves ad hocboth in scope and content. All the ordinary arithmetic operators and functionscome into this category. It seems, moreover, that the automatic insertion oftransfer functions by the compiling system is limited to this class.Parametric polymorphism is more regular and may be illustrated by an ex-ample. Suppose f is a function whose argument is of type � and whose result isof type � (so that the type of f might be written �) �), and that L is a listwhose elements are all of type � (so that the type of L is � list). We can imaginea function, say Map, which applies f in turn to each member of L and makes alist of the results. Thus Map[f; L] will produce a � list. We would like Map towork on all types of list provided f was a suitable function, so that Map wouldhave to be polymorphic. However its polymorphism is of a particularly simpleparametric type which could be written(�) �; � list)) � listwhere � and � stand for any types.Although a complete understanding of the rami�cations of this notion of parametricityis not yet available (cf., (Freyd et al., 1992b; Plotkin and Abadi, 1993)), Reynolds (1974;1983) has emphasized the close relationship with representational abstraction. The idea isthat a parametric polymorphic function must work in a way that is independent of the typesto which it is instantiated. For instance, (in the absence of recursion) the only parametricelements of type 8�.�! �! � are the two functions with two arguments that return eitherthe �rst argument or the second argument, respectively. On the other hand, a function thatwould return its �rst argument when instantiated to a function on integers, and its secondotherwise, is not parametric because it works di�erently at di�erent types. Intuitively, aparametric function cannot make use of knowledge about the types to which it is instantiated,which is to say that type variables are treated \abstractly."We propose that the independence of non-local entities and local variables is in essencesimilar to the sense in which a parametric function is independent of the speci�c types to which5

it is instantiated. Stated in terms of abstraction, the principle that a non-local procedurecannot access a local variable (except through using arguments that access the variable) isanalogous to the principle that the representation of an abstract type cannot be directlyaccessed by programs that use it (except through the provided operations of the type). Wewill de�ne a semantics for an Algol-like language in which non-local procedures are modeled asparametric functions that can be instantiated with pieces of local state. The independence ofthe procedure itself from a local variable will then be explained in terms of the independenceof a polymorphic function from type arguments, which here play the role of local state.The approach to representational abstraction that we will follow is based on the work of(Reynolds, 1983), where the technique of \logical" relations (Plotkin, 1980; Mitchell, 1990)was used to give a rigorous formulation of abstraction that is appropriate for functionallanguages with higher-order and polymorphic procedures and programmer-de�ned types.We can illustrate the representation-independence property provable using logical relationsas follows. Suppose� � is a type expression with (say) one free type variable, and � is a typing context, i.e.,a �nite list of types over the same type variable;� W0 and W1 are sets, regarded as alternative \representations" of the type variable;� [[�]]W0 is the set of meanings of type � when W0 is assigned as the meaning of the typevariable, and similarly for [[�]]W1;� [[�]]W0 is the set of �-compatible environments when W0 is assigned as the meaning ofthe type variable, and similarly for [[�]]W1;� R � W0 �W1 is any relation on W0 and W1, regarded as relating representations ofabstract values;� [[�]]R � [[�]]W0 � [[�]]W1 is the relation on �-meanings \logically" induced by R, andsimilarly for [[�]]R � [[�]]W0 � [[�]]W1;� P is any phrase of type � in context �;� [[P]]W0 is a function which is the meaning of P when W0 is assigned as the meaning ofthe type variable, and similarly for [[P]]W1.Then it can be proved that �[[P]]W0; [[P]]W1� is a relation-preserving pair of functions; i.e.,for all u0 2 [[�]]W0 and u1 2 [[�]]W1,if u0�[[�]]R�u1 then [[P]]W0u0 �[[�]]R� [[P]]W1u1.Intuitively, this says that relations between di�erent representations of a type variable arerespected by programs that use it. We will refer to this kind of uniformity as relationalparametricity , after (Strachey, 1967) and (Reynolds, 1983), and portray it diagrammaticallyas follows: W0W1 [[�]]W0[[�]]W1 [[�]]W0[[�]]W1?R6 ?[[�]]R6 ?[[�]]R6-[[P]]W0-[[P]]W16

Notice that double-headed arrows -� are used here for (binary) relations, and that thisis not a conventional commutative diagram.The connection between logical relations and polymorphic functions emphasized byReynolds is that if the above relation-preservation property is to hold in a polymorphic lan-guage, then values of 8-typesmust be constrained so as to satisfy similar relation-preservationconditions. In our model for local variables, function types will themselves have a polymor-phic
avour, and will be constrained by such a parametricity condition.Relational parametricity is commonly thought to prescribe necessary properties that para-metric functions must satisfy. What is less clear is whether, particularly in the binary-relationform, it is su�cient to characterize the intuitive concept. Another appealing approach toparametricity, possessing a fairly coherent conceptual basis, uses partial equivalence rela-tions (PERs); e.g., (Longo and Moggi, 1991). In the PER approach, polymorphic types areinterpreted as in�nitary intersections, so that a (realizer for a) polymorphic function is anuntyped meaning that is type-correct for all instantiations of a type variable. This captures,to a certain (not completely understood) degree, the intuition that a polymorphic functionis given by a uniform algorithm. On the other hand, the relational approach captures, to acertain (not completely understood) degree, intuitions about representation independence.The larger part of our e�ort in this paper will be directed toward examining the relationalapproach of Reynolds. The semantic model we de�ne will represent quite directly the informalreasoning about local variables and data abstraction alluded to above. However, we will alsobrie
y outline how PERs can be used to treat variable declarations. A comparison of the twomodels will be given in Section 11.Our method of incorporating parametricity builds on the functor-category approach tolocal variables pioneered by Reynolds (1981b) (Reynolds, 1981b) and Oles (1982, 1985). Inthe remainder of this Introduction, we will brie
y review the basic elements of this approach,and indicate how relational parametricity will enter the picture. (The expository article(O'Hearn and Tennent, 1992) and textbook (Tennent, 1991) contain introductions to thisapproach.)The key insight of the Reynolds-Oles work is that, in a language with local-variabledeclarations, the concept of state is not constant|represented by a single set of states|butrather varies as storage variables are allocated and de-allocated. That is, there are di�erentpossible sets of states depending on the \shape" of the run-time stack; i.e., the number andtype of variables that have been allocated.To account for this, the semantics is parametrized by abstract \store shapes," e�ectivelybuilding the variance in the concept of state into the semantics in a way that logically pre-cedes any assignment of meanings to phrases. In general, the meaning of a type is not asingle domain, but a whole family of domains. For example, the type of commands is ofteninterpreted as S ! S?, where S is a set of states. But in a language with variable declara-tions S itself varies, and so there is a domain X ! X? for each possible set X of states. Inparticular, a local-variable declaration changes the set of states from X to X � Y , where Yis the set of values the new variable may hold; the Y -valued component of each element ofX � Y represents the new variable. Similarly, if the the domain of command meanings priorto a variable declaration is X! X?, then, after declaration, it becomes X�Y ! (X�Y)?.The semantic set-up can be elegantly described using basic concepts of category theory.The variance in the concept of state is modeled using a category of \possible worlds." Each7

possible world determines the set of storage states needed to represent the values of currentlyavailable variables, and a morphism of worlds \expands" the current state by allocating spacefor additional storage variables (the Y -valued component above). This variance in the con-cept of state induces a similar variance into types, which is represented by interpreting typesas functors from the category of possible worlds to a category of domains and continuousfunctions. Phrases are interpreted as natural transformations of these functors. The natu-rality condition on the meaning of any phrase P is portrayed by the following commutativediagram: W0W1 [[�]]W0[[�]]W1 [[�]]W0[[�]]W1?f ?[[�]]f ?[[�]]f-[[P]]W0-[[P]]W1where f :W0! W1 is a morphism of possible worlds, and [[�]] and [[�]] are type and environ-ment functors.Notice that, in many respects, this is similar to the relational-parametricity picture dis-cussed earlier. Parametrization by possible worlds is roughly analogous to abstraction on atype variable. In fact, if we think of the possible worlds as certain kinds of types, then [[P]]is a family of functions indexed by these types and so is, in a certain sense, polymorphic. Itis therefore certainly conceivable to require a family of this form to satisfy a parametricityconstraint.This analogy between possible worlds and type variables suggests how relational para-metricity can be incorporated. We consider binary relations between worlds, regarded asrelating di�erent \representations" of the store shape, and the semantics of types is thenarranged so that each such relation induces a relation between the meanings of a type at dif-ferent store shapes. The meanings of terms are then families of maps satisfying a relational-parametricity constraint.The naturality requirements of Reynolds and Oles will not be abandoned. However, tomake the presentation more accessible, we will begin with a \category-free" description of ourmodel. The naturality conditions are implicit in this presentation, but will later be shown tobe implied by relational parametricity.This category-free description has the advantage of being quite simple, and it also putsthe role of parametricity clearly on display. But a consideration of relevant category-theoreticissues is crucial for a deeper understanding of the model. The category-free presentation ap-pears very ad hoc in some respects; a fully satisfactory justi�cation for some of the de�nitionswill come from categorical considerations. Further, while we will show that in certain cir-cumstances naturality is implied by relational parametricity, it must be emphasized that, ingeneral, these are di�erent kinds of uniformity, with neither being stronger than the other.It will be seen, in fact, that the connection between these two concepts is somewhat delicate.(In Section 9, we show an example where \parametricity implies naturality" is not stableunder Currying isomorphisms; this, for us, came as a surprise.)To study this combination of relational parametricity and naturality, we will de�ne a suit-able cartesian closed category of \relation-preserving" functors and natural transformations.The key technical notion underlying this construction is that of a re
exive graph, which isessentially an arbitrary category equipped with assignments of (abstract) \relations" to its8

objects and morphisms. This will be taken up in Sections 7{9. The earlier parts of the paperare devoted to the category-free presentation of the model.2 Types2.1 SyntaxOur language is an Algol-like language in the sense of (Reynolds, 1981b). The language doesnot include jumps or subtypes, but it raises the key issues related to variable allocation. Thetypes are as follows:� ::= int j bool � � � (data types)� ::= comm j exp[�] j var[�] (primitive phrase types)� ::= � j ~�! � (phrase types)Data types are the types of values that can be stored, while phrase types consist of meaningsthat can be denoted by identi�ers and, more generally, program phrases, but that cannot bestored. This distinction allows variable declarations to obey a stack discipline.comm is the type of commands. Executing a command causes a state change, but doesnot return a value. var[�] is the type of storage variables that accept �-typed values. exp[�]is the type of expressions that return values of type �. Expressions are \read only," in thatthey are state dependent but do not cause side e�ects. So all state changes are concentratedin the type comm. In particular, procedures use by-name parameters, and can only changethe state indirectly, by being used within a phrase of type comm.In procedure types ~� is a non-empty sequence of phrase types. This \uncurried" formula-tion of the syntax of procedure types is not essential, but is most amenable to a category-freedescription of the model.2.2 SemanticsWe will regard a binary relation R as a triple (W0;W1; S) where W0 and W1 are sets (thedomains of R) and S � W0 �W1 (the graph of R). Although we will work exclusively withbinary relations, our de�nitions (though not all of our notation) generalize straightforwardlyto n-ary relations for any n. We will use the notations R:W0$ W1 and W0W1?R6to mean thatR is a binary relation with domains W0 and W1, and w0[R]w1 to mean hw0; w1i 2 graphR.If W is any set,� �W :W $ W is the diagonal relation on W ; i.e., w[�W]w0 () w = w0.We use W ! X and W �X for the function space and product of sets. If W0, W1, X0, andX1 are sets and R:W0$ W1 and S:X0$ X1,� R � S: W0 � X0 ! W1 � X1 is de�ned by hw0; x0i[R � S]hw1; x1i () w0[R]w1and x0[S]x1; 9

� R! S: W0 ! X0 ! W1! X1 is de�ned by f0[R! S]f1 () for all w0 2 W0,w1 2 W1, if w0[R]w1 then f0(w0)[S]f1(w1). We often use the diagrammatic notationW0X0 W1X1?R6 -f0-f1 ?S6to indicate that f0[R ! S]f1. Notice that this notation makes the domains of therelations, and the domains and codomains of the functions, evident.The collection � of \store shapes" is a set of sets that includes desired data types, suchas 2 = ftrue; falseg and Z = f: : : ;�2;�1; 0; 1; 2; : : :g, and all �nite (set) products of these.We won't be more speci�c about �, except to emphasize that it must be a small collection.For each data type �, we assume a set [[�]] in �, with [[int]] = Z and [[bool]] = 2.Following (Reynolds, 1983), we de�ne a \twin" semantics of phrase types, where each �determines two functions[[�]] : � �! Sets[[�]] : rel(�) �! rel(Sets).Here, Sets stands for the class of sets, rel(Sets) for the class of binary relations between sets,and rel(�) for the set of binary relations between store shapes. The relational component ofthe semantics will be used to enforce parametricity constraints.The interpretation of the command type is as follows:� for every store shape W in �,[[comm]]W = W ! W ; and� for every R:W0$W1 in rel(�),[[comm]]R = R! R:For expressions:� for every store shape W in �,[[exp[�]]]W = W ! [[�]] ; and� for every relation R:W0$ W1 in rel(�),[[exp[�]]]R = R! �[[�]]:For variables:� for every store shape W in �,[[var[�]]]W = ([[�]]! [[comm]]W)� [[exp[�]]]W ; and10

� for every relation R:W0$ W1 in rel(�),[[var[�]]]R = (�[[�]]! [[comm]]R)� [[exp[�]]]R :The two components of a variable allow for, respectively, updating and accessing its contents.This \object-oriented" approach to variables is from (Reynolds, 1981b).For vectors ~� = �1; :::; �n:� for every store shape W in �, [[~�]]W = [[�1]]W � � � � � [[�n]]W ; and� for every R:W0$W1 in rel(�), [[~�]]R = [[�1]]R� � � � � [[�n]]RO�cially, meanings for types [[�]] and vectors [[~�]] are de�ned by a simultaneous induction.For procedure types one might expect to use a pointwise de�nition, where [[~�! �]]W =[[~�]]W ! [[�]]W , and similarly for the relation part. However, a pointwise de�nition is notappropriate in the present context. The reason is that we think of the sets in � as \storeshapes," which can grow between the point of de�nition of a procedure and the point of call.For example, if the store shape is W when a procedure identi�er P is bound, and P is calledafter an integer variable is declared, then the shape of the stack for the call will be W � Z,not W . binding of P � � � begin integerx; � � � P (� � �x � � �) � � � endThus, a procedure meaning at store shapeW must be applicable at an expanded shapeW�X ,where X corresponds to additional variables that have been allocated. This is accounted forin (Reynolds, 1981b; Oles, 1982) by de�ning a procedure meaning to be a family of functions,indexed by extra components X representing pieces of local state that can be added to thestack. We will follow the same route here, except that these families of functions will besubject to parametricity conditions.A procedure type ~�! � is interpreted as follows.� For every store shape W in �,[[~� ! �]]W = 8X. [[~�]](W �X)! [[�]](W �X) ;that is, p 2 [[~�! �]]W is a family of functionsp[{]: [[~�]](W � {)! [[�]](W � {)indexed by store shapes X , satisfying the following parametricity constraint: for allrelations R:X0$ X1 between store shapes,[[~�]](W �X0)[[~�]](W �X1) [[�]](W �X0)[[�]](W �X1)?[[~�]](�W � R)6 -p[X0] -p[X1] ?[[�]](�W � R)6Function p[X] models the behaviour of the procedure instantiated at the \expanded"store shape W �X . 11

� For every relation R:X0$ X1 in rel(�), p�[[~�! �]]R�q i�, for all relations S: Y0$ Y1in rel(�), [[~�]](X0 � Y0)[[~�]](X1 � Y1) [[�]](X0 � Y0)[[�]](X1 � Y1)?[[~�]](R� S)6 -p0[Y0] -p1[Y1] ?[[�]](R� S)6Notice how the relational and domain-theoretic semantics become intertwined at thispoint. This is motivated by the use of a relational condition to constrain values of 8 typesin (Reynolds, 1983). The identity relation �W plays the same role as the identity relationsthere. (Of course, the foundational di�culties described in (Reynolds, 1983; Reynolds andPlotkin, 1993) do not arise here, because the source collection �, over which indexing is done,is small.)2.3 RecursionThe presentation thus far is for a recursion-free dialect of Algol. Recursion can be dealtwith by using domains in place of sets, as follows. (We still use sets, or discretely-orderedpredomains, for the store shapes.)IfD and E are partially ordered sets and R:D$ E (i.e., R is a relation on the underlyingsets),� R?:D? ! E? is de�ned by d[R?]e () d = e = ? or d[R]e, where D? is obtainedfrom D by adding a new least element ?.If D and E are directed-complete partially-ordered sets then a relation R:D$ E is� complete, if its graph is a directed-complete subset of the pointwise-ordered product ofthe domains of the relation; and� pointed , if D and E are pointed and R relates their least elements.The semantics can then be de�ned by mapping store shapes to domains, and relations onstore shapes to pointed complete relations on domains. For the command type:� for every store shape W in �,[[comm]]W = W ! W? ; and� for every R:W0$W1 in rel(�),[[comm]]R = R! R?:Here, the! acts on (pre)domains as the continuous-function space constructor, and on com-plete relations by producing the evident complete relation on the function spaces. The de�-nitions of the other base types can be modi�ed in a similar fashion, and procedure types areexactly as before, but with the! in the de�nition understood as constructing the continuous-function space, and the families p[{] ordered component-wise.12

The restriction to complete relations is standard. It is needed for the �xed-point operatorto satisfy the appropriate parametricity constraints, and also for domain-theoretic structureto be respected when using parametricity to constrain procedure types. As the considerationof recursion would add little to our discussion of locality, we will for simplicity concentrateon the set-theoretic semantics in the remainder of the paper.3 Properties of Types3.1 Basic PropertiesWe now turn to some basic properties satis�ed by this semantics. These are all essentiallyconsequences of the polymorphic view of phrase types sketched in the previous section.First, as in (Reynolds, 1983), each [[�]] preserves identity relations.Lemma 1 (Identity Extension)For each phrase type � and store shape W , [[�]]�W = �[[�]]W .Proof: By induction on types. For base types this is immediate.We will consider the function type in some detail to indicate how the proofs go. For~�! �, if p 2 [[~�! �]]W then, by de�nition, p�[[~�! �]]�W �p i�, for all R:X0$ X1,[[~�]](W �X0)[[~�]](W �X1) [[�]](W �X0)[[�]](W �X1)?[[~�]](�W � R)6 -p[X0] -p[X1] ?[[�]](�W � R)6As this is none other than the parametricity constraint on procedure meanings, we mayconclude that [[~�! �]]�W contains the diagonal.Conversely, if p�[[~�! �]]�W �q then, for R:X0$ X1,[[~�]](W �X0)[[~�]](W �X1) [[�]](W �X0)[[�]](W �X1)?[[~�]](�W � R)6 -p[X0] -q[X1] ?[[�]](�W � R)6In particular, taking R as a diagonal �X and applying the induction hypothesis (both for ~�and for �) gives that p[X]a = q[X]a for all X and a 2 [[~�]]X , and so p = q. (We are using thefact that the identity property can be seen to hold for [[~�]] whenever it holds for each elementof the vector.)A further related property, emphasized in (Freyd et al., 1992b), is that each [[�]] is func-torial on isomorphisms. We say that a relation in rel(�) (respectively, rel(Sets)) is an iso-morphism i� it is the graph of a bijection. (In a domain-theoretic model, we would considercontinuous isomorphisms, i.e. continuous, order-re
ecting bijections.)It will be well, for future reference, to have an explicit description of functional isomor-phisms induced by bijections between store shapes (even though these isomorphisms could13

alternatively be read o� from the semantics of types, using a relational isomorphism). Iff :W ! X is a bijection between store shapes then the isomorphism f�: [[�]]W ! [[�]]X isde�ned as follows. fcomm = f�1! ffexp[�] = f�1! id[[�]]fvar[�] = (id[[�]]! fcomm)� fexp[�]f~�!� = �p�Y . (f�1 � Y)~� ; p[Y] ; (f � Y)�Here we are using the action of exponentiation ! and product � (in the category of sets)on morphisms, and id is an identity. In the last equation, the right-hand side denotes thefunction that takes p 2 [[~� ! �]]W and a store shape Y to the bottom of the followingdiagram [[~�]](X � Y)[[~�]](X � Y) [[�]](X � Y)[[�]](X � Y)6(f�1 � Y)~� -p Y- ?(f � Y)�where f~� for vectors is de�ned in the obvious component-wise way.Lemma 2 (Isomorphism Functoriality)Each [[�]] is functorial on isomorphisms. That is, for all isomorphisms R:W $ X in rel(�),1. if R is an isomorphism then so is the induced relation [[�]]R, and2. if R:X $ Y and S: Y $ W are isomorphisms, then [[�]]R ; [[�]]S = [[�]](R ; S) wheresemicolon is relational composition.(Preservation of identities is the identity extension lemma.) Furthermore, if f :W ! X is abijection between store shapes and Rf :W $ X is the relation with the same graph as f thenthe relation [[�]]Rf and the function f� have the same graph.Proof: First, showing that f� is iso follows by a straightforward argument, where the functiontype case is much as in the proof of the identity extension lemma. Second, that [[�]]Rf and thefunction f� have the same graph can be shown by induction on types, where the function-typecase follows immediately from the induction hypothesis. It is then not di�cult to show that(�)� preserves identities and composites, when applied to bijections.Of course, relational composition is not preserved for all relations.In the following, much use will be made of the canonical unity and associativity isomor-phisms between store shapes. (Here, 1 is a singleton store shape.)unl :W � 1!W unr :W ! W � 1assl:W � (X � Y)! (W �X)� Yassr : (W �X)� Y ! W � (X � Y):These isomorphisms satisfy a special parametricity property.14

Lemma 3 (Canonical-Isomorphism Parametricity)If Ri:Xi$ Yi are relations between store shapes, for i = 1; 2; 3, then, for all types �,unlh[[�]](R1 ��1)! [[�]]R1iunl unrh[[�]]R1! [[�]](R1 ��1)iunrasslh[[�]]�R1 � (R2 �R3)�! [[�]]�(R1 � R2)�R3�iasslassrh[[�]]�(R1 � R2)�R3�! [[�]]�R1 � (R2 �R3)�iassrProof: A routine induction on �.Notice that the notation for these canonical isomorphisms does not make the domains andcodomains explicit. Perhaps we could write, e.g., asslX1X2X3 �; however, no ambiguity willarise as the relevant information will always be clear from context.3.2 ExpansionsThere is further structure in the semantics that derives from the conception of elements of� as representing \shapes" of the run-time stack. Speci�cally, the expansion of store shapescaused by variable declarations is accompanied by mappings that convert semantic entitiesat a shape W to any expanded shape W �X .If W and X are store shapes, for each type � we de�ne a functionexpand �(W;X): [[�]]W �! [[�]](W �X)This goes by induction on types.expandcomm(W;X) c hw;xi = hc w ; xiexpandexp[�](W;X) e hw; xi = ewexpandvar[�](W;X) = �id[[�]]! expandcomm(W;X)�� �expandexp[�](W;X)�expand~�!�(W;X) p Y = assr~� ; p[X � Y] ; assl�This treatment of expand maps would surely bene�t from a dose of category theory. For nowwe will push on and complete the concrete description of the model, leaving the tidying upof categorical matters to Sections 7{9.There is a special uniformity property that the expansion functions satisfy. It states thatexpansions preserve relations on non-local states, and also produce meanings at expandedshapes that satisfy all relations on the local part of a store shape.Lemma 4 (Expansion Parametricity)If R:W0$ W1 and S:X0$ X1, then[[�]]W0[[�]]W1 [[�]](W0 �X0)[[�]](W1 �X1)?[[�]]R6 -expand �(W0; X0)-expand �(W1; X1) ?[[�]](R� S)615

Proof: By induction on �. Base types are immediate. We will indicate the proof for thefunction type.Suppose p0[[[~�! �]]R]p1. For any S: Y0$ Y1, the de�nition of [[~�! �]]R impliesp0[X0 � Y0]h[[~�]]�R� (S � Q)�! [[�]]�R� (S �Q)�ip1[X1 � Y1] :By the Canonical-Isomorphism Parametricity Lemma we get(assr ; p0[X0 � Y0] ; assl)h[[~�]]�(R� S)�Q�! [[�]]�(R� S)� Q�i(assr ; p1[X1 � Y1] ; assl)and, by the de�nition of expand , this is just what we wanted to show.4 ValuationsWhereas the category-free semantics of types is quite simple, the semantic equations for termswill turn out to be comparatively complex. This is a presentation trade-o�: the valuationsin the categorical semantics given later are much simpler, but require a more sophisticatedinterpretation of types.A type assignment � is a �nite function from (an unspeci�ed set of) identi�ers to phrasetypes. Some typing rules are in Table 1. The rules are in a natural deduction format. Therules for abstraction and application are for the uncurried syntax of types. The pairingconstruct uses the \object-oriented" approach to variables. We write write � ` M : � toindicate that M : � is derivable from (undischarged) assumptions �.The example blocks in the Introduction can easily be desugared into this language. Ablock begin � x ; C end is rendered as new�(�x:var[�].C). We will arrange matters so newalways assigns an initial value to the variable created. Of course, we could alternatively letthe programmer supply this value, in which case the type of new� would be(exp[�]; (var[�]! comm))! comm :If � is a type assignment then the �-compatible environments, and relations betweenthem, are as follows.� for each store shape W , [[�]]W = Qx2dom(�)[[�(x)]]W ; and� for each relation R:W0$W1 between store shapes,u0�[[�]]R�u1 () 8x 2 dom(�).u0(x)�[[�(x)]]R�u1(x):The meaning function associated with a judgement � ` P : ~� ! � will be a family offunctions [[P]]�(~�!�)W : [[�]]W ! [[~�]]W ! [[�]]W indexed by store shapes W . In the case ofbase types �, we will simply omit the ~� argument and have [[P]]��W : [[�]]W ! [[�]]W . (Thefunctionality of these valuations derives from categorical considerations on the model.)We begin with identi�ers. If � ` x : � then the valuation is, as usual: [[x]]Wu = u(x). Inthe case of function types � ` x : ~�! �, given ~d 2 [[~�]]W we must produce [[x]]Wu ~d 2 [[�]]W .We can apply the meaning of x at the store shape 1 to obtain a functionu(x)[1]: [[�]](W � 1)! [[�]](W � 1);16

[x : �]...M : ~�! ��x: �.M : �; ~� ! � skip : commM : �; ~�! � N : �(M N) : ~�! �V : var[�]derefV : exp[�] V : var[�] E : exp[�]V := E : commA : exp[�]! comm E : exp[�]hA;Ei : var[�] B : exp[bool] M : � N : �ifB thenM elseN : �C1 : comm C2 : commC1 ; C2 : comm C : comm E : exp[�]do� C resultE : exp[�]new� : (var[�]! comm)! commTable 1: Typing Rulesand then we can apply unity isomorphisms to get a function [[�]](W)! [[�]](W). So we de�ne[[x]]Wu = unl ; u(x)[1] ; unr .Readers familiar with functor categories will notice that this valuation for identi�ers issimilar to what one obtains by uncurrying a projection A � (B) C) �! (B) C), whereB) C is the functor exponent. In general, all of the valuations in the category-free semanticsare obtained by uncurrying maps in the more standard category-theoretic presentation.Most of the valuations for the language are in Table 2. In each equation u is an environ-ment in [[�]]W for the appropriate � and a store shape W and ~d 2 [[~�]] is an appropriatelytyped vector of arguments. It is understood that this vector is omitted when the term inquestion is of base type. In the equation for if, t is either comm or of the form exp[�]. Theconditional extends to other types in the usual inductive fashion. The rules for abstractionand application are for the uncurried form of types.We will not give denotations, or syntax rules, for ordinary arithmetic and logical opera-tions. These can be de�ned by lifting a function f : [[�1]]�� � �� [[�n]]! [[�]] to an interpretationfor a combinator of type exp[�1]� � � � � exp[�n]! exp[�] in the evident fashion.The block expression do � � � result � � � warrants some explanation; doC resultE returnsthe value of expression E in the state that results after executing C. For example, inx := 2; y := (dox := 1 resultderef x)the �nal value of y is 1 whereas the �nal value of x is 2. Reynolds calls this \snapbacksemantics," because the state change caused by x := 1 is temporary: the state snaps backto its initial value on termination of the expression evaluation. There is a problem with17

[[�x: �.M]]W ud; ~d = [[M]]W (u j x 7! d) ~d[[derefV]]W u = snd�[[V]]W u�[[V := E]]W uw = (fst�[[V]]W u� ([[E]]W uw))w[[skip]]W us = s[[hA;Ei]]W us =
(�v �w. [[A]]Wu(�s. v)w ; [[E]]Wu�[[C1;C2]]W us = [[C2]]W u �[[C1]]W us�[[do� C resultE]]W us = [[E]]W u �[[C]]W us�[[iftB thenM elseN]]W us = ([[M]]W us; if [[B]]W us = true[[N]]W us; if [[B]]W us = falseTable 2: Valuationssnapback semantics: it violates what is often called the \single-threaded" nature of state inimperative languages (Schmidt, 1985). Intuitively, if a state change occurs, the old state isno longer available, so there is no way to backtrack to an earlier state. We will discuss thisissue further in the Conclusion.We now turn our attention to the key cases of new and application.For store shape W , p 2 [[var[�]! comm]]W and state w 2 W ,[[new�]]W upw = fst�p�[[�]]� ha; ei hw; ��i�where �� 2 [[�]] is a standard initial value of new variables of type �, and ha; ei 2 [[var]](W � [[�]])is the new variable, de�ned as follows: ehw; xi = x and a(y)hw; xi = hw; yi. The \acceptor"a overwrites the [[�]]-valued component of the state. The intuition behind this de�nition isthat procedure p is executed in an expanded store shape, where the additional [[�]]-valuedcomponent holds the value of the new variable. The argument ha; ei provides the capabilityfor updating and accessing this variable. The �nal value of the variable is discarded usingthe projection fst. This is as in (Reynolds, 1981b; Oles, 1982).The semantics of new is where the parametricity constraints in the model come intoplay. Because of the de�nition of procedure types, a call to p at an expanded store shapeW � [[�]] is required to satisfy uniformity conditions induced by relations involving [[�]]. In thenext section we will consider a number of examples showing these parametricity conditionsat work.Next, we consider application. Suppose that we are given � `M : �; ~�! � and � ` N : �.If � = �0 is a primitive type then the semantics is simple, obtained by prepending the meaning18

of N onto a suitable vector.[[MN]]W u ~d = [[M]]W u ([[N]]Wu; ~d)It is clear that when ~� is empty this is the obvious application.The case when � is not a primitive type is more complex. If � = ~�0 ! �0 then we needto prepend an element of [[~�0 ! �0]]W onto a vector. Recall that a meaning of this typeis a family of functions indexed by store shapes: we need to obtain such a family from themeaning of N .For a �xed environment u 2 [[�]]W , de�ne g as follows; for all X ,g[X] = [[N]](W �X)�expand�(W;X) u�where expansion maps are extended to type assignments pointwise:expand�(W;X)(u)(x 2 dom�) = expand�(x)u(x).Notice that g[X]: [[~�0]](W �X)! [[�0]](W � X), so g is certainly of the right form to be in[[~�0! �0]]W . It will be shown to satisfy the necessary parametricity constraints in the courseof proving the Abstraction Theorem below. The semantics of application is[[MN]]W u ~d = [[M]]W ug; ~dThe reader familiar with semantics in functor categories will notice that expansions comeinto this uncurried style of presentation in the case of application, whereas they appear whentreating �-abstraction when the semantics is presented in a more conventional curried form.Theorem 5 (Abstraction)Suppose � ` P : ~� ! � and R:W0 $ W1 is a relation between store shapes; if u0�[[�]]R�u1and ~d0�[[~�]]R�~d1 then [[P]]W0 u0 ~d0h[[�]]Ri[[P]]W1 u1 ~d1(This statement applies to terms of primitive type by omitting various vectors.)Proof: The Abstraction Theorem and the well-de�nedness of [[P]] are proven simultaneouslyby structural induction on P . Well-de�nedness is immediate in all cases except application(which is the only case where the simultaneity is used in a non-trivial way).For the well-de�nedness of application, suppose � `M : �; ~�! � and � ` N : �. If � = �0is a primitive type then the result is immediate, so suppose � = ~�0 ! �0. Well-de�nednesswill be assured if we can show that the family of functionsg[{]: [[~�0]](W � {)! [[�0]](W � {)satis�es the parametricity condition for [[~�0 ! �0]]W . For S:X0$ X1 and u 2 [[�]]W de�neui = expand�(W;Xi) u. By the Identity Extension Lemma and the Expansion ParametricityLemma, u0�[[�]](�W � S)�u1. (The evident version of the expansion lemma for type assign-ments is a corollary of the one for types.) By the Abstraction Theorem for N (inductionhypothesis), [[N]](W �X0) u0h[[~�0]](�W � S)! [[�0]](�W � S)i[[N]](W �X1) u119

and so g[X0]h[[~�0]](�W � S)! [[�0]](�W � S)ig[X1] :This shows that g 2 [[~�0! �0]]W , as desired.For the Abstraction Theorem, we will consider application and new; all other cases areroutine.For application we have � ` M : �; ~� ! � and � ` N : �. Suppose u0�[[�]]R�u1 and~d0�[[~�]]R�~d1. If � = �0 is primitive then the Abstraction Theorem forN (induction hypothesis)guarantees that [[N]]W0 u0�[[�0]]R�[[N]]W1 u1 and then the Abstraction Theorem forM impliesthat [[M]]W0 u0 ([[N]]W0u0); ~d0h[[�]]Ri[[M]]W1 u1 ([[N]]W1u1); ~d1:In the case that � = ~�0! �0 we reason in the same manner, but use g0�[[~�0! �0]]R�g1, wheregi is the meaning determined by the environment ui, as in the de�nition of application.This last property follows from the Abstraction Theorem for N , with a proof similar to thewell-de�nedness of g above using R in place of �W .For new, suppose p0�[[var[�]! comm]]R�p1 and w0[R]w1. We must show thatfst(p0�[[�]]� ha0; e0i hw0; ��i)hRifst(p1�[[�]]� ha1; e1i hw1; ��i) :The key property is ha0; e0ih[[var[�]]](R��[[�]])iha1; e1ifor the new variables ha0; e0i 2 [[var[�]]](W0 � [[�]]) and ha1; e1i 2 [[var[�]]](W1 � [[�]]). This isstraightforward to verify. The assumption that p0 and p1 are related then impliesp0�[[�]]� ha0; e0i hw0; vihR��[[�]]ip1�[[�]]� ha1; e1i hw1; vifor any v 2 [[�]], and this ensures that the �rst components of the pi�[[�]]� hai; eii hwi; vi areR-related.5 Examples of ReasoningIn each of the examples that follow, an unknown non-local procedure is passed a limitedcapability for accessing a local variable, in much the same way that an abstract type givesto its \clients" a limited capability for accessing its representation. The reasoning methodemployed involves choosing a relation that is satis�ed by di�erent arguments to the procedure,and then applying the parametricity property to infer a relational property that pairs ofprocedure calls must satisfy.For the sake of readability, we continue to use sugared notation for code in the examples.The desugarings into the language of the previous sections should be clear.We begin by describing a class of relations that can be used in several examples. SupposeW is any store shape and E � Z; where, as before, Z is the set of integers; we can then de�neRE :W ! W � Z by w[RE]hw0; zi () w = w0 and z 2 E :20

Consider any c 2 [[comm]](W � Z) such thatskiph[[comm]]REic;where skip 2 [[comm]]W is de�ned by skip(w) = w. Then, if p 2 [[comm ! comm]]W;parametricity implies that (�) p�(skip)h[[comm]]REip[Z](c)where p� = unl ; p[1] ; unr : [[comm]]W ! [[comm]]W . Hence, p�(skip) is the semantics of anisolated procedure call P (skip). We can use this condition whenever we have a command cthat does not change the values of non-local variables and preserves property E of the localvariable.For example, consider the relation RZ; i.e.,w[RZ]hw0; zi () w = w0 :Intuitively, entities will be RZ-related if they \work the same way" on theW part of the stack.This is a property of z := z+ 1 and skip; more precisely, if we de�ne inc 2 [[comm]](W �Z)by inchw; zi = hw; z + 1i;then skiph[[comm]]RZiinc:Then we can use the property (�) to concludep�(skip)wh(RZ)?ip[Z](inc)hw; zi :This means that the �rst component of p[Z](inc)hw; zi is equal to p�(skip)w. Clearly, then,the semantics of variable declarations ensures the �rst equivalence considered in the Intro-duction: begininteger z;procedure inc; z := z + 1;P (inc)end � P (skip)It is important here that w = w0 when w[RE]hw0; zi: the parametricity property always actsas the identity relation on non-local variables. This is where the identity extension lemmaand the use of identities in the parametricity constraint on procedure types come into play.We would like to emphasize that the reasoning method in this example is simply an in-stance of reasoning about polymorphic functions using Reynolds parametricity ((Reynolds,1983); see also (Wadler, 1989) for numerous examples of this form of reasoning). The equiv-alence reduces to the following propertyfst�p[1](�x.x)� = fst�p[Z](�y. hfst y; (sndy) + 1i)�for a polymorphic function p: 8
. (� �
 ! � �
) ! (� �
 ! � �
). This is what wemean when we say that reasoning about local variables often amounts to proving properties21

of polymorphic functions. Of course, it is fairly signi�cant that the polymorphism that weare concerned with is predicative in nature; but the point remains that the reasoning methodwe employ is exactly as in (Reynolds, 1983; Wadler, 1989). These methods will be seen belowto lead to remarkably straightforward validations of previously troublesome equivalences.Before continuing, it is worth pausing to explain why typical counterexamples to thisequivalence, which exist in previous models, are not present here. Let W = ftrue , falseg.One counterexample is essentially a family of functionsp[X]: [[comm]](W �X) �! [[comm]](W �X)such that p[X](c)hb; xi = (h:b; xi; if c hb; xi 6= hb; xihb; xi; otherwiseSuch a p would break the equivalence, because the left-hand block would negate the state(which consists of a single boolean), whereas P (skip) would leave the state unchanged.However, this p fails to satisfy the parametricity condition, for though skip�[[comm]]RZ�incand w[R]hw; zi, it is not the case thatp�(skip)(b)hRZip[Z](inc)hb; zi ;as p�(skip)b is b, while p[Z](inc)hw; zi is h:b; xi. The equality test on states is the culprit inthe de�nition of p: any two states hw; zi and hw; z0i are \indistinguishable" from the pointof view of the second domain of the relation RZ, so branching on the equality test violatesparametricity.Our second example demonstrates that the invariant-preserving properties of the modelsdescribed in (Meyer and Sieber, 1988; O'Hearn and Tennent, 1993b) are encompassed byparametricity. If Z� is the set of nonnegative integers, we again get skip�[[comm]]RZ��inc.The property (�) now ensures that z is non-negative when p[Z](inc)hw; 0i = hw0; zi. Thiscan be used to verify that the value of local variable z is still nonnegative on termination ofthe procedure call in begininteger z;z := 0;P (z := z + 1);� � �endOur last example using relations of the form RE isbegininteger z;z := 0;P (z)end � P (0)where P : exp[int]! comm; we have left the de-referencing coercion (deref) from var[int]to exp[int] implicit in the argument of the call. The intuition here is that the value of z22

will be 0 each time it is used during execution of the call P (z), because P cannot write to z.Therefore, this should be equivalent to simply supplying 0 as an argument instead of z.To validate this we can use Rf0g. The denotation of 0 is the constantly 0 function in[[exp]](W � Z), and the denotation of z, as an expression, is the projection W � Z ! Z.These denotations are then related by [[exp]]Rf0g; i.e.,WW � Z ZZ?Rf0g6 -0 -z ?�Z6because if argument states are related, the Z-valued component is always 0. We can then usethe parametricity of P; as in the other examples, to conclude that (the denotations of) thecalls P (0) and P (z) are [[comm]]Rf0g-related, and the equivalence follows from the valuationfor variable declarations.Next we consider a relation that does not �t into the RE pattern: the relation �W � R,where R:Z$ Z is de�ned by z0[R]z1 () �z1 = z0 � 0 .This can be used to validate the equivalence between blocks that use non-negative and non-positive implementations of a counter in exactly the manner discussed in the Introduction.The representations of the procedures inc and val are directly related by �W �R, and we canuse the parametricity property of procedures to conclude that the calls to non-local procedureP are related. This implies the desired equivalence because the semantics of new disposes ofthe Z-valued component of W � Z on termination, and we are left with �W -related results.We should mention that this last equivalence is in fact valid in the models of (Oles,1982; Tennent, 1990). These models can typically handle representation independence whenthe di�erent representations being considered are isomorphic. Our �nal example shows hownon-isomorphic representations can be dealt with.The example involves a simple abstract \switch." A switch will have two associatedoperations.
ick : turns the switch on; andon: a predicate that tests whether the switch has been
icked on.The switch is initially o�, but remains on after it has been
icked for the �rst time.One representation of the switch will be the evident one using a boolean variable. In theother, 0 will correspond to the switch being o�, and the on position will be represented byany positive integer. These representations are given in the following two blocks, where P isof type (comm; exp[bool])! comm.beginboolean z;procedure
ick ; z := true;boolean procedure on; on := z;z := false;P (
ick ; on)end � begininteger z;procedure
ick ; z := z + 1;boolean procedure on; on := z � 1;z := 0;P (
ick ; on)end23

A typical counterexample, which exists (in one form or another) in the models of (Oles,1982; Meyer and Sieber, 1988; O'Hearn and Tennent, 1992), is p such thatp[X] hc; ei hb; xi = (h:b; zi; if c(chb; zi) = chb; zihb; zi; otherwiseThe equality test on states is once again the culprit.This equivalence can be validated in our semantics using a relation of the form �W �R,where R: [[bool]]$ [[int]] is the least relation such thatfalse[R]0 ^ (n � 1) true [R]n) :6 Algebraic Aspects of First-Order TypesA standard test for the parametricity of models of polymorphism involves connections betweenfree algebras and the denotations of certain lower-order polymorphic types (Reynolds, 1983).For example, in a model that is \su�ciently parametric," the type 8
. (
!
)! (
!
)of Church numerals will (in the absence of recursion) in fact denote a natural numbersobject, and the type 8
. (��
!
)�
!
 will be isomorphic to the type list[�] of �nitelists over �. These representations supply a very clear picture of low-order polymorphictypes, and are an indication of the constraining e�ect of the parametricity conditions underconsideration. Our purpose in this section is to describe how our parametric semantics yieldssimilar representations of �rst-order Algol types.To begin, we consider [[comm! comm]]1. We can use an argument of Plotkin (1980)to characterize precisely the elements in this set. If p 2 [[comm ! comm]]1 then thereis a number n such that p[N] (idf�g � succ) h�; 0i = h�; ni, where N is the set of naturalnumbers and succ is the successor function. Then for any X , c:X ! X and x 2 X , wecan set up a relation R:N $ X where 0[R]x and m[R]x0) m + 1[R]c(x0). The functionssucc and c are then related by R ! R and we can use parametricity to conclude thatp[N] (idf�g � succ) h�; 0i and p[X] (idf�g � c) h�; xi are R-related and, in particular, the latteris h�; cn(x)i, where c0 = skip and cn+1 = c ; cn. Thus, p is the n-th Church numeral.In an Algol-like language, the n-th Church numeral is de�ned by �c: comm. cn. From thiswe can immediately see two interesting facts. First, every element of [[comm! comm]]1 isde�nable by a closed term. Second, up to semantic equivalence, the local-variable declaratornew does not �gure into closed terms of this type at all, for any closed term of this type willbe equivalent to one that doesn't use new. One has to go up to closed terms of second-ordertype, or to open terms of �rst-order, for new to make a di�erence.What we have done here is to follow the analogy between type variables and store shapes.[[comm ! comm]]1 corresponds to 8
. (1 �
 ! 1 �
) ! (1 �
 ! 1 �
), and, as1�
 �=
, this should in turn be the Church numerals. The reader familiar with (Reynolds,1983) will then be able to see how similar representations can be obtained for other �rst-orderAlgol types. We collect a few examples into the following proposition.Proposition 6 (Reynolds)We have the following isomorphisms, where � is a store shape.24

[[exp[�]! exp[�0]]]� �= (�! [[�]])! (�! [[�0]])[[exp[�]! comm]]� �= (�! [[�]])! (�! �)[[comm! exp[�]]]� �= (�� list[�]! �)! (�! [[�]])[[comm! comm]]� �= (�� list[�]! �)! (�! � � list[�])Proof: These isomorphisms are based on observations in (Reynolds, 1983). We will outlinethe proof of the last isomorphism to indicate that these arguments do go through for oursemantics of Algol types.Any c:�� Z ! � � Z, for some store shape Z, can be decomposed into two functionsc1:�� Z ! � and c2:�� Z ! Z. For a �xed initial state hs; zi 2 �� Z, let R:Z$ list[�]be the smallest relation such thatz[R]� z0[R]`) c2ha; z0i[R]consha; `iwhere � is the empty list. One can then de�ne a suitable c�1 such thatc1[�� �R! ��]c�1and we have fc1; c2g�[[comm]]�� �R�fc�1; consgwhere here we are using ff; gg : A ! B � C to denote the tupling function obtained fromf : A! B and g : A! C. Then if p 2 [[comm! comm]]� we get thatp[Z] c hs; zih�� � Rip�list[�]�fc�1; consg hs; �i ;and so p is completely determined by the action of the function p[list[�]]. Furthermore, thearguments to this function can be taken to be of the form ff; consg and hs; �i so, as cons and� are �xed, this is determined by a function of type (� � list[�]! �)! (�! � � list[�]).Conversely, it is easy, using this R, to see how any function of this type determines an elementof [[comm! comm]]�.Notice that function types with exp[�] in a contravariant position are represented in apointwise fashion. A meaning at such a type can be applied at a \later stage," after localvariables have been added to the stack, but such a function is completely determined byits behaviour at the \present stage." The reason is that expressions may read from, butnot write to, local variables. If we pass an argument e 2 [[exp[�]]](� �
) and evaluatethe resulting function call in state hs; ni, then parametricity can be used to show that thisis equivalent to passing the evident corresponding expression e0 2 [[exp[�]]]� � fng. Thepointwise exponentiation arises because � � fng �= �. (This principle was at work in theexample from the previous section involving P (0) and P (z)). Of course, not all elements ofthese types will be de�nable; for example, de�nability of all elements of exp[int]! exp[int]is not possible for computability reasons.For the types with comm in a contravariant position, changes to a local variable bya command argument are mirrored by cons: a list of �'s records non-local states when acommand argument is executed. The representation of comm ! exp[�] illustrates thenon-single-threaded nature of the semantics. In a semantics that captured single-threading25

properly we expect that the occurrences of list[�] would disappear, because single-threadingshould mandate that commands cannot be executed within expressions.These representations are limited to �rst-order types: we do not know of characterizationsof level-two types such as, for example, (comm! comm)! comm. A similar phenomenonoccurs in models of polymorphism: much is known about level-two polymorphic types, butconsiderably less for level three. (Here our understanding breaks down at level two becausethese types correspond semantically to level-three functional types.)The situation in the presence of recursion is more complex due to lifting, and we do nothave a clear general picture, given by a clean scheme like the one in (Reynolds, 1983), of thedenotations of all �rst-order types in the presence of recursion. Characterizations of certainspeci�c types have been obtained, however; we illustrate with [[comm! comm]]1.Let Vnat be the vertical natural numbers, i.e., the natural numbers with the usual \lessthan" order, and with an extra top element 1. Vnatop is the vertical naturals with theordering reversed. Then [[comm! comm]]1 �= N?
Vnatopwhere
 is the smash product.An outline of the proof of this isomorphism is as follows. Using the isomorphism 1�� �= �,a meaning in [[comm! comm]]1 will be a family of continuous functionsp[�]: (�! �?)! (�! �?)satisfying the parametricity condition. If p[N] succ 0 = ? then p corresponds to h?;1i. Ifp[N] succ 0 = n then there will be a smallest m such that p[N] (succ[n+m]) 0 = n, where(succ[k]) a = a + 1 if a < k and ? otherwise. In this case p corresponds to hn;mi. Thedesired isomorphism can then be shown using parametricity with an argument similar to theone used by Plotkin for the Church numerals: we de�ne an appropriate relation that relatesan argument in �! �? to a succ[k].As before, every element of this domain can be de�ned by a closed term, with the ap-propriate boolean tests and a term diverge: comm that denotes the constantly-? function.Speci�cally, h?;1i is de�ned by diverge, and hn;mi is de�ned by�c: comm. if (do cn+m result 1) = 1 then cn else skipThe test (do cn+m result 1) = 1 will converge, and return true, i� cn+m converges. The skipbranch never gets executed.It is now possible to appreciate the role of Vnatop. It concerns \lookahead," in the sensethat we look to see if n +m executions of c will converge and, if so, we execute c n times.This illustrates how a semantics that properly captures single threading could perhaps leadto simpler representations. For example, the closed terms of type comm! comm de�nablewithout do { result { are, semantically, in correspondence with N?, which is considerablysimpler than N?
 Vnatop.7 Relations and Re
exive GraphsThe category-free presentation, though quite elementary, is also rather ad hoc in some re-spects. In the next few sections we will endeavour to place the model into a categoricalcontext, providing some justi�cation for the de�nitions.26

A �rst attempt would be to say that the model lives in a category of \relators" (Mitchelland Scedrov, 1993; Ma and Reynolds, 1992; Abramsky and Jensen, 1991). The objects mapstore shapes and relations between them to sets and relations between them in a way thatpreserves identity relations, and the morphisms are families of functions, indexed by storeshapes, satisfying a parametricity constraint. While it is true that each type in our modeldetermines a relator, the relator viewpoint is not quite satisfactory. The appropriate notion ofexponentiation for relators is pointwise: (A! B)(X) = A(X)! B(X) for X a store shapeor relation. A better categorical explanation of the model would connect our interpretationof procedure types with exponentiation, and our interpretation is not pointwise.This is the point at which we must bring out the functor-category structure, which showsup in the category-free presentation in the use of expansion functions. It will be seen thateach type determines a functor from the category of store shapes (from (Oles, 1982)) tothe category of sets. The interpretation of procedure types then has some of the
avourof a functor-category exponential, but with additional parametricity constraints. A suitablecategory will be obtained by considering both the relator and functor aspects of types, alongwith naturality and parametricity conditions on morphisms.The reader might have noticed that naturality properties were never used in proving anyof our results in previous sections, or in reasoning about example equivalences. The placewhere naturality does come in is in trying to prove the validity of the laws of the typed�-calculus. It would have to be accounted for if we were to validate these laws directly inthe category-free semantics; in the categorical semantics it will be crucial to get a Cartesianclosed category.In the following, we will need functor-like maps that preserve a certain kind of relationalstructure. There is a fundamental di�culty, however. We do not want to insist on relationsbeing composable, and so the structure that must be preserved is not really \categorical." Onereason for not requiring composability is that, as is well known, composition is not preservedby logical relations at higher types. Another is that we want to be able to generalize to n-aryrelations for n > 2, and then there is no evident notion of composition.We propose that the appropriate way to describe the relational structure that is neededis to use the notion of a re
exive graph. A re
exive graph is conventionally a set of verticeswith (oriented) edges between them; furthermore, for any vertex v, there is a distinguishededge from v to itself, the identity on v. Notice that a re
exive graph is more structured thana set (because there are edges as well as vertices), but less structured than most categories(because edges need not be composable).We will actually consider a generalization, familiar to category theorists, where categoriesof vertices and edges are allowed (Barr and Wells, 1990; Lawvere, 1989; Johnstone, 1989); theconventional notion of re
exive graph becomes the special case in which the vertex and edgecategories are small and discrete. In some examples, the edge objects will be relations overpairs of vertex objects, and the edge morphisms will be relation-preserving pairs of vertexmorphisms; however, in general, edges are not required to be any of the usual categoricalforms of relation (Ma and Reynolds, 1992; Mitchell and Scedrov, 1993).Here is a precise de�nition: a re
exive graph G consists of two categories, Gv (vertices)27

and Ge (edges), and three functors between them as follows:Gv Ge-GIG�0�? �G�1�6 �such that GI ; G�i = 1Gv for i = 0; 1, where ; denotes composition in diagrammatic order and1Gv is the identity functor on Gv. Intuitively, G�i speci�es the i'th domain for each edge andedge morphism, and GI speci�es the identity edge for each vertex and vertex morphism.An equivalent and more elegant presentation is as follows: a re
exive graph is a functorG:G! CAT, where CAT is the meta-category of all categories and functors between them(Mac Lane, 1971), and G is the two-object category whose (non-identity) morphisms are asfollows: v e-I�0�? ��1�6 �with I ;�i = idv for i = 0; 1, where idv is the identity morphism on v. (More generally, re
exivegraphs with n-ary edges would be generated by the two-object category having non-identitymorphisms I : v ! e and �i: e ! v for i = 0; 1; : : : ; n � 1, with a similar commutativityrequirement.)As our �rst example, we de�ne a re
exive graph S (sets) as follows.� The \vertex" category, Sv, is the usual category of sets and functions.� The \edge" category, Se, has binary relations on sets as objects and relation-preservingpairs of functions as morphisms; i.e., a morphism with domain R:W0 $ W1 and co-domain S:X0 $ X1 is a quadruple (R; f0; f1; S) such that f0[R! S]f1. We will usethe relational-parametricity diagram W0W1 X0X1?R6 -f0-f1 ?S6 to depict such a morphism. Thecomposite of W0W1 X0X1?R6 -f0-f1 ?S6 and X0X1 Y0Y1?S6 -g0-g1 ?T6 is then de�ned as W0W1 Y0Y1?R6 -f0; g0-f1; g1 ?T6, andthe identity morphism on a relation R:W0$ W1 is W0W1 W0W1?R6 -idW0-idW1 ?R6.� Functors S�i:Se! Sv for i = 0; 1 are de�ned by S�i(R:W0$ W1) = Wi andS�i 0BBB@ W0W1 X0X1?R6 -f0-f1 ?S61CCCA = fi :28

� Functor SI :Sv! Se is such that SI(W) = �W and SI(f :W ! X) = WW XX?�W 6 -f-f ?�X6Category Se is the category of relations over sets presented in (Ma and Reynolds, 1992). Fur-thermore, the S�i are similar to the forgetful functor U used there in a categorical treatmentof the (�rst-order) \abstraction theorem," and SI is similar to the functor J used there ina categorical treatment of the \identity extension lemma." Hence, some of the key entitiesintroduced in (Ma and Reynolds, 1992) are incorporated in the re
exive graph S.As our second example, we de�ne a re
exive graph D (domains) as follows.� Dv is the category of directed-complete partially-ordered sets and continuous functions.� De has complete binary relations as objects, and relation-preserving pairs of continuousfunctions as morphisms. Composites and identities are evident.� The functors D�i :De! Dv for i = 0; 1 and DI :Dv! De are de�ned exactly as for S.Finally, we de�ne a re
exive graph W (worlds) having the small category � of \stateshapes" described in (Oles, 1982) as its vertex category Wv. The category � is as follows.� The objects are (certain) sets, including desired data types, such as ftrue; falseg andf�2;�1; 0; 1; 2; : : :g, and all �nite (set) products of these.� The morphisms from W to X are all pairs �; � such that{ � is a function from X to W ;{ � is a function fromW �X to X , where the � here (and throughout this example)is the set-theoretic Cartesian product;{ for all x 2 X , �h�(x); xi = x ;{ for all x 2 X and w 2 W , �(�hw; xi) = w ;{ for all x 2 X and w;w0 2 W ,�
w; �hw0; xi� = �hw; xi :For example, there is an \expansion" morphism (�; �):W ! X such that X = W � Yfor some data type Y with �hw; yi = w and �
w; hw; yi� = hw; yi; i.e., � \projects" alarge stack into the small stack it contains, and � \replaces" the small stack contained ina large stack by a new small stack, leaving unchanged local variables on the large stack.In fact, Oles shows that any (�; �):W ! X induces a set isomorphism X �= W � Y forsome non-empty set Y ; that is, up to isomorphism, every morphism is an expansion.� The composite of morphisms (�; �):W ! X and (�0; �0):X! Y is (�00; �00):W ! Ysuch that �00 = �0 ; � and �00hw; yi = �0h�hw; �0(y)i; yi.29

� The identity morphism on W is (�; �) such that �(w) = w and �(w;w0) = w.A category We of relations over � can be de�ned as follows.� The objects are relations R:W $ X , where W and X are �-objects.� A morphism with domain R:W0 $ W1 and co-domain S:X0 $ X1 is a quadruple�R; (�0; �0); (�1; �1); S� such that �0[S ! R]�1 and �0[R � S ! S]�1. Again, we usediagrams of the form W0W1 X0X1?R6 -(�0; �0)-(�1; �1) ?S6 to depict morphisms in We.� Composition and identities are de�ned straightforwardly in terms of those in �.We can now complete the de�nition of W by using diagonal relations for the identities,and de�ning the domain functors in the evident fashion.The de�nition of \related" �-morphisms above is particularly noteworthy:W0W1 X0X1?R6 -(�0; �0)-(�1; �1) ?S6 is a morphism in We i� both X0X1 W0W1?S6 -�0-�1 ?R6 and W0 �X0W1 �X1 X0X1?R� S6 -�0-�1 ?S6are morphisms in Se. This de�nition ensures that appropriate relations will be preservedby variable de-allocation (using the \projections" �i) and by state changes in larger worldsinduced by changes at smaller ones (using the \replacements" �i). Notice that We is not acategory of relations over � in the sense of (Ma and Reynolds, 1992); in fact, � does noteven have a terminal object.8 Parametric Functors and Natural TransformationsNext we describe a category of \parametric" functors and natural transformations. Thedescription will be highly tailored to the speci�c de�nitions of W and S, but at the end ofthe section we sketch a more general setting for the de�nitions.A parametric functor from W to S consists of� a mapping F0 from Wv-objects to Sv-objects;� a mapping F1 from Wv-morphisms to Sv-morphisms; and� a mapping F2 from We-objects to Se-objectssuch that� if f :w! x in Wv then F1(f):F0(w)! F0(x) in Sv;� F1(idw) = idF0(w) for every Wv-object w;� F1(f ; g) = F1(f) ; F1(g) for all composable Wv-morphisms f and g;� if R:w$ x in We then F2(R):F0(w)$ F0(x) in Se;30

� F2(�w) = �F0(w), for every Wv-object w; and� if w0w1 x0x1?R6 -f0-f1 ?S6 in We, then F0(w0)F0(w1) F0(x0)F0(x1)?F2(R)6 -F1(f0)-F1(f1) ?F2(S)6 in Se.The �rst three conditions say that F0 and F1 constitute a conventional functor fromWv to Sv;the next two conditions say that F0 and F2 constitute a \relator" (Mitchell and Scedrov, 1993;Abramsky and Jensen, 1991); and the last condition is a parametricity constraint. This lastcondition is closely related to the Expansion Parametricity Lemma and is crucial for functiontypes to behave properly, e.g. for currying to satisfy relevant parametricity conditions. Wewill adopt the usual notational abuse of using a single symbol such as F to denote all threemappings.If F and G are parametric functors fromW to S, � is a parametric natural transformationfrom F to G if it maps Wv-objects to Sv-morphisms such that� for every Wv-object w, �(w):F (w)! G(w);� for every Wv-morphism f :w! x, F (w)F (x) G(w)G(x)?F (f) -�(w)-�(x) ?G(f) commutes; and� for every R:w0$ w1 in We, F (w0)F (w1) G(w0)G(w1)?F (R)6 -�(w0)-�(w1) ?G(R)6 in Se.The �rst two conditions say that � is a conventional natural transformation from F to G,and the last condition is a parametricity constraint.Parametric natural transformations compose in the obvious point-wise way (like \vertical"composition of natural transformations). The category having all parametric functors fromW to S as objects and all parametric natural transformations of these as morphisms will bedenoted SW .Theorem 7SW is cartesian closed.Proof: Products can be de�ned pointwise:(F �G)(w) = F (w)�G(w)(F �G)(f) = F (f)� G(f)(F �G)(R) = F (R)�G(R)with the obvious (parametric) projections. A terminal object 1 has 1(X) = f�g, 1(�; �) =idf�g and 1(R) = �f�g 31

For exponentiation, we �rst de�ne the analogue of \representable" functors (Mac Lane,1971; Lambek and Scott, 1986). If X and Y are store shapes then hX(Y) = HomWv(X; Y),and for f and g maps in �, hf (g) = HomWv(f; g), so that hfg (h) = f ; h; g. If R:X0$ X1and S: Y0$ Y1, then hRS: hX0Y0 ! hX1Y1 is such thatg[hRS]f i� X0X1 Y0Y1?R6 -g-f ?S6 in We.We write hX({) for the parametric functor that sends Y to hXY , f to hidXf and R to h�X (R).Exponentiation is then de�ned on store shapes as follows:GF X = HomSW (hX � F;G) ;on morphisms, (GF f p) [Z]hg; ai = p [Z] hf ; g; ai ;and on relations, p[GFR]q i�8S:W0$ W1. p[W0]hhRS �G(S)! F (S)iq[W1]It is not di�cult to show that GF satis�es the functor and relator requirements, and thecondition that a parametric functor send related Wv-morphisms to related Sv-morphisms.The application and currying maps are exactly as in presheaf categories. The applicationmap app:F �GF .! G is app [W] ha; pi = p[W]hidW ; ai:Naturality follows as usual. To see that it is parametric, assume p0[(GF)R]p1 and a0[F (R)]a1.As W0W1 W0W1?R6 -idW0-idW1 ?R6, we have that hidW0 ; a0i[hRR�F (R)]hidW1 ; a1i, and the de�nition of GF (R)implies (p0[W0]hid; a0i)�G(R)�(p1[W1]hid; a1i). The Currying mapcurry :Hom(F �G;H)�! Hom(F;HG)is currymW a hf; bi = mX hF (f)a; biwhere f :W ! X in Wv. The naturality of currym is shown as usual, and parametricityis proved using the condition that F send related Wv-morphisms to related Sv-morphisms.That curry and app have the required properties of exponentiation is straightforward; this iswhere the naturality requirements are crucial.We now show how to interpret types as parametric functors from W to S. We use theangled brackets hh�ii to distinguish the parametric-functor semantics from [[�]].For expressions: 32

� for every Wv-object W , hhexp[�]iiW = W ! [[�]] ;� for every Wv-morphism (�; �):W ! X and e 2 hhexp[�]iiW ,hhexp[�]ii(�; �) e = � ; e ;and� for every R:W0$W1, hhexp[�]iiR = R! �[[�]] :For commands:� for every Wv-object W , hhcommiiW = W ! W ;� for every Wv-morphism (�; �):W ! X , x 2 X , and c 2 hhcommiiW ,hhcommii(�; �) c x = �hc��(x)�; xi;and� for every R:W0$W1, hhcommiiR = R! R :For the morphism part what we do is execute c on the small part of the stack, i.e. c(�(x)),and then use � to replace the small part of x with the resulting �nal state.The parametricity conditions on these functors are easily veri�ed. It is noteworthy thatthese pointwise de�nitions are actually isomorphic to what is obtained by introducing theobvious contravariant \states" functor S and de�ninghhexp[�]ii = S! [[�]]hhcommii = S ! Susing a parametric version of \contra-exponentiation" (O'Hearn and Tennent, 1992), whereD is the constant functor whose object, morphism, and relation parts always yield D,idD, and �D, respectively. This is an indication of the e�ectiveness of the parametricityconstraints.For storage variables:hhvar[�]iiX = �[[�]]! hhcommiiX�� hhexpiiXhhvar[�]ii(�; �) = �id[[�]]! hhcommii(�; �)�� hhexpii(�; �)hhvar[�]iiR = ��[[�]]! hhcommiiR�� hhexpiiR :For procedures we use exponentiation in SW :hh~�! �ii = hh�iihh~� ii :33

Here, hh~� ii is the product of hh�iii for the components of the vector. Of course, as SW is a ccc wecould ignore vectors and interpret procedure types in a curried syntax: hh�! �0ii = hh�0iihh�ii.The interpretations of terms can be given exactly as in (Oles, 1982). We have alreadyseen the application and currying maps in the proof of Proposition 7, and these are exactlyas in functor categories. We will de�nenew : hhvar! commii .! hhcommiito indicate how variable declarations are treated. For Wv-object W , p 2 hhvar! commiiWand w 2 W , new � W p w = fst (p�W � [[�]]�hf; ha; eiihw;��i)where f :W ! W � hh�ii is an \expansion" morphism in Wv, �� 2 hh�ii is the standard initialvalue of new variables, and ha; ei 2 hhvarii(W � Z) is the new variable, de�ned as follows:a(z0)hw; zi = hw; z0i and ehw; zi = z.We conclude this section by sketching a more general context for these de�nitions; it canbe skipped without loss of continuity. A morphism M :G! H of re
exive graphs is a pair offunctors Me and Mv that map edges to edges and vertices to vertices in a way that preservesdomains and identities; i.e., Gv HvGe HeGe He-Mv -Me -Me ?H�i?HI?G�i ?GIcommutes for i = 0; 1. Composition of graph morphisms is de�ned component-wise.Notice that a morphism of re
exive graphs is nothing other than a natural transformationbetween graphs viewed as functors. Furthermore, what we called a \parametric" naturaltransformation above is an instance of the concept of modi�cation (Kelly and Street, 1974).(More precisely, the category SW is equivalent to the category having natural transformationsbetween the graphsW and S (viewed as functors) as objects and modi�cations as morphisms.)This gives some assurance of the appropriateness of the various conditions in the de�nitionSW , which uses simpli�cations that depend on speci�c structure in W and S.Another perspective on our model can be given in terms of internal categories . As iswell known, re
exive graphs in CAT can be equivalently viewed as internal categories in acategory of (large enough) re
exive graphs. Parametric functors then correspond to inter-nal functors between internal categories, and parametric natural transformations to internalnatural transformations. We gave the \re
exive graphs in CAT" presentation here becausewe felt that it might be (slightly) more accessible.However, the internal category viewpoint perhaps shows more directly the connection to(Reynolds, 1981b; Oles, 1982): our semantics could be considered as essentially that of (Oles,1982), but re-cast in a context where terms like \functor" must be understood as pertainingto categories that live in another category. This is the reason why the de�nitions of currying,application, new, etc., for (the categorical presentation of) our model are just like thosegiven by Oles. Of course, the interest in our model derives more from the semantics of typesthan of valuations. The uniformity conditions arising from relational parametricity give usstronger reasoning principles than in a standard functor-category framework.34

9 When Parametricity Implies NaturalityWe now undertake to explain the connection between the category-free and parametric-functor presentations of our semantics, and also to uncover why an \uncurried" treatment oftypes is used in the category-free version.First, we need a result from (Oles, 1982) about morphisms in the category Wv of storeshapes.Lemma 8 (Expansion Factorization (Oles))EveryWv-morphism W ! X can be factored into an expansion followed by an isomorphism:W e! W � Y i! X:Recall that the Isomorphism Functoriality Lemma played an important role in the category-free semantics. A condition analogous to it was not needed in the de�nition of re
exive graphbecause of the following result which, it should be noted, applies to any parametric functor(and not just de�nable ones).Lemma 9 (Isomorphism Correspondence)For every parametric functor A, if (�; �):W ! X is an isomorphism then the functionA(�; �) and relation A(R) have the same graph, where R:W $ X is the relation having thesame graph as ��1.Proof: Let f = (�; �). From the de�nition of related Wv morphisms we haveWW WX?�W 6 -idW-f ?R6 and WX WW?R6 -idW-f�1 ?�W6 :As A is a parametric functor, we obtainA(W)A(W) A(W)A(X)?A(�W)6 -A(idW)-A(f) ?A(R)6 and A(W)A(X) A(W)A(W)?A(R)6 -A(idW)-A(f�1) ?A(�W)6 :If a 2 A(W) then the left-hand diagram implies that a[A(R)]A(f)a, using the fact that Apreserves diagonal relations and identity morphisms. Conversely, if a[A(R)]b then the right-hand diagram implies that A(f)a = b, and the graphs of A(f) and A(R) are therefore equal.We are now in a position to give (su�cient) conditions under which the naturality re-quirements are super
uous.Theorem 10 (Naturality) 35

Suppose A:W ! S is a parametric functor and p[{]:A({)! hh�ii({) is a family of functionssatisfying the following parametricity condition: for all R:X0$ X1,A(X0)A(X1) hh�ii(X0)hh�ii(X1)?A(R)6 -p[X0]-p[X1] ?hh�ii(R)6 :Then p is automatically natural: for all g:X! Y in Wv,A(X)A(Y) hh�ii(X)hh�ii(Y)?A(g) -p[X]-p[Y] ?hh�ii(g):Proof: Consider any g. By the Expansion Factorization Lemma it can be factored into acomposite e ; i, where e:X! X �W is an expansion and i:X�W ! Y is an isomorphism.The result will follow if we can show commutativity ofA(X �W) hh�ii(X �W)A(X) hh�ii(X)A(Y) hh�ii(Y)-p[X �W] -p[X] -p[Y] ?hh�ii(e)?hh�ii(i)?A(e)?A(i)The commutativity of the bottom part follows immediately from the Isomorphism Corre-spondence Lemma and the parametricity property for p. We will show the commutativity ofthe top part for � = comm; the other base types are treated similarly.Consider any w 2 W . De�ne Rw:X $ X �W by x[Rw](x0; w0) i� x = x0 and w = w0.Clearly we have XX XX �W?�X 6 -idX-e ?R6 . Thus, as A is a parametric functor, for any a 2 A(X)we have that a[A(Rw)]A(e)(a), and so, using the parametricity of p, we getp[X] a x �Rw� p[X �W](A(e)a) hx; wifor any x 2 X . From the de�nition of Rw, and of hhcommii on morphisms, this implies thathhcommii(e) (p[X] a) hx;wi = p[X �W](A(e)a) hx; wi:As this argument works for any w 2 W , the commutativity of the top part of the diagramfollows. 36

Note that the naturality constraints in hh~�! �iiX are also super
uous by this result, takingA = hX � hh~� ii.We are �nally in a position to see where the category-free semantics of types given earliercomes from. First, in a type ~�! � we can do away with all naturality constraints, as these areimplied by parametricity. Second, by the Expansion Factorization Lemma anyWv-morphismfactors into a \true expansion" followed by an isomorphism. Further, by the IsomorphismCorrespondence Lemma the action of a procedure meaning on the isomorphism part of sucha factor is completely determined by the action of parametric functors on relations. Thus,when de�ning a procedure meaning p at store shape W we do not need to consider allWv-morphisms out of W , but only the \true expansions" of the form W ! W � X . (Ananalogous property for certain functor categories has been observed by I. Stark.)Theorem 11 (Representation)Suppose A:W ! S is a parametric functor. Then (hh�iiA)W is isomorphic to the collectionof those families p[{]:A(W � {)! hh�ii(W � {)satisfying the following parametricity condition: for all R:X0$ X1,A(W �X0)A(W �X1) hh�ii(W �X0)hh�ii(W �X1)?A(�W �R)6 -p[X0] -p[X1] ?hh�ii(�W �R)6Proof: Let D denote the collection of p's satisfying parametricity. We will set up an iso-morphism f : hh�iiAW �! D with inverse g. First we have f m [X] = m[W � X]he; �i,where e:W ! W �X is the expansion. Conversely, if we have a map (�; �):W ! Z thenthis factors into an expansion followed by an isomorphism W e! W � Y i! Z. Then we setg p [Z] h(�; �); ai = hh�ii(i) (p[Y](A(i�1)a)), where i�1 is the inverse of the iso i.(In this de�nition of g, the factors e and i are not uniquely determined; however, it iseasy to show, using parametricity on isomorphisms, that hh�ii(i) (p[Y](A(i�1)a)) is uniquelydetermined for any factorizations. In any case, Oles has shown how a canonical choice offactors is possible.)That f m satis�es parametricity is immediate from the parametricity of m, using the factthat WW W �XW �X?�W 6 -e -e ?�W �R6 , for any R, and for e the expansion. That g p satis�es theparametricity condition for hh�iiAW follows from the parametricity condition on p, togetherwith the Isomorphism Correspondence Lemma and the Isomorphism Factorization Lemma.Naturality is then a result of the Naturality Theorem. Thus we see that f and g are well-de�ned. We can show that they are inverse as follows.g (f m) [Z] h(�; �); ai = hh�ii i (f m [Y] (A(i�1)a))= hh�ii i (m [W � Y] he; (A(i�1)a)i)= m [Z] h(e ; i); ai= m [Z] h(�; �); ai37

where the second-last step uses naturality of m and the fact that i and i�1 are inverse isos.Conversely, the de�nitions of f and g give usf (g p) [X] a = g p [W �X] h(e:W ! W �X); ai= hh�ii i (p[X]a)and in the factorization of e (in the last step) we can take i as the identity (because e ; id = e),so f (g p)[X]a = p[X]a.Thus we see that the calculation of (the object part of) function types in the category-freesemantics is isomorphic to what is obtained from exponentiation in the parametric-functorsemantics. It is also not di�cult to see that the relation parts of the two semantics areisomorphic, and that the expand maps correspond to the morphism parts of parametricfunctors. Furthermore, the semantics of �-abstraction and application that were given areprecisely those obtained (after suitable uncurrying) from the Cartesian closed structure ofSW . The details of these aspects of the correspondence should be abundantly clear to areader who has followed so far, and are su�ciently routine to warrant omission.There is one �nal matter that we must clear up. We have thus far steadfastly adheredto an \uncurried" presentation of the semantics of types, whereas in the ccc SW this is ofcourse not necessary. The uncurried presentation is needed, however, for the category-freesemantics to work properly. The reason is that parametricity does not imply naturality ingeneral, but only for parametric functors of a speci�c form.It will be simpler if we discuss this relationship between parametricity and naturality�rst in the context of the category-free semantics, and then translate to the categorical one.Consider the type comm! comm, and the family of elementsm[{] 2 [[comm! comm]][{]de�ned by m[X][Y] c hx; yi = hx; y0i; where chx; yi = hx0; y0i:This family of elements is \parametric" in the following sense: for all relations R:X$ X 0between store shapes, m[X]�[[comm! comm]]R�m[X 0]. (Following the analogy with poly-morphism, m is essentially an element of 8�8
. (��
! � �
)! (� �
 ! ��
)). Form to be natural with respect to expansions we would need thatif m[X � Y][Z]chhx; yi; zi= hhx1; y1i; z1iand m[X][Y � Z]c�hx; hy; zii= hx2; hy2; z2iithen x1 = x2; y1 = y2; and z1 = z2where c� is obtained from c by the evident associativity isomorphism. From the de�nition ofm, if chhx; yi; zi= hhx; y0i; zi, so c�hx; hy; zii= hx; hy0; zi, we get thatm[X � Y][Z]chhx; yi; zi= hhx; yi; ziwhile m[X][Y � Z]c�hx; hy; zii= hx; hy0; zii:The naturality property fails because y and y0 need not be equal, as c can certainly changethis component.Expressing this argument more categorically, we can de�ne a family of functionsm[{]: 1({)! hhcomm! commii({)38

that satis�es parametricity, but not naturality. The de�nition ism[X](�)[Z]h(�; �); ci s = �h�(s); c(s)i:This clearly satis�es parametricity, but the naturality diagramf�gf�g hhcomm! commiiXhhcomm! commii(X � Y)?id -m[X]-m[X � Y] ?hhcomm! commiiefails, for e an expansion, using essentially the same counterexample as above. That is, fore0:X � Y ! (X � Y)� Zthe state m[X](�)[(X� Y)�Z]h(e ; e0); ci hhx; yi; zi will not necessarily be equal to the statem[X � Y](�)[(X � Y)� Z]he0; ci hhx; yi; zi.From this we see a curious property. While parametricity implies naturality for all familiesof maps in the correct position to qualify as a transformation from hhcommii to hhcommii, theanalogous property does not hold for maps from 1 to hhcomm! commii. Thus, we see thereason for the uncurried presentation of types that we gave in the category-free semantics:the property that relational parametricity implies naturality is not stable under currying anduncurrying isomorphisms .At this point it is worth mentioning that these observations are not at all at odds with theresult of (Plotkin and Abadi, 1993) that relational parametricity implies (di)naturality. Thisresult applies under assumptions that are not met here. (For instance, in (Plotkin and Abadi,1993) the source and target categories are the same, while here the source Wv is di�erentfrom the target Sv.)10 The PER ModelIn presenting a model based on partial equivalence relations we are taking the opposite tackto the one taken with the relational model. We begin with a presentation based on functorsand natural transformations, and work our way back towards a functor-free description.Once the decision has been made to re-cast the ideas of (Reynolds, 1981b; Oles, 1982)in a realizability setting, the de�nition of the model falls out almost immediately. We workwith a category of \realizable" functors PER�, where PER is the usual category of partialequivalence relations and � is a suitable version of Oles's category of store shapes. As most ofthe de�nitions are essentially as in (Oles, 1982), we will move fairly quickly over the materialin this section. The point of the development is to show how this simple re-casting of theReynolds{Oles ideas gives us good uniformity conditions for reasoning about local variables.We will be working with categories equipped with a notion of realizability. These struc-tures can be viewed elegantly as internal categories in the e�ective topos, or in the categoryof !-sets (see (Hyland, 1988; Hyland et al., 1989; Longo and Moggi, 1991)). To simplify thepresentation we will keep internal-category aspects of the model in the background (thoughthis viewpoint certainly guides the de�nitions).39

We use m �n to denote Kleene application on !, the natural numbers (i.e., the applicationof the m'th partial recursive function to n). h{; {i is a recursive bijection from !�! to !, andfst and snd are numbers such that fst � hm;ni = m and snd � hm;ni = n. We let pid denotea code for the identity function on !, and pcomp a realizer for composition in diagrammaticorder, so pcomp �m � n � a = n � (m � a). (We adopt the convention that Kleene applicationassociates to the left.)A per A is a partial equivalence relation (transitive, symmetric) on the natural numbers.The equivalence class of n is [n]A = fm jn[A]mg. The set of equivalence classes is Q(A) =f[p]A j p[A]pg. The domain of A is dom(A) = fn j n[A]ng.A morphism f :A! B of pers is a function from Q(A) to Q(B) such that9n. 8p. p[A]p implies f([p]A) = [n � p]B(This assumes that n � p is de�ned.) We say that n realizes f (notation: n j= f), and oftenwrite jnj:A ! B to indicate a map that n realizes. Composition is just composition offunctions. This de�nes the category PER.Ob(PER) and Mor(PER) are the sets of objects and morphisms of PER. There is nonotion of realizability for objects of PER, or rather this notion is trivial:8A 2 Ob(PER) 8n.n j= A:PER is cartesian closed. A terminal object 1 is the per that relates all natural numbers, soit has one equivalence class. If A and B are pers, then the pers A�B and A)B are de�nedby ha; bi [A�B] ha0; b0i i� a[A]a0 ^ b[B]b0;m [A)B]n i� 8a; a0.a[A]a0 implies (m � a) [B] (n � a0)Again we will ignore recursion in this semantics. It could be incorporated using one of thePER categories that possess domain-theoretic structure (Amadio, 1989; Freyd et al., 1990;Phoa, 1990).10.1 Store ShapesOles's construction of the category of store shapes can be carried out starting from anycategory C with �nite products, by expressing the equational constraints on morphisms ascommutative diagrams. The resulting category �(C) is as follows. (The proof that this isindeed a category follows routinely as in (Oles, 1982).)Objects. The objects are those of C.Morphisms. A �(C)-morphism from W to X is a pair of maps �:X! W and�:W �X ! X in C such that the following three diagrams commute:X �XX XW �X6diag -�� id -id ?� XW �X W6� -�������*fst40

W � (W �X)W �X W �XX?id � � -fst� (snd ; snd) -� ?�Identities. The identity on X is (idX ; fst), where fst is the �rst projection.Composition. If �; �:X ! Y and �0; �0: Y ! Z, their composite is �00; �00 where�00 = �0 ; � and �00 is h((id� �0) ; �); sndi ; �0 : (Here h�; �i is the pairing associated withthe Cartesian structure in C, not the recursive pairing bijection on !.)For example, �(C) is Oles's category of store shapes for a suitable small cartesian subcat-egory C of the category of sets. More interestingly (as pointed out by A. Pitts), the categoryWe of relations between store shapes from Section 7 is also a category of the form �(C), forCa suitable (small) subcategory of the category Se of binary relations and relation-preservingpairs of functions. This is further justi�cation for the de�nition of related Wv-morphisms.We are going to work with �(PER) as our category of store shapes; in this section,we simply call this �. As with PER, there will be no realizability relation for objects.For morphisms, if (�; �):W ! X in � then hm;ni j= (�; �) i� m j= �:X ! W andn j= �:W � X ! W as PER maps. Note that here hm;ni is not a pair, but a numberproduced by the pairing bijection. We again use the notation jmj:X! Y for a morphism in� realized by m. (The ambiguity in the notations j= and j � j, which are used both for PERand �, is always resolved by the context.)The expansion maps X ! X�V are realized by expand = hfst ; overwritei whereoverwrite � hx0; hx; vii= hx0; vi:We will often rely on equations such as the one for overwrite to de�ne a realizer implicitly.This will be more readable than using � and projections everywhere, as inoverwrite = �y. hsnd � y; snd � (fst � y)i :The identity on a �-object X is given by the realizer wid = hpid ; fst i. For composition,suppose jhf; gij:X ! Y and jhf 0; g0ij: Y ! Z. A realizer hr; qi for their composite is asfollows: r is pcomp � f 0 � f , andq � hz; xi = g0 � hz; g � hf 0 � z; xiiFrom this de�nition it is clear that there is a number wcomp such that wcomp � h � i realizesthe composite jhj ; jij in �. Notice that expansions, composition and identities are givenuniformly, by a single realizer for each.10.2 Realizable Functors and Natural TransformationsA functor F from � to PER is realizable i� there is a number n such that8h 2 Mor(�) 8m. if m j= h then n �m j= F (h).41

We say that n realizes F . There is no condition on how F acts on objects. As F is a functorit preserves identities and composites. Notice, however, that the explicitly-speci�ed realizersfor identities and composites need not be preserved. For example, m � wid = pid need nothold; m �wid must simply be a realizer for the identity on F (A), for each PER A.Suppose F and G are realizable functors from � to PER. A natural transformation�:F :! G is realizable i� for some n,8X 2 Ob(�).n j= �X .For a natural transformation to be realizable all of its components must be given by the samecode. Realizable natural transformations compose in the usual componentwise (vertical)fashion. We let PER� denote this category of realizable functors and realizable naturaltransformations.Proposition 12 (Freyd{Robinson{Rosolini)PER� is Cartesian closed.Proof: � and PER, together with their notions of realizability, can be viewed as internalcategories in the category of !-sets, or the ::-separated presheaves in the e�ective topos.As such a category, PER is \complete" and Cartesian closed (see (Robinson, 1989) for adiscussion of various notions of completeness). By the result of (Freyd et al., 1992b) thismeans that the internal category of functors � �! PER is (internally) Cartesian closed,which implies that the external category PER� of realizable functors is Cartesian closed.The exponential in this functor category can be described using the appropriate analoguesof Yoneda functors. If X and Y are � objects, then the PER hXY is such that m[hXY]n i�jmj = jnj:X! Y as � maps. The realizer for the morphism part of hX(�) is�f .�g.wcomp � g � fIf F and G are realizable functors, then the PER GF (X) ism[GF (X)]n i� jmj = jnj: hX � F .! G:A realizer for the morphism part of GF is h whereh � f �m � ha; bi = m � h(wcomp � f � a); bi:The semantics of base types goes as follows. (We assume that there is a PER [[�]] associatedwith each data type �.)For expressions,[[exp[�]]]A = A) [[�]]On �-morphisms, when jhf; gij:A! B, we want[[exp[�]]] jhf; gij: (A) [[�]])! (B) [[�]])42

A realizer of this map is m such thatm � e � s = e � (f � s):A realizer for [[exp[�]]]:Mor(�)! Mor(PER) is then �h�e �s.e �(fst �h �s). To see that this isa good de�nition, notice that, from the relation-preservation property of PER maps, if s[B]s0,e[A)N]e0 and f [B�A)B]f 0, then e � (f � s) = e0 � (f 0 � s0). Notice also that this realizer iscompletely independent of �. It is as if the realizer were parametrically polymorphic in �.For commands:[[comm]]A = A)Aand a realizer for[[comm]] jhf; gij: (A)A)! (B)B)is m such that m � c � s = g � hs; c � (f � s)i :For variables, [[var[�]]]A = �[[�]]) [[comm]]A�� [[exp[�]]]Aand [[var[�]]] jhf; gij = �(id[[�]])([[comm]] jhf; gij) ; ([[exp[�]]] jhf; gij)	where we are using)on morphisms in the usual way and f�; �g is the pairing associated withthe Cartesian structure of PER; the required realizer should be evident.Procedure types are de�ned using the exponential in PER�: [[�! �0]] = [[�0]][[�]].These de�nitions of types are almost exactly as in (Oles, 1982). The semantics of termsis also essentially similar. We illustrate by de�ning the semantics of new. First we de�nethe standard local variable locvar.We need a realizer acc for the acceptor part of a local variable. It is given byacc � n � hs;mi = hs; niThe number hs;mi is thought of as a state, where s is the non-local part of the stack.The expression part of a local variable should map hs;mi to m, so it is simply snd. Wethen de�ne locvar = hacc; snd i:Notice that locvar 2 dom([[var]]X�Y), for any �-objects X and Y . The standard localvariable is \uniformly given" for all worlds.For new�, we need a realizable natural transformation [[var[�] ! comm]] .! [[comm]].Its realizer new� is as follows:new� � p � s = fst � (p � hexpand; locvari � hs; ��i)Once again, �� is a standard initial value for variables of type �. We could, of course, do awaywith this standard value by accepting the initialization as an argument to a new block. Thenthe realizer for new would be independent of � altogether.43

10.3 Naturality and the Groupoid InterpretationOur aim is to obtain results analogous to the Naturality Theorem and Representation The-orem, but using uniform realizability in PERs in place of Reynolds parametricity. This willbe done in the context of the groupoid interpretation of polymorphism from (Freyd et al.,1992b; Phoa, 1991).In the usual Moggi-Hyland interpretation of polymorphism, a type with, say, one freetype variable is interpreted as (internally) a function F : Ob(C) ! Ob(C) where C is aninternal category and the 8 quanti�er is interpreted as an internal product. In the case thatC is PER, the product 8F is the intersection TX2Ob(PER) F (X). The groupoid interpretationmodi�es this by interpreting a type as a functor F :Ciso ! C, where C is the groupoid ofisomorphisms in C. Then 8F is taken to be a limit of the functor F . In the case of PER,the groupoid interpretation of 8F can be calculated as follows: m[8F]n i� m[TX F (X)]n and(f � i �m)[F (Y)](f � j � n) whenever jij = jjj:X! Y is an isomorphism and f is a realizer forF . We will continue to work externally. One point that should be noted, however, is that byPERiso we actually mean the category of isomorphism pairs from PER. This is needed toallow e�ective computation of inverses.Lemma 13 (Expansion Factorization for PER)Every �-morphism (�; �):W ! X can be factored into an expansion followed by an isomor-phism W e! W � Y i! X. Furthermore, Y can always be taken to be a super-per of X, andrealizers for i and its inverse can be e�ectively calculated from a realizer for (�; �).Proof: Suppose jhf; gij:W ! X . De�ne the PER Y byy1[Y]y2 i� w1[W]w2 implies (g � hw1; y1i)[X](g � hw2; y2i)Notice that X is a sub-per of Y . The isomorphism i is coded by hf 0; g0i wheref 0 = �x. hf � x; xig0 = pcomp � g � fstClearly, f 0 and g0 are obtained e�ectively from f and g and the inverse of jhf 0; g0ij ishg; pcomp � f 0 � fstiThat these maps have the required properties can be shown straightforwardly using thede�nition of Y and the diagrammatic conditions on maps in �.We can then show that, for transformations into a base type, naturality on all maps isassured if we assume naturality with respect to isomorphisms only.Theorem 14 (Naturality for PER)Suppose A: �! PER is a realizable functor and jnj:A({)! [[�]]({) is natural with respectto isomorphisms in �. Then jnj is natural on all maps in �.44

Proof: As any �-map factors into an expansion followed by an isomorphism, the result willfollow if we can show A(W)A(W �X) [[�]](W)[[�]](W �X)?A(jexpand j) -jnj -jnj ?[[�]](jexpand j)We will give the proof for � = comm.Consider any x 2 dom(X), and let Rx be the PER with domain fxg. Thenjexpand j:W ! W � Rxis an isomorphism in �, and the assumption of naturality on isomorphisms implies that(n � (h � expand � a1) � hw1; xi)[W �Rx]h(n � a2 �w2); xi when a1[A(X)]a2 and w1[W]w2, whereh is a realizer for A. If the PER X is non-empty, we have Rx � X and, since expand alsorealizes the expansion W ! W �X ,(n � (p � expand � a1) � hw1; xi)[W �X]h(n � a2 �w2); xias required. If X is the empty PER, then commutativity is assured trivially.We are now ready to relate suitably uncurried function types to the groupoid interpreta-tion of polymorphism. First, note that there is an obvious embedding functor E: PERiso! �.It is the identity on objects, and on morphisms takes an isomorphism pair jhi; jij:X! W inPERiso to the map jhj; (pcomp � fst � i)ij. The requirement that a morphism in PERiso consistof both an isomorphism and its inverse is important here for the functor E to be realizable.Composing with E then takes a functor �! PER to PERiso! PER.For F : PERiso! PER and X a PER, let F (X � {) be the (realizable) functor that takesY to F (X � Y) and an isomorphism i to F (X � i).Theorem 15 (Representation for PER)Suppose A: �! PER is a realizable functor. Then ([[�]]A)W is isomorphic to8��(E ;A)) (E ; [[�]])�(W � {)�;where 8 is as in the groupoid interpretation and ({)) ({) is the evident bifunctorPERiso � PERiso! PER:Proof: The only non-trivial part of the proof is to set up the isomorphism from the PER8��(E ; A)) (E ; [[�]])�(W � {)� to ([[�]]A)W . Let hA amd h� be realizers for A and [[�]].Recall from Lemma 13 that, given a realizer r for a map W ! X in �, we can e�ectivelycalculate a realizer ri for i in the factorization W e! W � Y i! X together with a realizerr�1i for its inverse iso. (Recall also from the proof of 13 that the calculation of ri and r�1i isindependent of W , X , and Y .) The isomorphism that we want is realized by j such thatj �m � hr; ai = h� � ri � �m � hexpand ; (hA � r�1i � a)i�Lemma 13 and Theorem 14 can then be used to show that j codes a well-de�ned map andthat it is an isomorphism whose inverse is realized by k where k � p � a = p � hexpand ; ai.45

Using known facts about PER models ((Hyland et al., 1989; Freyd et al., 1992a)) we im-mediately obtain that, for example, [[comm! comm]]1 is isomorphic to the PER N thatrelates each natural number to itself.We do not know if this theorem goes through for the Moggi-Hyland interpretation ofpolymorphism with PERs. It does whenever A is a product of Algol base types, but whathappens at higher-order Algol-de�nable types is not clear to us.If we try to generalize the result by allowing [[�]] to be an arbitrary realizable functor thenwe run into the same problem as in the relational model. Speci�cally, ifm � n � hhf; gi; ci � s = g � hf � s; c � sithen jmj: 1({) ! [[comm ! comm]]({) is natural on isomorphisms, but not on all maps.It is interesting to compare this to the result of (Freyd et al., 1992a). They show that anyrealizable natural transformation between realizable functors PERiso I�! PER F�! PER andPERiso I�! PER G�! PER, where I is the embedding, determines a natural transformationbetween F and G. Our counterexample simply shows that the analogous property does nothold for composites PERiso E�! � [�]�! PER.We conclude the section with an example of reasoning about local variables using PERs.Recall the abstract \switch" from the end of Section 5beginboolean z;procedure
ick ; z := true;boolean procedure on; on := z;z := false;P (
ick ; on)end � begininteger z;procedure
ick ; z := z + 1;boolean procedure on; on := z � 1;z := 0;P (
ick ; on)endLet 2 be a PER of booleans: its equivalence classes are f0g, regarded as false, and f1g,regarded as true. By the semantics of new and the Representation Theorem for PERs, wecan show the following equivalence of polymorphic functions:fst �p[N]h(id� �n.n+ 1); �s.snd(s) � 1i hs; 0i�� fst �p[2]h(id� �n. 1); �s. snd(s) = 1i hs; 0i�for p: 8
. (� �
 ! � �
) � (� �
 ! 2)! � �
 ! � �
). Here, � 1 and = 1 are theobvious functions that return 0 or 1 depending on the values of their arguments.To reason about these functions we consider a number of realizers. Let
ick1 be such that
ick1�hw; ni= hw; n+1i. Similarly,
ick2�hw; ni = hw; 1i, on1�hw; ni= if n � 1 then 1 else 0and on2 � hw; ni = if n = 1 then 1 else 0. If m is a realizer for p thenm � h
ick1; on1i 2 dom(W �N) W �N)and m � h
ick2; on2i 2 dom(W � 2) W � 2):Consider the PER N+ that relates 0 to itself and all positive numbers to one another. Then
ick1[W �N+) W �N+]
ick2 and on1[W �N+) 2]on2. Sincem 2 dom�(W �N+) W �N+)� (W �N+) 2)) W �N+) W �N+)�46

we may conclude that(m � h
ick1; on1i)hW �N+) W �N+i(m � h
ick2; on2i)This means thatfst � (m � h
ick1; on1i � hw1; 0i) hW i fst � (m � h
ick2; on2i � hw2; 0i)whenever w1[W]w2, so the results are \equal" (in the same W -equivalence class), which iswhat we wanted to show.The pertinent aspects of PERs that we have used here are that the same number realizesinstantiations of p at di�erent types, and that realizers in instantiations 2 and N for di�erentarguments to p are \equivalent" in the PER N+. All of the examples from Section 5 can bevalidated using similar reasoning.11 ConclusionIn this work we have argued that the phenomenon of local state is intimately linked toStrachey's notion of parametric polymorphism, and we have shown that reasoning about localvariables often amounts to proving properties of polymorphic functions. The straightforwardtreatment of a number of test examples, and representations of �rst-order types obtainedfrom parametricity, lend a measure of support to our position. However, as is the case withmodels of polymorphism, little is known about the semantics at higher types, and we do notknow if full abstraction can be achieved using our methods.No previous model of local variables correctly handles all of the test equivalences thatwe have demonstrated here. However, Sieber (1993) (building on the earlier paper (Meyerand Sieber, 1988)) has recently constructed a model which also treats all of them correctly.Sieber's model is similar in many respects to our relational-parametricity model: it also isbased on functors and logical relations; however, the exact connection between the modelsis not clear to us. Firstly, Sieber's approach is tightly tied to locations. Our approachcan also be applied with a location-oriented semantics (as we did in the preliminary version(O'Hearn and Tennent, 1993a)), but a location-free semantics is much cleaner, as predictedin (Reynolds, 1981b). A more substantive di�erence has to do with identity relations. Sieberallows for non-identity relations on the set of natural numbers; this ties up with the treatmentof sequentiality in (Sieber, 1992). And there is also some question concerning the respectiveroles of identities in treating function types.Our identi�cation of parametricity as the central notion connected to locality provides, inour opinion, a sounder conceptual basis for explaining why and how this form of uniformityarises in local-variable semantics. In the Sieber and Meyer-Sieber work, logical relationsappear primarily as an ad hoc method of cutting down a model. The fact that many ofthe subtleties in local-variable semantics involve the form of data abstraction that can beachieved with procedures and local variables gives a fairly coherent explanation as to whyparametricity and logical relations should be relevant. And, as we have seen, reasoning aboutlocal variables often amounts to proving properties of polymorphic functions. The PER modelserves to further underscore our position.But, independently of this, we would like to acknowledge the in
uence of (Meyer andSieber, 1988) on this work. For one, contemplation of their equivalences|which incidentally47

are primarily responsible for a wider understanding of the subtleties involved in local-variablesemantics|played a part in leading us to propose parametricity as a central theme. Foranother, their use of functors and logical relations certainly had an in
uence, albeit indirectly,on our development of the relational-parametricity model.Honsell, Smith, Mason and Talcott (1993) have developed a logic for reasoning aboutstate based on operational, rather than denotational, semantics; see also the earlier paper(Mason and Talcott, 1992). Once again, we feel that the conceptual principles underlyingtheir formal rules for reasoning about local state are not as clear as, and lack the coherenceof, our parametricity{locality connection. Their logic appears to be quite powerful, however,and many of the subtle local-variable equivalences can be proven in the logic. It would beinteresting to see if a suitable representation-independence property for local state could bederived in their logic, or if such a property could be formulated in a way that could be addedto their reasoning framework.We have used the framework of re
exive graphs mainly to examine the speci�c structureof our model, but it may have more general interest. Re
exive graphs could conceivably beof use in studying the connection between relational parametricity and naturality in a moregeneral context, or in clarifying the mathematical signi�cance of using diagonal relations as\identities." It may be that our Cartesian closure result can be considered as an instance ofa re
exive-graph version of the usual result that the functor category CX is Cartesian closedwhenever C is Cartesian closed and complete (the results of (Freyd et al., 1992b) could berelevant here). Similar kinds of structure have been used by Pitts (1993) in his study ofrelations and recursive domain equations, and by Pitts and Stark (19931, 1993b) in theirstudy of dynamic allocation. Dynamic allocation poses challenging problems beyond thoseconsidered here, where we have considered variable declarations that obey a stack discipline.(Some examples from (Pitts and Stark, 1993b) suggest that parametricity, by itself, mightnot be su�cient for understanding dynamic allocation.)The problem of single threading is deserving of further attention. It is interesting thatmost work on the semantics of state, including that of the authors, has concentrated onlocal variables. In our opinion, the single-threaded nature of state is at least as fundamentalan issue as the nature of local variables. In this paper, the main aim was to examine thephenomenon of locality, and we feel that it is reasonable to study this in isolation from singlethreading. However, ideally a semantics of state should exclude the kind of state backtrackingfound in the block expression.(A. Meyer has pointed out that the \single threading" terminology can be misleading.The issue does not concern single versus multiple threads of execution, but rather \back-tracking within a single thread." Since the term \single threading" is now used extensivelyin the functional programming community, we continue to use it here to avoid needless ter-minological di�erences. The reader should be warned, however, of the possible confusion thatmay arise if one thinks of the more common programming usage of the term \thread.")A simple equivalence which illustrates the problem is the following:if x = 0 then f(0) else 1 � if x = 0 then f(x) else 1:This equivalence fails in our model because of the phenomenon of temporary side e�ects; anf that distinguishes these terms is �y: exp[int]. doint x := 3 result y.This particular equivalence is given only to illustrate the problem, and is not itself aserious challenge for semantics: we have known for some time how this and similar examples48

of temporary side-e�ect can be eliminated. One method is to use the state-set restrictionsof (Tennent, 1990). Another, which is somewhat less \intensional," is to interpret a functiontype for expressions so that the state argument appears only at the outermost level; i.e., wewould de�ne [[exp[�]! exp[�0]]]W = W ! ([[�]]! [[�0]])(this is as in (Goerdt, 1985)). But these must be regarded as limited partial solutions. Whatwe do not have is a general semantic explanation of single threading that encompasses suchspecial cases.The �rst thing that comes to mind when considering single threading is to try and applyideas from linear logic; however, naive attempts we have made along these lines have failed.One di�culty is that linearity captures only one aspect of state: that a state change destroysthe old state. It does not capture the intuition that there may be multiple readers of a variablein a context where the variable is not assigned to. A more serious di�culty is that an Algolprogram is single-threaded only in the state, not in phrase types, and it is not obvious how toreconcile this with the interpretation of procedure types. A more sophisticated use of linearlogic, which involves non-trivial extensions to the basic framework, appears in preliminarywork of Reddy (1993) . This model does appear to account for single-threading to someextent; it will be interesting to see precisely how complete the account is. Reddy's semanticsalso handles local variables well.One of the problems we faced in this work was that parametricity is a concept whoserigourous formulation is still undergoing development, e.g. (Wadler, 1989; Ma and Reynolds,1992; Freyd et al., 1992b; Plotkin and Abadi, 1993). We illustrated our ideas with twoof the more appealing approaches, those based on PERs and logical relations, but it maybe expected that our understanding of locality will improve with that of parametricity (orpossibly vice versa).An interesting possibility might be to bypass models altogether by examining a syntactictranslation from (a recursion-free dialect of) Algol into the polymorphic �-calculus. Sucha translation is implicit in, or can easily be obtained from, the category-free presentationof our semantics (consider especially the PER model). One could ask which Poly-� theoryis generated by this translation, where we equate all Poly-� terms that are the translationsof observationally equivalent Algol terms (and close up under the equational rules of thepolymorphic calculus). A related question is whether there is a Poly-� theory for which thistranslation is fully abstract (in that equivalence is preserved and re
ected); we conjecturethat the maximum consistent Poly-� theory of Moggi and Statman (Moggi, 1988) is one suchexample. One can also ask whether there is a unique such theory.We do not know if there is there is any di�erence between the equational theories gener-ated by our PER and relational-parametricity models; this is of course related to outstandingquestions about the PER model of the polymorphic �-calculus. Nevertheless, there are ad-vantages to each model.In the case of PERs the model construction is smoother in some respects that the relationalone: it is simply a re-casting of the ideas of (Reynolds, 1981b; Oles, 1982) in a realizabilitysetting. Once the decision is made to work with PERs it is quite obvious how to proceed.We work with a category of \realizable" functors PER� for � a suitable version of Oles'scategory of store shapes. Certain properties, like Cartesian closure, are then immediate fromknown results (Freyd et al., 1992b). In contrast, a proper categorical understanding of the49

relational model required considerably more work, the framework itself (of re
exive graphs)not being a priori obvious.On the other hand, the PER model can be criticized for its reliance on an underlying modelof the untyped �-calculus; after all, there is nothing impredicative about Algol! In this respect,the relational model, which is completely predicative, is more satisfactory. Furthermore,the relational model provides a very direct codi�cation of common informal techniques forreasoning about data abstraction in imperative languages.Of course, the corresponding advantage of the PER-based model is that it extends to aninterpretation of a polymorphic variant of Algol. A direction for future work would be togive a model for such a language in which data abstraction using local variables is combinedwith that obtained from user-de�ned types. The design and semantics of such a languageis not as straightforward as it may seem. There are subtleties in interpreting polymorphicconditionals, due to the state dependence of the boolean type; this is related to problems dis-cussed in (Tennent, 1989). We expect that quanti�ers would have to range over appropriatestate-dependent objects. Also, as mentioned in (Reynolds, 1983), close attention should bepaid to the distinction between data types and phrase types. For example, the assignmentoperation should be thought of as a parametric polymorphic function, for polymorphism overdata types, while, e.g., a �xed-point operator should be parametrically polymorphic overphrase types.Addendum, January, 1995. Since the work described in the body of this paper was done,there have been several developments. First, Robinson and Rosolini (1994) have given anelegant construction of parametric models of second-order �-calculus utilizing re
exive graphsin the setting of internal-category models of polymorphism. Second, Sieber (1994) has usedhis methods to give a full abstraction result for closed terms of up to second-order type,in a language containing a snapback combinator. Third, Reddy's development has maturedconsiderably, and accounts to a very good (but not completely understood) degree for bothlocality and single threading, in the context of syntactic control of interference (Reddy, 1994;Reddy, 1995). Finally, this \object-based" approach of Reddy has been merged with functorcategories (O'Hearn and Reddy, 1994) to produce a model of a language without snapbackcombinators that is fully abstract for closed terms of up to second-order type. This �naldirection appears to have important connections with the parametricity viewpoint expressedhere; the details await further development.AcknowledgementsSome of this research was carried out at the Laboratory for Foundations of Computer Science,Department of Computer Science, University of Edinburgh. A preliminary report on someof this work appeared as (O'Hearn and Tennent, 1993a). The realization that parametricityimplies naturality in certain circumstances followed from a conversation with John Reynolds.We are grateful to Andy Pitts, Edmund Robinson, John Power and Barry Jay for advice oncategorical matters, and to Benli Pierce, Phil Wadler and Qingming Ma for comments. JohnReynolds's macros were used for diagrams. 50

ReferencesAbramsky, S. and Jensen, T. P. (1991). A relational approach to strictness analysis forhigher-order polymorphic functions. In Conf. Record 18th ACM Symp. on Principles ofProgramming Languages, pages 49{54, Orlando, Florida. ACM, New York.Amadio, R. M. (1989). Recursion over realizability structures. Information and Computation,91:55{85.Barr, M. and Wells, C. (1990). Category Theory for Computing Science. Prentice-HallInternational, London.Cook, W. (1991). Object-oriented programming versus abstract data types. In de Bakker,J. W. et al., editors, Foundations of Object-Oriented Languages, volume 489 of LectureNotes in Computer Science, pages 151{178. Springer-Verlag, Berlin.Freyd, P. J., Mulry, P., Rosolini, G., and Scott, D. S. (1990). Extensional PERs. In (LICS,1990), pages 346{354.Freyd, P. J., Robinson, E. P., and Rosolini, G. (1992a). Dinaturality for free. In Fourman,M. P., Johnstone, P. T., and Pitts, A. M., editors, Applications of Categories in ComputerScience, volume 177 of London Mathematical Society Lecture Note Series, pages 107{118,Cambridge, England. Cambridge University Press.Freyd, P. J., Robinson, E. P., and Rosolini, G. (1992b). Functorial parametricity. In (LICS,1992), pages 444{452.Goerdt, A. (1985). A Hoare calculus for functions de�ned by recursion on higher types. InParikh, R., editor, Logics of Programs 1985, volume 193 of Lecture Notes in ComputerScience, pages 106{117, Brooklyn, N.Y. Springer-Verlag, Berlin.Gries, D., editor (1978). Programming Methodology, A Collection of Articles by IFIP WG 2.3.Springer-Verlag, New York.Hoare, C. A. R. (1972). Proof of correctness of data representations. Acta Informatica,1:271{281. Reprinted in (Gries, 1978), pages 269-281.Honsell, F., Mason, I., Smith, S., and Talcott, C. (1995). A variable-typed logic of e�ects.To appear in Information and Computation.Hyland, J., Robinson, E. P., and Rosolini, G. (1989). Algebraic types in PER models. In Main,M. et al., editors, Mathematical Foundations of Programming Semantics, volume 442 ofLecture Notes in Computer Science, pages 333{350, Berlin. Springer-Verlag. Proceedingsof the 1989 Conference.Hyland, J. M. E. (1988). A small complete category. Annals of Pure and Applied Logic,40:135{165.Johnstone, P. T. (1989). A�ne categories and naturally Mal'cev categories. Journal of Pureand Applied Algebra, 61:251{256. 51

Kelly, G. M. and Street, R. H. (1974). Review of the basic elements of 2-categories. InKelly, G. M., editor, Category Seminar: Proceedings Sydney Category Theory Seminar,1972/1973, volume 420 of Lecture Notes in Mathematics, pages 75{103. Springer-Verlag,Berlin.Lambek, J. and Scott, P. J. (1986). Introduction to Higher-Order Categorical Logic. Cam-bridge University Press, Cambridge, England.Lawvere, F. W. (1989). Qualitative distinctions between some toposes of generalized graphs.In Gray, J. W. and Scedrov, A., editors, Categories in Computer Science and Logic, vol-ume 92 of Contemporary Mathematics, pages 261{300. American Mathematical Society.LICS (1990). Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Science,Philadelphia, PA. IEEE Computer Society Press, Los Alamitos, California.LICS (1992). Proceedings, 7th Annual IEEE Symposium on Logic in Computer Science, SantaCruz, California. IEEE Computer Society Press, Los Alamitos, California.LICS (1994). Proceedings, 9th Annual IEEE Symposium on Logic in Computer Science, Paris.IEEE Computer Society Press, Los Alamitos, California.Longo, G. and Moggi, E. (1991). Constructive natural deduction and its \!-set" interpreta-tion. Mathematical Structures in Computer Science, 1(2).Ma, Q. and Reynolds, J. C. (1992). Types, abstraction, and parametric polymorphism, part2. In Brookes, S. et al., editors, Mathematical Foundations of Programming Semantics,volume 598 of Lecture Notes in Computer Science, pages 1{40. Springer-Verlag, Berlin.Proceedings of the 1991 Conference.Mac Lane, S. (1971). Categories for the Working Mathematician. Springer-Verlag, New York.Mason, I. A. and Talcott, C. L. (1992). References, local variables, and operational reasoning.In (LICS, 1992), pages 186{197.Meyer, A. R. and Sieber, K. (1988). Towards fully abstract semantics for local variables:preliminary report. In Conf. Record 15th ACM Symp. on Principles of ProgrammingLanguages, pages 191{203. ACM, New York.Mitchell, J. C. (1986). Representation independence and data abstraction. In Conf. Record13th ACM Symp. on Principles of Programming Languages, pages 263{276, St. Peters-burg, Florida. ACM, New York.Mitchell, J. C. (1990). Type systems for programming languages. In van Leeuwen, J., editor,Handbook of Theoretical Computer Science, volume B, chapter 8, pages 365{458. Elsevier,Amsterdam, and The MIT Press, Cambridge, Mass.Mitchell, J. C. and Scedrov, A. (1993). Notes on sconing and relators. In Boerger, E.et al., editors, Computer Science Logic '92, Selected Papers, volume 702 of Lect. Notesin Computer Sci., pages 352{378. Springer-Verlag.52

Moggi, E. (1988). The maximum consistent theory of the second-order �� lambda calculus.Unpublished note.Naur, P., Backus, J. W., et al. (1963). Revised report on the algorithmic language algol 60.Comm. ACM, 6(1):1{17.O'Hearn, P. W. and Reddy, U. S. (1994). Objects, interference, and the Yoneda embedding.unpublished draft, December.O'Hearn, P. W. and Tennent, R. D. (1992). Semantics of local variables. In Fourman, M. P.,Johnstone, P. T., and Pitts, A. M., editors, Applications of Categories in ComputerScience, volume 177 of London Mathematical Society Lecture Note Series, pages 217{238. Cambridge University Press, Cambridge, England.O'Hearn, P. W. and Tennent, R. D. (1993a). Relational parametricity and local variables. InConf. Record 20th ACM Symp. on Principles of Programming Languages, Charleston,South Carolina. ACM, New York.O'Hearn, P. W. and Tennent, R. D. (1993b). Semantical analysis of speci�cation logic, 2.Information and Computation, 107(1):25{57.Oles, F. J. (1982). A Category-Theoretic Approach to the Semantics of Programming Lan-guages. Ph.D. thesis, Syracuse University, Syracuse, N.Y.Oles, F. J. (1985). Type algebras, functor categories and block structure. In Nivat, M. andReynolds, J. C., editors, Algebraic Methods in Semantics, pages 543{573. CambridgeUniversity Press, Cambridge, England.Phoa, W. (1990). E�ective domains and intrinsic structure. In (LICS, 1990).Phoa, W. (1991). Two results on set-theoretic polymorphism. In Pitt, D. H. et al., edi-tors, Category Theory and Computer Science, volume 530 of Lecture Notes in ComputerScience, pages 219{235, Paris, France. Springer-Verlag, Berlin.Pitts, A. and Stark, I. (1993a). Observable properties of higher-order functions that dy-namically create local names, or: What's new? In Proc. International Symp. on Math.Foundations of Comp. Sci., LNCS, Vol 711, pages 122{141. Springer-Verlag.Pitts, A. and Stark, I. (1993b). On the observable properties of higher-order functions thatdynamically create local names (preliminary report). In (SIPL, 1993), pages 31{45.Pitts, A. M. (1993). Relational properties of recursively de�ned domains. In Proceedings,8th Annual IEEE Symposium on Logic in Computer Science, pages 86{97, Montreal,Canada. IEEE Computer Society Press, Los Alamitos, California.Plotkin, G. D. (1980). Lambda-de�nability in the full type hierarchy. In Seldin, J. P. andHindley, J. R., editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculusand Formalism, pages 363{373. Academic Press.53

Plotkin, G. D. and Abadi, M. (1993). A logic for parametric polymorphism. In Typed LambdaCalculi and Applications, volume 664 of Lect. Notes in Computer Sci., pages 361{375.Springer-Verlag.Reddy, U. S. (1993). Global state considered unnecessary: semantics of interference-freeimperative programming. In (SIPL, 1993), pages 120{135.Reddy, U. S. (1994). Passivity and independence. In (LICS, 1994).Reddy, U. S. (1995). Global state considered unnecessary: object-based semantics ofinterference-free imperative programs. To appear in Lisp and Symbolic Computation,special issue on State in Programming Languages.Reynolds, J. C. (1974). Towards a theory of type structure, volume 19 of Lecture Notes inComputer Science. Springer-Verlag, Berlin.Reynolds, J. C. (1975). User-de�ned types and procedural data structures as complementaryapproaches to data abstraction. In Schuman, S. A., editor, New Advances in AlgorithmicLanguages 1975, pages 157{168. Inst. de Reserche d'Informatique et d'Automatique,Rocquencourt, France. Reprinted in (Gries, 1978), pages 309-317.Reynolds, J. C. (1978). Syntactic control of interference. In Conf. Record 5th ACM Symp. onPrinciples of Programming Languages, pages 39{46, Tucson, Arizona. ACM, New York.Reynolds, J. C. (1981a). The Craft of Programming. Prentice-Hall International, London.Reynolds, J. C. (1981b). The essence of Algol. In de Bakker, J. W. and van Vliet, J. C.,editors, Algorithmic Languages, pages 345{372. North-Holland, Amsterdam.Reynolds, J. C. (1983). Types, abstraction and parametric polymorphism. In Mason, R.E. A., editor, Information Processing 83, pages 513{523. North Holland, Amsterdam.Reynolds, J. C. and Plotkin, G. D. (1993). On functors expressible in the polymorphic typedlambda calculus. Information and Computation, 105:1{29.Robinson, E. P. (1989). How complete is PER? In Proceedings, Fourth Annual Symposium onLogic in Computer Science, pages 106{111, Paci�c Grove, California. IEEE ComputerSociety Press.Robinson, E. P. and Rosolini, G. (1994). Re
exive graphs and parametric polymorphism. In(LICS, 1994).Schmidt, D. A. (1985). Detecting global variables in denotational speci�cations. ACMTOPLAS, 7:299{310.Sieber, K. (1992). Reasoning about sequential functions via logical relations. In Fourman,M. P., Johnstone, P. T., and Pitts, A. M., editors, Applications of Categories in ComputerScience, volume 177 of London Mathematical Society Lecture Note Series, pages 258{269.Cambridge University Press, Cambridge, England.54

Sieber, K. (1993). New steps towards full abstraction for local variables. In (SIPL, 1993),pages 88{100.Sieber, K. (1994). Full abstraction for the second order subset of an Algol-like language (pre-liminary report). Technischer Bericht A 01/94, Universitaet des Saarlandes, February.SIPL (1993). ACM SIGPLAN Workshop on State in Programming Languages, Copenhagen,Denmark, June 12. Technical report YALEU/DCS/RR-968, Department of ComputerScience, Yale University.Strachey, C. (1967). Fundamental Concepts in Programming Languages . Unpublished lecturenotes, International Summer School in Computer Programming, Copenhagen.Tennent, R. D. (1989). Elementary data structures in Algol-like languages. Science of Com-puter Programming, 13:73{110.Tennent, R. D. (1990). Semantical analysis of speci�cation logic. Information and Compu-tation, 85(2):135{162.Tennent, R. D. (1991). Semantics of Programming Languages. Prentice-Hall International.Wadler, P. (1989). Theorems for free! In Functional Programming Languages and ComputerArchitecture, pages 347{359, 4th International Symposium, Imperial College, London.ACM, New York.

55

	Parametricity and Local Variables
	Recommended Citation

	tmp.1286816405.pdf.9Ztmn

