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Abstract

The potential for changes in environmental extremes is routinely investigated by fitting change-permitting extreme value

models to long-term observations, allowing one or more distribution parameters to change as a function of time or some

other covariate. In most extreme value analyses, the main quantity of interest is typically the upper quantiles of the

distribution, which are often needed for practical applications such as engineering design. This study focuses on the

changes in quantile estimates under different change-permitting models. First, metrics which measure the impact of

changes in parameters on changes in quantiles are introduced. The mathematical structure of these change metrics is

investigated for several change-permitting models based on the Generalised Extreme Value (GEV) distribution. It is shown

that for the most commonly used models, the predicted changes in the quantiles are a non-intuitive function of the

distribution parameters, leading to results which are difficult to interpret. Next, it is posited that commonly used change-

permitting GEV models do not preserve a constant coefficient of variation, a property that is typically assumed to hold for

environmental extremes. To address these shortcomings a new (parsimonious) model is proposed: the model assumes a

constant coefficient of variation, allowing the location and scale parameters to change simultaneously. The proposed model

results in changes in the quantile function that are easier to interpret. Finally, the consequences of the different modelling

choices on quantile estimates are exemplified using a dataset of extreme peak river flow measurements in Massachusetts,

USA. It is argued that the decision on which model structure to adopt to describe change in extremes should also take into

consideration any requirements on the behaviour of the quantiles of interest.

Keywords Environmental extremes � Parametric models � Return period � Quantile function

1 Introduction

There is widespread interest in quantifying the impacts of

climate and other anthropogenic changes on the likelihood

of very extreme natural hazards (IPCC 2012). When

assessing the risk of a natural hazard, for example to design

critical infrastructures, an estimate is needed of the mag-

nitude of extremes expected to occur with a certain rarity,

typically derived as quantiles of a statistical distribution.

This estimation is carried out under the assumption that the

past recordings of the variable under study would still be

representative of the stochastic behaviour of the variable at

present and in the future. This can be formalised as an

assumption that the process under study is stationary (Coles

2001; François et al. 2019). With the increasing evidence

of the impacts of climate and other anthropogenic changes,

the validity of this assumption is increasingly being chal-

lenged. As a result, a large of number of studies have

investigated the evidence for change in risk levels of sev-

eral natural hazards in observational data (e.g. Coates et al.

2014; Guerreiro et al. 2018; François et al. 2019, and ref-

erences therein), typically using statistical approaches

based on Extreme Value Analysis (Cooley 2009; Katz

et al. 2002). Often, a default distribution is assumed and

one or more distribution parameters are modelled as a
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function of covariates, e.g. time. The hypothesis that the

behaviour of extremes might have been changing is for-

mulated as a functional relationship between one or more

of the distribution parameters and the covariate(s). This

type of change-permitting analysis is also referred to as

non-stationary analysis, while the models with constant

values for all parameters throughout time are often referred

to as stationary analysis.

Table 1 shows an extremely non-exhaustive list of

published articles based on such change-permitting analy-

sis: the list is provided to showcase the variety of mod-

elling choices and applications of change-permitting

models. From the Table it can be seen that different

combinations of distributions, model structures and

covariates have been employed in the literature. All the

differences in the model components eventually have an

impact in the final understanding about changes in

extremes. Specifically, most of the studies listed in Table 1

focus on the changes to the higher quantiles of the

distribution.

In this study we discuss ways to describe the changes in

frequencies and magnitude focussing on change in the

quantile function, showing that different model structures

necessarily result in different functional forms of changes

in the quantile function. Further, we show that commonly

adopted model structures can result in non-intuitive beha-

viour of the quantile function. We argue that a reflection on

the type of change in higher quantiles which can be derived

for each model structure should be performed at the initial

stages of any analysis to ensure that the analysis results can

provide the most appropriate communication of how

extremes might be changing.

In particular, we formalise the investigation of how the

different model structures impact the description of change

on effective quantile estimates across different exceedance

probabilities using two sets of criteria. The first set of

criteria measures the impact of the changes which depend

on the covariates used in the change-permitting models.

The second set measures the effect of switching from a no-

change model to a change-permitting model. Some of these

measures have already been partially proposed in the lit-

erature: Vogel et al. (2011) introduced the magnification

factor as a way to describe relative changes in quantiles in

time. Further, the R package extRemes Gilleland and

Katz (2016) provides functions to compute the difference

in effective quantile estimates under different values of

explanatory variables. Moreover, several studies in the

literature, including those listed in Table 1, carry out some

investigation of the implied impact on the magnitude of

estimated quantile of using change-permitting models

against results obtained when assuming constant

parameters.

The analytical study of the change criteria shows that a

minority of model structures results in simple definitions of

change in the quantile function. One of these is a model

structure which maintains a constant coefficient of

Table 1 Examples of studies which use change-permitting models to assess changes in annual maxima records

Reference Variable (Y) Distribution Model structure Covariate (X)

Vogel et al.

(2011)

River flow Log-Normal

LN(l; r)
location: l ¼ l0 þ l1x scale: r ¼ r0 (constant) Time

Villarini et al.

(2009)

River flow Gumbel(l;r)
(among

others)

Location: l ¼ gðxÞ (non-parametric) scale:

r ¼ gðxÞ (non-parametric)

Time,

population,

rainfall

Cheng and

AghaKouchak

(2014)

Rainfall GEV(l; r; n) Location: l ¼ l0 þ l1x scale: r ¼ r0 (constant) shape: n ¼
n0 (constant)

Time

Luo and Zhu

(2018)

Wave height GEV(l; r; n) Location: l ¼ l0 þ l1x scale: r ¼ r0 (constant) shape: n ¼
n0 (constant)l

Time

Šraj et al. (2016) River flow GEV(l; r; n) Location: l ¼ l0 þ l1x scale: r ¼ expfr0 þ r1xg shape: n ¼
n0 (constant)

Time, rainfall

Lu et al. (2020) River flow GEV(l; r; n) Location: l ¼ gðxÞ (several parametric) scale:

r ¼ gðxÞ (several parametric) shape: n ¼
n0 (constant)

Time, rainfall,

reservoir

index

Griffin et al.

(2019)

River flow Gen. Logistic

GLO(n; a;j)
Location: n ¼ n0 þ n1x scale: a ¼ expfa0 þ a1xg shape:

j ¼ gðtÞ
Time

Brown et al.

(2014)

Rainfall and

temperature (observed

and modelled)

GEV(l; r; n) Location: l ¼ l0 þ l1x scale: r ¼ expfr0 þ r1xg
n ¼ n0 þ n1x

global

temperature

GEV Generalised Extreme Value distribution
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variation, thus enforcing a change in the scale of the dis-

tribution when the location is allowed to change. Such

models are not commonly used in the investigation of

changes in extremes, even though a constant coefficient of

variation is a common characteristic of estimates based on

environmental extremes records (Overeem et al. 2009;

Menabde et al. 1999; Serago and Vogel 2018; Blanchet

et al. 2009).

The manuscript is organised as follow: a brief intro-

duction of extreme values analysis and the models used to

assess changes in extremes is given in Sect. 2. The quan-

tile-based measures of change are presented in Sect. 3 and

are applied to a case study of peak flow records in Mas-

sachusetts, USA, in Sect. 4. Section 5 closes the paper

offering a perspective on the importance of model speci-

fication when investigating changes in extremes. The

maximum likelihood estimation framework is adopted

throughout the manuscript, although some of the concepts

discussed would easily apply to models estimated within a

Bayesian framework.

2 Statistical models for changing extremes

2.1 Extreme value models and design events;
the fixed-parameters case

Assessing the risk of a natural hazard involves an assess-

ment about the frequency at which events of given mag-

nitudes can be expected to be exceeded. Typically, this is

done by estimating the design event, which is expected to

be exceeded with a annual exceedance probability (AEP)

of p in any given year. If the distribution of event magni-

tudes is constant in time and events from year to year can

be deemed independent from one another, the AEP has a

direct relationship with the return period T, the average

period of time over which one event at-least as big as the

design event would be recorded, where T ¼ 1=p (see Volpi

2019). Since the interest of the estimation focusses on the

most extreme magnitudes which might be recorded, rather

than the typical magnitudes, Extreme Value Analysis is

used to model the distribution of the extreme values. In

particular, extremes can be defined as the maximum value

in a sample recorded over fixed periods of time (for

example a year). It can be shown that the Generalised

Extreme Value (GEV) distribution is the limiting distri-

bution for maxima of stationary series (Coles 2001),

although other distributions are sometimes used when

estimating design events for engineering purposes

(Castellarin et al. 2012).

In general, it is assumed that the variable of interest,

denoted by Y , follows a certain distribution parametrised

by h ¼ ðh1; . . .; hdÞ with probability density function

f ðy; hÞ. Typically a two (d ¼ 2) or three-parameter (d ¼ 3)

distribution is used (Castellarin et al. 2012) and, in a first

instance, all parameters are assumed to be constant. In the

remainder we will focus on the GEV distribution due to its

central role in the analysis of extremes. The GEV is a three

parameter distribution characterised by a location param-

eter l (with l 2 ð�1;1Þ), a scale parameter r (with

r 2 ð0;1Þ) and a shape parameter n (with n 2 ð�1;1Þ).
When n ¼ 0 the distribution reduces to a two parameter

distribution: the Gumbel distribution. The distribution’s

domain depends on the sign of the shape parameter taking

the following values: �1\y� l� r=n for n\0, l�

r=n� y\1 for n[ 0 and �1\y\1 for n ¼ 0. For a

given sample of extremes y ¼ ðyi; . . .; ynÞ it is possible and

typically straightforward to find an estimate of h denoted as

ĥ. Estimates for the design event QT (where T indicates the

return period) can be derived from the quantile function

corresponding to the fitted distribution qð1� p; ĥÞ (where

p ¼ 1=T) so that PðY[QTÞ ¼ p. For the GEV distribution

the quantile function takes the form:

qð1�p;l;r;nÞ¼
lþ

r

n
ð� logð1�pÞÞ�n�1
h i

for n 6¼ 0

lþrf� logð� logð1�pÞÞg for n¼ 0

8

<

:

ð1Þ

where p indicates the exceedance probability. The quantile

function for the GEV shown in Eq. (1) can be rewritten as:

qð1� p; l; r; nÞ ¼
lþ

r

n
y�n
p � 1

h i

for n 6¼ 0

lþ rð� logðypÞÞ for n ¼ 0

8

<

:

ð2Þ

taking yp ¼ ð� logð1� pÞÞ. Notice that for n ¼ 0 the

quantile function of the Gumbel distribution is a linear

transformation of � logðypÞ with l being the intercept and

r being the slope of the line.

2.2 Incorporating change in extreme value
models; the change-permitting case

The hypothesis that the behaviour of extremes might have

been changing is typically formulated by assuming a

functional relationship between one or more of the distri-

bution parameters, and one or more covariates. The validity

of the hypothesis is assessed by comparing the goodness-

of-fit of the models with varying parameters against models

with fixed parameters. This approach is established for

extreme value analysis (Coles 2001) and has some simi-

larity to Generalized Linear Models and their extensions

such as Vector Generalised Additive Models (Yee 2015) or

Generalised Additive Models for Location Scale and Shape

(GAMLSS, Rigby and Stasinopoulos 2005; Wood 2017),

which are also referred to as distributional regression
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models (Umlauf and Kneib 2018). In this work, to keep the

presentation and computations as simple as possible, only

linear models (with appropriate link functions) with one

covariate are explored. The concepts can be extended to the

case in which more than one covariate would enter the

model and in which the relationship between the covariate

and the distribution parameter (or their link transformation)

would be better described by some non-linear function.

Indeed, different covariates might enter the model in either

a linear or non-linear fashion affecting one or more of the

distribution parameters: see Yee and Stephenson (2007) for

a thorough discussion on this within the extreme values

framework.

As an example of the change-permitting approach the

annual maxima series of the Aberjona River at Winchester,

Massachusetts (USGS Gage 01102500) is used. Serago and

Vogel (2018) reported that the watershed upstream of the

station has undergone significant urban development which

would typically increase flood magnitudes. The n ¼ 78

annual maximum peak flow records are assumed to be

independent and drawn from a GEV distribution, possibly

with one or more parameters changing throughout the

recording period. The peak flow records are shown in

Fig. 1, and it seems clear that through time the observa-

tions have been increasing in magnitude and possibly also

become more variable.

Four models with different change-permitting structures

are fitted to the observations to investigate possible chan-

ges in the peak flow distribution. At first a model M0 with

all parameters kept constant is considered. It is assumed

that each element in the sample is iid and GEV-distributed:

M0 : Yi �GEVðl; r; nÞ for i ¼ 1; . . .; n:

Next, two models in which the location of the distribution

is allowed to change as a function of time with different

link functions are used. As in Serago and Vogel (2018)

time is used as a covariate in the model, as a surrogate for

the increased urbanisation levels. Assuming that the vari-

able describing river peak flow at time i follows a GEV

distribution with a different location for each year,

Yi �GEVðli; r; nÞ, the following two models are fitted: a

model with a linear link between the location and time

(ML) and a model using an exponential function to link the

location parameter and time (ME):

ML : Yi �GEVðli; rC; nCÞ;with li ¼ lC0 þ lC1xi for i ¼ 1; . . .; n

ME : Yi �GEVðli; rC; nCÞ;with li ¼ expfgC0 þ gC1xig for i ¼ 1; . . .; n

In the last fitted model (MCV
E ) the location is modelled as a

function of time via an exponential link function and the

scale is allowed to change proportionally to the location:

MCV
E : Yi �GEVðli; sli; nCÞ, with li ¼ expfgC0 þ gC1xig for i ¼ 1; . . .; n:

ð3Þ

where s is the ratio between the scale and the location of

the distribution. The model structure is discussed further in

Sect. 2.3. The C subscript is used to emphasise the

parameters of change-permitting models.

In Fig. 1 the estimated 30 year event (i.e the design

event with AEP = 1/30) under the four different models

fitted to the data are shown. These are obtained by plugging

the estimated parameter values in the quantile function in

Eq. (1) and correspond to the effective quantiles discussed

in Katz et al. (2002). Notice that for all four models shown

in the Figure, different values of the scale and shape

parameters will be estimated because different structures

are used for the location function.

The maximum likelihood estimates of the model

parameters in all four models discussed above are given in

Table 2, together with their standard errors. In all models

the coefficients describing the change in time for the

location parameter are estimated to be positive and sig-

nificantly different from 0 at the 5% significance level. The

estimated value for the location parameter in 1940 and

2019 are also displayed in Table 2: the final estimation of

the location at the beginning and at the end of the record is

fairly similar for the three models in which the location is

allowed to change: the choice of the link function has a

minor effect on the estimated value of the location function

within the recording period.

In Table 2 the estimated parameter values for an addi-

tional model (MS) in which the scale is allowed to change

with time using an exponential link function are also pro-

vided. The model structure is the following:

MS : Yi �GEVðlC; ri; nCÞ, with ri ¼ expfcC0 þ cC1xig

for i ¼ 1; . . .; n:

This model should be used rarely and is presented here for

comparative purposes: the scale parameter describes the

variation of the distribution around its centre and typically

Fig. 1 Peak flow data for the Aberjona River together with the

effective 30-year design event according to different change-permit-

ting models presented in the main text
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one would first need to correctly model changes in the

location parameter as a function of some predictors to

correctly characterise changes in the scale. For this station

there is little evidence that scale alone is changing when

keeping the location fixed, although the variability of the

record shown in Fig. 1 would appear to be higher in the

later years. Indeed for the data in Fig. 1 there appear to be

an increase in both the overall magnitude and the vari-

ability of flow extremes: this feature can be well described

by the model MCV
E , in which the location is allowed to

change as a function of time and the scale changes pro-

portionally to the location.

To assess the goodness of fit of the change-allowing

models to the data, beside assessing whether the parameter

describing the change is significantly different from zero, it

is often appropriate to check that the distribution estimated

under each model gives a good fit to the observed data. As

discussed, among others, in Coles (2001) this can be done

using graphical tools such as probability-probability plots

(pp-plot) or quantile-quantile plots (qq-plot) which can

provide a visual check for the validity of the distributional

assumption for the response variable. Software such as

ismev and extRemes makes the testing of model sig-

nificance and the assessment of the goodness of fit fairly

straightforward. For the Aberjona river case the goodness

of fit plots (not shown) indicate that the GEV assumption

seem to hold. Nevertheless, when assessing the significance

of a change-permitting model or selecting the most suit-

able model by means of information criteria (e.g. AIC or

BIC), it is also important to assess and take into account the

goodness of fit of different models to the data.

2.3 A model preserving a constant coefficient
of variation

The model in Eq. (3) has rarely been employed in extreme

value analysis: it is mentioned in passing by Smith (1999)

that such a model gave a better fit to the rainfall data under

study, but it has not been employed in the investigation of

changes in environmental extremes, to the best of the

authors’ knowledge.

The model is constructed so that when the location

changes so does the scale, while the ratio between the scale

and the location (s) remains constant. Although s is not

exactly the coefficient of variation for a GEV distribution it

is tightly related to its value. Most of the studies investi-

gating changes in extremes in the literature (see for

example Table 1), use GEV models with a varying location

or scale (or location and scale which are allowed to vary

independently from each other). These models have a

varying coefficient of variation: a change in, say, the

location parameter would involve also a change in the

coefficient of variation. The model suggested in Eq. (3)

keeps a constant coefficient of variation providing a par-

simonious representation of changes in both location and

scale. As mentioned in Serago and Vogel (2018), the

estimates of the coefficient of variation are often found to

be approximately constant across series measuring the

same variable, while location and scale are well-known to

vary greatly with some external variable. For example, in

river flow measurements both the location and the scale

typically vary as a function of watershed size and mean

rainfall, while the estimates of the coefficient of variation

are relatively constant across different watersheds. Simi-

larly, rainfall accumulation across longer durations will

tend to be larger and also exhibit more variability. These

well-known properties of extremes are the basis for the

widely adopted index-flood method and regional flood

Table 2 Maximum likelihood

parameter estimates for the

models presented in main text

for Aberjona River peak flow

data

Model Parameters Estimate log-lik

M0 l̂ (se) – r̂ (se) n̂ (se) l̂1940 l̂2019 log-lik

8.52 (0.57) - (-) 4.46 (0.50) 0.34 (0.10) 8.52 8.52 -255.11

ML l̂C0 (se) l̂C1 (se) r̂C (se) n̂C (se) l̂1940 l̂2019 log-lik

4.06 (1.37) 6.98 (1.95) 4.09 (0.47) 0.38 (0.11) 6.41 11.04 -249.83

ME ĝC0 (se) ĝC1 (se) r̂C (se) n̂C (se) l̂1940 l̂2019 log-lik

1.61 (0.18) 0.81 (0.22) 4.06 (0.47) 0.39 (0.11) 6.56 11.25 -249.73

MCV
E

ĝC0 (se) ĝC1 (se) ŝ (se) n̂C (se) l̂1940 l̂2019 log-lik

1.39 (0.20) 1.17 (0.30) 0.48 (0.04) 0.30 (0.11) 5.94 12.93 -247.81

MS l̂C (se) ĉC0 (se) ĉC1 (se) n̂C (se) r̂1940 r̂2019 log-lik

8.42 (0.79) 1.38 (0.70) 0.18 (1.07) 0.32 (0.14) 4.21 4.75 -255.09
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frequency analysis (Hosking and Wallis 1997) and for the

standard methods used to derive Intensity Duration Fre-

quency (IDF) curves (Menabde et al. 1999). These prop-

erties are sometimes referred to as the scaling properties of

environmental extremes (Gupta and Waymire 1990).

Beside the case of rainfall and river flow extremes, simple

and multi-scale properties have been found to hold for, for

example, snow accumulation, which scales with altitude

(Blanchet et al. 2009), and wind speed, which scales with

duration (Diebold and Heller 2019). The model in Eq. (3)

is inspired by these so-called scaling properties of

extremes: by keeping a constant coefficient of variation

changes in the location result in proportional changes of the

scale. As discussed in the next Section this also provide a

straightforward description of changes in the distribution

quantiles.

3 Measuring the impact of change

Once a relevant change in the distribution parameters is

identified, this implies that the overall distribution of the

variable of interest is deemed to have changed. The left

panels in Fig. 2 gives an illustration of how potential

changes in the parameters correspond to changes in the

distribution by displaying the probability density functions

(pdf) of a GEV distribution under different parameter

values. The right panels of the Figure show instead the

return plots, which depict the quantile curve as a function

of a transform of the AEP. The curves shown in the Fig-

ure could represent the past and present day pdf and

quantile functions under different change-permitting mod-

els: the black solid line defines a baseline, for example the

estimate obtained for the beginning of the record when

using time as covariate. The other three lines represent: (1)

a change only in the location parameter (red dashed line),

(2) a change only in the scale parameter (blue point and

dash line), and (3) a change in both the location and scale

parameter while maintaining the ratio between the scale

and the location parameter constant (brown short and long-

dashed line).The difference in the parameter values in the

distributions results in quantile functions which all differ

from the quantile function of the baseline model in a dif-

ferent way. The changes in the quantiles, which are related

to the design events and are therefore the quantity of

interest of extreme value analysis for environmental

extremes, are the focus of the measures of change sug-

gested in the next section. A number of metrics and

approaches to redefine the concept of design event in the

presence of change have been being proposed in the liter-

ature (see, among others, Rootzén and Katz 2013; Salas

et al. 2018; Hu et al. 2018), but in this study we focus on

metrics based on changes in quantiles.

3.1 Measuring change: some quantile-based
metrics

Two quantile-based change metrics are introduced here:

the difference, D, and the ratio, M, between two quantile

functions. These two metrics can be computed to compare

design events under different values of the covariate in the

change-permitting models (indicated by superscript d) or to

compare design events under the fixed-parameters and

change-permitting models. In the first case, one could

compare the estimated quantiles for time point x and time

point xþ Dx, with Dx indicating the difference in time

Fig. 2 Probability distribution

functions and quantile functions

for a Gumbel distribution and a

GEV distribution with

parameters as those indicated in

the legend
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between the two time points under study (or the difference

in any other covariate values). Denoting with hCðx
�Þ the

values of the parameters in the change-permitting model

which are obtained evaluating the parameter functions at

values x� of the covariate, the following change metrics are

defined:

Ddðp;DxÞ ¼qðp; hCðxþ DxÞÞ � qðp; hCðxÞÞ ð4Þ

Mdðp;DxÞ ¼
qðp; hCðxþ DxÞÞÞ

qðp; hCðxÞÞ
ð5Þ

Dðp; x�Þ ¼qðp; hCðx
�ÞÞ � qðp; hÞ ð6Þ

Mðp; x�Þ ¼
qðp; hCðx

�ÞÞ

qðp; hÞ
ð7Þ

Themetrics of change introduced above can be used to assess

the impact of the changing behaviour of extremes as

described by different model structures on the estimated

quantiles of the distribution, i.e. the design events. Note that

the quantity inEq. (5) is a generalisation of themagnification

factor introduced by Vogel et al. (2011), while values of the

quantity in Eq. (4) can be derived within the R package

extRemes (Gilleland and Katz 2016).

3.2 Measuring change within the change-
permitting models

The types of changes in the parameter values in Fig. 2

reflect some of the changes observed in parameter values

obtained from change-permitting models often used in

environmental studies. The model defined by a linear

change in the location parameter of a GEV distribution

with a constant scale, in which it assumed that

Yi �GEVðlC0 þ lC1xi; r; nÞ, would corresponds to the red

dashed line. This modelling assumption leads to a vertical

shift of the quantile function. In this case the metric

Ddðp;DxÞ remains constant across all values of p and takes

value Ddðp;DxÞ ¼ lC1Dx. In contrast, the ratio Mdðp;DxÞ
depends on p, Dx and all the four parameter in the model:

i.e. the ratio between quantiles would be different across

exceedance probabilities (return periods) since

Mdðp;DxÞ ¼
lC1Dx

l0 þ lC1xþ rðy�n
p � 1Þ=n

þ 1:

The values of Ddðp;DxÞ and Mdðp;DxÞ for a number of

models commonly used when assessing the presence of

change in environmental extremes are provided in the

‘‘Appendix’’. There are only a few change-permitting GEV

models for which one of the metric of change does not

depend on the exceedance probability. One of them is the

case in which the location is allowed to change, either

linearly, as in the case discussed above, or as an expo-

nential function of the covariate: in this case the value of

Ddðp;DxÞ is constant across all exceedance probabilities.

When using the model proposed in Eq. (3), it is the ratio of

quantiles that is a constant which only depends on Dx and

lC1:

Mdðp;DxÞ ¼ expflC1Dxg

Vogel et al. (2011) used time as a covariate and defined Md

as a ‘‘decadal’’ magnification factor based on Dx ¼ 10

years for the case of the two-parameter log-normal distri-

bution, which is characterised by a constant coefficient of

variation. This expression of change is independent of

return period and has a simple interpretation. The model

introduced here in Eq. (3) allows this concept to be applied

with the more widely used GEV distribution and to provide

a convenient way to communicate the outcome of change-

permitting analysis to end-users.

3.3 Measuring change against the fixed-
parameters model

For any model used to assess the existence of change in

extremes, a natural question is also how estimates from a

change-permitting model compare to the corresponding

estimates obtained using fixed parameters, which are likely

to be the basis of the current design event estimates. If the

distribution is changing, then the probability of exceeding a

pre-specified value would be different at the present time

than it was at any time in the record and, more importantly,

the estimation based on the assumption of a unique dis-

tribution for all data, would be biased.

The two metrics proposed in Eqs. (6) and (7), Dðp; x�Þ

andMðp; x�Þ, provide a natural way to assess these impacts,

but for almost no model can these two quantities reduce to

simple metrics such as those available for Ddðp;DxÞ or

Mdðp;DxÞ. Nevertheless, it is possible for a fixed value of

the covariate x�, to investigate how Mðp; x�Þ or Dðp; x�Þ
change as a function of p. Often, up to a certain value of ~p,

the quantiles of the change-permitting model would be

larger (respectively smaller) than the fixed-parameter

model, while after ~p the quantiles of the change-permitting

model would be smaller (respectively larger). In practical

applications, this can be a source of doubt for decision

making, since events up to probability ~p might be, say,

underestimated when using fixed-parameters models, while

events with probability of exceedance greater than ~p would

appear to be overestimated. This can happen, for example,

when a linear trend is assumed for the location parameter

and found to be, say, positive and some variability in the

data can be explained by such trend, so that the estimate for

the scale parameter diminishes in value: this is the case for

the Aberjona river as shown in Table 2. When this happens

one of the possible consequences is a shifting and
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‘‘flattening’’ the return curve so that there is an increase in

the quantiles which are exceeded relatively frequently,

while the very rare events are found to be generally

smaller. Similarly, when including a linear trend in the

location parameter, the estimate for the shape parameter

might vary so that the return curve under the change-per-

mitting model might increase at a faster or slower rate.

Figure 3 shows a comparison of the scale and shape

parameter for a fixed-parameters model and for a change-

permitting model with a linear trend in the location as a

function of time applied to 40 annual maximum series of

instantaneous peak river flow in Massachusetts each con-

taining more than 65 years of data (see Sect. 4 for a

complete description of the dataset). For 31 out of 40

stations, the scale parameter is smaller for the change-

permitting model, reflecting that allowing the location

parameter to change explains a portion of the variability in

the records. The shape parameter estimates also change

(middle figure), with both increases and decreases obser-

ved.The impacts on the quantile estimation when migrating

from a fixed-parameters to a change-permitting model can

be assessed using Mðp; x�Þ, i.e. the ratio between quantiles

computed under the change-permitting and the fixed

parameters models, for different value of p. In the right

panel of Fig. 3 the scatterplot of Mðp; x�Þ for the median

(i.e. p ¼ 0:5) and for the 100-year event (i.e. p ¼ 0:01) is

shown. For all stations in the datasets the change-permit-

ting models are evaluated at the end of the record of the

stations (x� ¼ maxðxÞ). The sign of the change for the

frequent (p ¼ 0:5) and rare (p ¼ 0:01) events is different at

times (these are the red stars in the bottom right quadrant

and top left quadrant). These instances represent cases

where the introduction of a change-permitting model will

result in changes in design flood estimates at high return

periods which are different in direction than those for low

return periods; a counter intuitive outcome for most prac-

tical applications. Moreover, the magnitude of the change

can be different for the two AEP values, due to the dif-

ference in the scale and the shape parameter between the

two models. For this dataset changes in the high quantile

(AEP of 0.01) tend to be smaller than changes in the

median, reflecting that the scale parameter estimates tend

to be smaller for change-permitting model than for the

fixed-parameters model.

3.3.1 Enforcing change structures

Although having different direction of changes for events

of different rarity can be practically challenging, this

property might be something that a modeller wishes to

exploit when analysing extremes. For example, there might

be some physical reasoning by which the magnitude of

frequent events under some pre-specified value of the

covariates is expected to be reduced while the rare events

would become larger. For example, Sharma et al. (2018)

discuss how different types of change of the distribution of

high flows might be expected for different catchment types,

while Guerreiro et al. (2018) show that changes in the

magnitude of extreme rainfall are different for the rela-

tively common and the most extreme events.

When fixing the shape parameter to be the same in the

fixed-parameters and the change-permitting models, the

point at which the two return curves cross can be found

analytically for some of the commonly used models,

namely the model with a linear change in the location and a

model with an exponential change in the scale (see

Fig. 3 The impact of fitting a linear trend in the location for the

Massachusetts peak flow dataset. Left panel: ratio of the estimated

scale parameter under the change-permitting model and the fixed-

parameter model. Central panel: ratio of the estimated scale parameter

under the change-permitting and the fixed-parameter model. Right

panel: scatterplot of M(0.5, x�) and M(0.01, x�); red stars indicate

stations for which the direction of change is different for p ¼ 0:5 and

p ¼ 0:01
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‘‘Appendix’’). Under the fixed parameters model the

assumed distribution is Y �GEVðl; r; nÞ. Under the linear

change in the location model, the assumed distribution is

Yi �GEVðlC0 þ lC1xi; rC; nÞ. Noticeably, the n parameter

is kept to be the same under both models. The Dðp; x�Þ
function for this change-permitting model is found to be:

Dðp; x�Þ ¼ ðlC0 þ lC1x
� � lÞ þ

rC � r

n
ðy�n

p � 1Þ

The two quantile functions have the same value (i.e. they

cross) at the point in which Dðp; x�Þ ¼ 0, which occurs at:

yp ¼ 1þ n
l� lC0 � lC1x

�

rC � r

� ��1=n

provided that nðl� lC0 � lC1x
�Þ=ðrC � rÞ[ � 1.

Manipulating the formula for Dðp; x�Þ further, one can

define the value that rC should take to ensure that the two

quantile curves cross at a fixed yp value for a given value of

ðlC0; lC1Þ as:

rC ¼ rþ
l� lC0 � lC1x

�

y
�n
p � 1

n:

This could be enforced in the model estimation to ensure

that the change in the sign of Dðp; x�Þ happens exactly at a

desired AEP ~p. Further, one can study the sign of Dðp; x�Þ

as a function of p. It can be found that quantiles from the

change-permitting model exceed the quantiles from the

fixed-parameters models (Dðp; x�Þ[ 0) as long as:

rC[ rþ
l� lC0 � lC1x

�

y
�n
p � 1

n: ð8Þ

From this result it is possible to further investigate the

properties a change-permitting model should have to ensure

that effective return periods of a certain rarity are larger

(Dðp; x�Þ[ 0) or smaller (Dðp; x�Þ\0) than the return

periods under the fixed-parameters model. First, notice that

y�n
p � 1[ 0 for n\0 and p[ 1� e�1

y�n
p � 1[ 0 for n[ 0 and p\1� e�1

(

where p ¼ 1� e�1 corresponds approximately to an AEP

of 0.63 and a return period of T = 1.58. Assuming that one

would want the two curves to cross at a value of

p[ 1� e�1, we see that for Dðp; x�Þ to be positive (i.e. to

ensure that the dis-equality in Eq. (8) holds) one needs to

find that the location parameter evaluated at x� (i.e. the

value lC0 þ lC1x
�) is smaller that the location parameter in

the fixed parameters model (l). This would mean, for

example, that if time is the covariate in the model and x� is

taken to be the end of the record, to ensure that the design

events under the change-permitting model are larger than

the ones obtained under the fixed parameter model for

event with AEP lower than a certain value ~p, one would

need to find a negative trend in the location and at the same

time an increase in the scale parameter compared to the

fixed-parameters model. Combining these findings it would

be possible to define change-permitting models such that

the effective return curve derived at a certain value of the

covariate crosses the fixed-parameters return curve exactly

at a pre-specified AEP ~p and that has higher (or lower)

estimated return levels than the fixed-parameters model for

events with AEP smaller than ~p. This could be done by

including constrains or using convenient re-parametrisation

within the likelihood functions used to estimate both the

fixed and the change-permitting models.

The constrains needed to ensure a positive Dðp; x�Þ

under different change-permitting models are more cum-

bersome than the ones presented above for the case of the

linear change in location. Nevertheless, it is generally true

that if one wishes to ensure that the estimated magnitudes

of rare events (i.e. events with a small AEP) evaluated at a

given value x� in the change-permitting model are larger

than the ones under the fixed-parameters model, the scale

parameter under the change permitting needs to be larger,

while the location parameter needs to be smaller (provided

the shape is kept to be the same in both models).

4 Case study: the Massachusetts peak flow
data

In this Section records of annual maxima of instantaneous

peak river flow recorded from rivers in the state of Mas-

sachusetts, USA, are used to explore some of the practical

consequences for the estimation of quantiles when impos-

ing different model structures to allow for change in the

distribution of peak flows. The data consists of the annual

maximum series of instantaneous peak flow for 40 stations

in the state with at least 65 years of valid records. The

longest record is 115 year long and all records end after

2015. Some of these stations record flow at locations for

which the upstream watershed has undergone changes in

urbanisation similar to those experienced by the Aberjona

watershed. In this study we do not wish to assess whether

peak river flow has changed across the state, nor to identify

the drivers of such change: we instead focus on the con-

sequences of different parametrisation of change on the

estimated design events. We also do not attempt to make an

assessment of which of the model structures employed to

characterise possible changes in the records is the most

suitable one for the different river flow records in Mas-

sachusetts: more complete checks on the goodness of fit of

each model fit for every record would be needed. Overall,

finding the most suitable statistical model to characterise

possible changes in the distribution of river flow peaks

would require a more thorough statistical investigation of
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the data and a deeper understanding of the possible causes

driving the observed changes (e.g. changes in the land use

in the watershed).

A number of different fixed-parameters and change-

permitting models are fitted via standard maximum likeli-

hood estimation to the data series of each station in the

dataset. For all models time is used as a covariate and the

following transformed logit function is used for the shape

parameter:

n ¼ logitðfÞ � 0:5

to ensure that n 2 ½�0:5; 0:5�. This constraint (adapted from

the gevlss function in the mgcv R package, Wood 2017)

ensures that the mean and variance of the GEV are finite and

the maximum likelihood estimates are consistent (see Smith

1985).At first, the standardmodelwith fixed parameters,M0,

is estimated for each record, together with the different

change-permitting models (ML, ME, MS and MCV
E ) which

were applied to the Aberjona river data as seen in Table 2.

4.1 From fixed- to change-permitting models

At first we compare the support in favour of a change in the

behaviour of extremes across the different models. For

each of the model different assumptions are made regard-

ing which property of the distribution is changing and how

this change is related to the covariate. Therefore, rather

than comparing the raw estimated values for the parameters

describing the estimated changes across different stations

and different models, the parameter estimates are stan-

dardised by their estimated standard deviation and com-

pared in Fig. 4. In the left panel the trend parameters for

the model ML and ME are compared. For the model with a

linear link function, ML, the parameter of interest is lC1,

while forME, in which an exponential link function is used,

the parameter of interest corresponds to gC1. For these two

models, the detected changes in the location parameter are

similar in sign and strength: most changes are positive,

indicating an increase in the location parameter over time

for the majority of stations. As in the Aberjona case the

estimated location function within the recording period is

similar when using a linear or an exponential link function.

In contrast, the sign and strength of the trend when

modelling location and scale are very different. The scat-

terplot in central panel of Fig. 4 indicates that for sites with

strong changes in the location parameter there is no cor-

responding strong evidence of change in the scale param-

eter when this is modelled as a changing function of time

while keeping the location fixed (MS). However, when the

scale is allowed to change proportionally to the location

(ME
CV ), the strength and direction of the trend is similar to

those found when allowing only the location to change

(right panel). At each site, using the model in Eq. (3)

would results in identifying a changing behaviour of

extremes similar in sign and strength to the one identified

when only allowing the location parameter to change.

Importantly, the consequence of the identified change on

the quantiles would be different for different models due to

differences in model structures. These differences are

shown for the Aberjona river in Fig. 5. The top panel and

the bottom left panel in Fig. 5 show in detail the compar-

ison of the return curves for the fixed-parameter model

(M0) and for different change-permitting models evaluated

in year 2019 (the final year in the record). These curves are

derived from the estimated parameters shown in Table 2:

changes in the parameters in the change-permitting models

Fig. 4 Scatterplot of scaled trend coefficients under different modelling assumptions
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imply different relative changes across the AEP values. For

models allowing changes in the location parameter it was

found that the parameter value in year 2019 is generally

larger than the one of the fixed parameter model and this

implies an overall increase in the return curve. In contrast,

the minimal difference between the parameter estimates for

the fixed-parameter model M0 and the model in which the

scale is allowed to change in time MS is reflected in almost

identical return curves (top-right panel) and consequently

an almost flat M(p, 2019) line (lower right panel).The

relative changes of the return curves for the different

change-permitting models in all stations are shown in

Fig. 6. For all stations in all models Mðp; x�Þ is evaluated

in the last year available in the record, thus Fig. 6 shows

the ratio of the effective return curve of the different

change-permitting model structures evaluated at the end of

the record period against the estimated return curve for the

fixed parameter model. The left panel shows the relative

change in quantiles across AEP induced by assuming an

exponential trend in the location parameter. In this case the

relative changes implied in the quantile functions tend to

be minimal for the events with AEP of approximately 0.1

and the relative changes in the frequent events (Gumbel

transform smaller than .4) tend to be larger than the relative

changes for rare events (Gumbel transform larger than 4.6)

. The contrary is true when the scale alone is allowed to

change (central panel): overall there are much larger rela-

tive changes for the rarer events. When the scale is allowed

to change proportionally to the location (right panel) the

relative changes for the different AEP are fairly compara-

ble for most stations. As in Fig. 3, for a handful of stations

the direction of change for the median and the 100-year

event are different when only the location is allowed to

change; this is also true when the scale only is allowed to

change. When using the model in Eq. (3) the changes have

instead always the same direction in the range of AEP

considered in Fig. 6, with most of them being fairly con-

stant. In conclusion, the assumption made in terms of what

parts of the distribution are allowed to change has a strong

impact on the implied changes in higher quantiles which

are typically of interest for engineering design.

4.2 Changes over the record-period

Figure 7 shows the return curves for the change-permitting

models fitted to the Aberjona river series and evaluated for

year 1965 and 2015. This allows the comparison of the

possible changes in the quantiles of the peak flow distri-

bution in 50 years. The bottom right panel shows the

Mdðp; 50Þ values: as expected when the parametrisation

presented in Eq. (3) is used the relative change in the two

quantiles is the same and is equal to expflC1Dtg.
Figure 8 compares the relative changes of the quantiles in

2015 and 1965 as a function of AEP (Mdðp; 50Þ) for the

change-permittingmodelsML,ME andM
CV
E for all stations in

the study. Thus, the left panel shows the relative changes

over 50 years in the effective return levels when the model

Fig. 5 Comparison of return curves under the fixed-parameters model (dashed black line) and different change-permitting models for the

Aberjona river. The bottom right panel shows the evolution of Mðp; 2019Þ for the change-permitting models across different AEP p
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structure allow changes in the distribution as an exponential

change in the location parameter. In this case, the changes in

the frequent events are much larger than those in the rarer

events: an increase in the location parameter would entail

much larger estimates in the later years for the median, but

only mildly larger estimates in the later years for the

100-year event. The behaviour is reversed when the scale

only is allowed to change: frequent events are estimated to

have relatively similar magnitude in 2015 and 1965, while

the estimated magnitude of rare events is very different with

effective design events for lowAEP being either much larger

or much smaller in 2015 than in 1965. The consequence of

using the parametrisation of change presented in Eq. (3) is

evident in the right hand panel: changes are constant across

AEP giving an easy way to assess how the quantiles of the

distribution might have changed over the 50 year period.

No single model of change can be appropriate to study

changes in all extremes series, and an evaluation of the

Fig. 6 Mðp; xendÞ across different AEP p for the different change-permitting models. The purple and green vertical lines indicate, respectively,

the AEP = 0.5 and AEP = 0.01 values

Fig. 7 Comparison of return curves for the change-permitting models in 1965 (dashed lines) and 2015 (solid lines) for the Aberjona river. The

bottom right panel shows the evolution of Mdðp; 50Þ across different AEP p
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goodness of fit for the fitted models can be useful to assess

whether any model can provide a better representation than

others for the series under study. This might include both

comparative measures such as AIC or BIC and graphical

tools such as qq-plots which can indicate whether the dis-

tributional assumption made for the data is suitable. Fur-

thermore, models fitted to the data should be reasonable and

coherent with the physics principles underlying the process

under study. Nevertheless, some decisions are typically

made at an initial modelling stage of the parametric forms of

change to consider as possible models. This decision could

also be informed by considerations of whether any of the

assumed forms can provide more usable metrics to describe

changes in design events (when these are of interest) or any

other quantity of interest derived from the fitted model.

4.3 Assessing uncertainty of quantile estimates

The assessment of the uncertainty in the quantities of interest

is a key element when performing any statistical analysis.

Different approaches have been employed in the literature to

assess the variability of the estimated quantiles, the most

common ones being the profile likelihood, the delta method,

and the non-parametric and parametric bootstrap (Cooley

2013; Kyselỳ 2008). In particular, Kyselỳ (2008) shows that

the latter method appears to provide good uncertainty esti-

mates under several cases. The parametric bootstrap is

therefore employed here to compare the variability of the

estimated quantiles under different model structure for all

stations in the study. A brief outline of the parametric

bootstrap procedure is provided below.

For any model fitted to a river flow series of size n, an

estimate for the vector of d parameters ĥ is obtained. Using

the estimated parameters, B bootstrap samples of size n are

randomly generated from the appropriate distribution

parametrised by ĥ. For each bootstrap sample the vector ĥ�

is estimated, together with the quantiles of interest possibly

evaluated at a specific covariate value ~x,

q� ¼ qð1� p; ĥ�ð~xÞÞ. This results in a bootstrap sample of

quantiles ðq�1; . . .; q
�
BÞ. Percentile based ð1� aÞ � 100%

confidence intervals for the quantile of interest are derived

as the a=2 and 1� a=2 percentiles of the bootstrap sample.

The scatterplots in Fig. 9 compare the width of the 95%

confidence intervals for the design event of AEP equal to

0.5 derived at all stations for the different change-permit-

ting model structures against the width of the interval for

the fixed-parameters model. For all station the quantiles for

the change-permitting models are evaluated at the last

available year, i.e the end of the record. Noticeably, for all

models in which the location is allowed to change (ML and

ME) confidence intervals are found to be wider. In contrast,

the width of the confidence intervals for the frequent events

under a model with a varying scale MS (bottom right panel)

appears to be comparable to the one derived when

assuming fixed parameters in time (M0). This is not the

case though when the intervals under comparison refer to

rarer events. Figure 10 is structured as Fig. 9, but showing

the width of confidence intervals for rare design events

(AEP = 0.01). The scatterplot in bottom right panel in this

case shows that the intervals for the model in which scale is

allowed to change (MS) are generally wider than those

obtained when no change is allowed (M0). This is not the

case for models in which the mean only is allowed to

change (ML and ME): in the top two panels the interval

widths for theML andME model are similar to those for the

no-change (M0) model. The width of the intervals obtained

using the model which allows the scale to change propor-

tionally to the location (ME
CV ) is also typically wider: the

Fig. 8 Mdðp; 50Þ across different AEP p for the change-permitting models. The purple and green vertical lines indicate, respectively, the AEP =

0.5 and AEP = 0.01 values
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variability of estimates of the magnitude of rare events is

highly influenced by changes in the scale parameter.

Overall the variability of quantile estimates can be quite

different under the various model structures investigated in

this study. A better understanding of how the variability of

the quantiles of interest might be affected by different

parametrisation could also contribute to the decision of

which model is adopted to describe change.

Fig. 9 Bootstrap 95% confidence interval width (log-scale) for the effective design event of AEP = 0.5 under different change-permitting model

structures against the width of the interval for the fixed parameter model (log-scale)

Fig. 10 Bootstrap 95% confidence interval width (log-scale) for the effective design event of AEP = 0.01 under different change-permitting

model structures against the width of the interval for the fixed parameter model (log-scale)
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5 Discussion

In this paper the effect of different model structures used to

describe changes in extremes is discussed by focusing on the

impacts on quantiles as estimated under different change-

permitting parametrisations. Although throughout the paper

only univariate parametric models have been discussed, the

results can be easily extended to the case of multivariate and

non-parametric models. Further, although all analysis and

calculations have been carried out assuming a GEV distribu-

tion, the findings could be useful for other distributions whose

quantile function has the same structure as the one in Eq. (2),

such as the Generalised Pareto distribution which is typically

employed when analysing peaks-over-threshold records and

has also been used to detect changes in environmental

extremes (Silva et al. 2016, 2017). In that case, changes in the

location parameter would correspond to changes in the

threshold above which value are considered to be extremes.

This has already been already proposed in the literature (see

for example Roth et al. 2012; Eastoe and Tawn 2009),

although with no specific consideration of the impacts of the

modelling assumption on the quantile estimation.

The results from this study show that extreme value

models routinely used in the applied literature can lead to

very different assessments of change, but the consequences

of the different modelling choices on the estimated design

events are rarely discussed and explored. Moreover, many

of the models typically employed entail a varying coeffi-

cient of variation, leading to changes in quantile estimates

which are difficult to study under different values of the

covariates and cumbersome to reconcile with the estimates

derived under the fixed-parameters models. A wider dis-

cussion on what types of changes can be expected under

different conditions (see for example Sharma et al. 2018),

might help in clarifying what model structures are more apt

to capture the expected changes. Possibly, the modelling

options which are currently explored are not the ones

which best describe the changes expected from a warming

climate or an increase in population and urban areas. Using

simple metrics which describe changes such as those pro-

posed in Eqs. (4) to (7) can be useful to explore the con-

sequences of different models structures on the estimation

of quantities which are routinely extracted from any esti-

mation procedure. By comparing the expected changes to

the types of changes which can be described under dif-

ferent models, it would be possible to ensure that models of

change employed the most suitable parametrisation to

describe what is perceived to be the most likely direction

and shape of change. As shown, sentences like ‘‘We expect

all quantiles to have changed in time by a constant factor’’

or ‘‘We would expect events of AEP smaller than 0.02 to

be larger in the future and events with AEP larger than 0.02

to be smaller’’ can be translated into models with specific

parametrisation and possibly constrained values for certain

parameters. It is important that the description of change of

the quantities of interest derived from change-permitting

models can be interpretable and therefore considered

credible by the end users. We believe the model based on s

presented in Eq. (3), in which the scale is allowed to

change proportionally to the location, is a first step towards

such models, since it allows for the ratio between quantiles

to be the same for all exceedance probabilities, and

therefore provides a direct communication of how changes

in the distributions affect the final main output of interest.
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Appendix

Calculations for Dd(p;DxÞ and Md(p;DxÞ

� In the case in which Yi �GEVðlC0 þ lC1xi;rC; nCÞ

Ddðp;DxÞ ¼ lC1Dx :

The evolution of Ddðp;DxÞ changes as a function of lC1
and of Dx: the difference between quantiles is constant

across different return periods.

Mdðp;DxÞ

¼ 1þ
ðlC1DxÞnC

nCðlC0 þ lC1xÞ þ rCðy
�nC
p � 1Þ

:
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The evolution of Mdðp;DxÞ changes as a function of

ðlC0; lC1; rC; nCÞ and of p and Dx: the ratio between

quantiles is different across different return periods.

• In the case in which

Yi �GEVðlC; expfcC0 þ cC1xig; nCÞ

Ddðp;DxÞ ¼
expfcC0 þ cC1xg

nC
ðy�nC

p � 1Þ

ðexpfcC1Dxg � 1Þ :

The evolution of Ddðp;DxÞ changes as a function of

ðcC0; cC1; nCÞ and of p and Dx: the difference between

quantiles varies across return periods.

Mdðp;DxÞ

¼ 1þ
expfcC0 þ cC1xgðy

�nC
p � 1ÞðexpfcC1Dxg � 1Þ

nClC þ expfcC0 þ cC1xgðy
�nC
p � 1Þ

:

The evolution of Mdðp;DxÞ changes as a function of

ðlC; cC0; cC1; nCÞ and of p and Dx: the ratio between

quantiles is different across different return periods.

• In the case in which Yi �GEVðlC0 þ lC1x;

expfcC0 þ cC1xig; nCÞ:

Ddðp;DxÞ ¼lC1Dxþ
expfcC0 þ cC1xg

nC
ðy�nC

p � 1Þ

ðexpfcC1Dxg � 1Þ :

The evolution of Ddðp;DxÞ changes as a function of

ðlC1; cC0; cC; nCÞ and of p and Dx: the difference

between quantiles varies across different return periods.

Mdðp;DxÞ

¼1þ
nClC1DxþexpfcC0þcC1xgðy

�nC
p �1ÞðexpfcC1Dxg�1Þ

nCðlC0þlC1xÞþexpfcC0þcC1xgðy
�nC
p �1Þ

:

The evolution of Mdðp;DxÞ changes as a function of

ðlC0; lC1; cC0; cC1; nCÞ and of p andDx: the ratio between
quantiles is different across different return periods.

• In the case in which Yi �GEVðexpfgC0þ

gC1xig; rC; nCÞ:

Ddðp;DxÞ¼expfgC0þgC1xþgC1Dxg�expfgC0þgC1xg :

The evolution of Ddðp;DxÞ changes as a function of

ðgC0; gC1Þ: the difference between quantiles is constant

across different return periods.

Mdðp;DxÞ ¼ 1þ
nC expfgC0 þ gC1xgðexpfgC1Dxg � 1Þ

nC expfgC0 þ gC1xg þ rCðy
�nC
p � 1Þ

:

The evolution of Mdðp;DxÞ changes as a function of

ðgC0; gC1; rC; nCÞ and of p and Dx: the ratio between

quantiles is different across different return periods.

• In the case in which Yi �GEVðexpfgC0 þ gC1xig;

s expfgC0 þ gC1xg; nCÞ:

Ddðp;DxÞ ¼ expfgC0 þ gC1xgðexpfgC1Dxg � 1Þ

1þ
s

nC
ðy�nC

p � 1Þ

� �

:

The evolution of Ddðp;DxÞ changes as a function of

ðgC0; gC1; s; nCÞ and of p and Dx: the difference between
quantiles varies across different return periods.

Mdðp;DxÞ ¼ expfgC1Dxg :

The evolution of Mdðp;DxÞ changes as a function of

gC1 and of Dx: the ratio between quantiles is constant

across different return periods.

• In the case in which Yi �GEVðlC0 þ lC1xi;
sðlC0 þ lC1xiÞ; nCÞ:

Ddðp;DxÞ ¼ lC1Dx 1þ
s

nC
ðy�nC

p � 1Þ

� �

:

The evolution of Ddðp;DxÞ changes as a function of

ðlC1; s; nCÞ and of p and Dx: the difference between

quantiles varies across different return periods.

Mdðp;DxÞ ¼ 1þ
lC1Dx

lC0 þ lC1x
:

The evolution of Mdðp;DxÞ changes as a function of

ðlC0; lC1Þ and of Dx: the ratio between quantiles is

constant across different return periods.

Calculations for the crossing point
between q(1- p; hÞ and q(1- p; hcÞ

In the fixed-parameters model it is assumed that

Yi �GEVðl; r; nÞ. The value yp at which the two quantile

functions for the fixed-parameters and change-permitting

model cross is derived for a generic change-permitting

model below, assuming that the shape parameter under the

change-permitting model has the same value n as in the

fixed-parameters model. In general, under the change-per-

mitting model it is assumed that Yi �GEVðlCðxiÞ;
rCðxiÞ; nÞ and the two quantiles function cross at the value

p such that Dðp; x�Þ ¼ 0, which is found to be:

yp ¼ 1þ n
l� lCðx

�Þ

rCðx�Þ � r

� ��1=n

:

This entails that in the case in which

Yi �GEVðlC; expfrC0 þ rC1xig; nÞ we find:

yp ¼ 1þ n
l� lC

expfrC0 þ rC1x�g � r

� ��1=n

:

322 Stochastic Environmental Research and Risk Assessment (2021) 35:307–324

123



R code to implement the model in Eq. (3)

The function below is built upon the ismev::gev.fit

function in R. The output is an object of class gev.fit.
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