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Abstract| In this paper a method for parameterizing or-
thogonal wavelet transforms is presented. The parameter
space is given by the rotation angles of the orthogonal 2�2{
rotations used in the lattice �lters realizing the stages of the
wavelet transform. Di�erent properties of orthogonal wave-
let transforms can be expressed in this parameter space.
Then, the parameter space is restricted to the set of rota-
tion angles given by simple orthogonal �{rotations, i.e. the
set of rotation angles �k = arctan 2�k (k 2 f0;1; : : : wg where w
is the wordlength). An orthogonal �{rotation is essentially
one recursion step of the CORDIC algorithm. The wavelet
transforms in the reduced parameter space are amenable to
a very simple implementation. Only a small number of shift
and add operations instead of fully edged multipliers are
required.

I. Introduction

In recent years di�erent systems of wavelet bases have been
introduced [3], [14] for a growing number of applications
[1], [2], [4], [19]. Thereby the degrees of freedom existing
in the design of wavelet bases have been exploited. Also
methods have been presented to parameterize orthogonal
wavelet transforms, whereby the optimization with respect
to special properties is the primary intention of these para-
meterizations [6]. While most attention has been focussed
on orthogonal, compactly supported wavelets with maxi-
mal number of vanishing moments, smoother, more regular
wavelets were also designed [3]. Symmetry is an important
property in image coding applications. Therefore, the de-
sign of least assymmetric, orthogonal wavelets is also an
issue of the parameterization, although exact symmetry is
impossible. In [6], [24] orthogonal wavelet transforms were
optimized with respect to their frequency resolution after
parameterizing the wavelet transforms of a certain compact
support.
In this paper, a further property is added to the design
constraints, namely the simple VLSI{implementation of
the wavelet transforms. Orthogonal lattice �lters [21] are
often used to implement the stages of an orthogonal wa-
velet transform within a �lterbank structure. These lattice
�lters can be implemented by orthogonal 2 � 2{rotations.
The CORDIC algorithm [22], [23] o�ers one possibility to
execute orthogonal rotations, whereby a sequence of (w+1)
�{rotations (w being the wordlength) is used. These �{
rotations can be implemented by a few shift- and add{
operations. Let an orthogonal �{rotation be de�ned as one
scaled (normalized) recursion step of the entire CORDIC
sequence. We approximate the full sequence of �{rotations
composing a rotation angle ' by using only one or a few
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orthogonal �{rotations composing an approximate angle
~' � '. These approximate rotations were introduced in [9],
[7] for e�ciently computing the eigenvalue decomposition.
This approach was not only extended to other iterative al-
gorithms in signal processing [10], but also to orthogonal
signal transforms [15], [13].

In order to parameterize all orthogonal wavelet transforms
leading to a simple implementation, the following facts have
been incorporated in the proposed approach:

1. Orthogonality is structurally imposed by using lattice
�lters consisting of orthogonal rotations only.
2. The su�cient condition for constructing a wavelet trans-
form, namely one vanishing moment of the wavelet, is gua-
ranteed, by assuring the sum of all rotation angles of the
�lters to be exactly �45o [24].
3. The full parameter space (i.e. arbitrary rotation angles)
of all possible orthogonal wavelet transforms is restricted
to a reduced parameter space that only allows rotation by
the discrete angles �k = arctan2�k (basis angles of the
CORDIC representation).
4. The constant sum of angles (see 2) is never violated by
always using pairs of rotations with di�erent signs indepen-
dent of the rotation angles. Thereby, the rotations always
appear twice, which also ensures a simple implementation
of the scaling factor.

This paper is organized as follows: In Section II some pre-
liminaries are given. In Section III the parameterization of
orthogonal wavelet transforms is discussed and typical pro-
perties of wavelet bases are reviewed and expressed in the
parameter space. Section IV de�nes orthogonal �{rotations
that allow the e�cient approximate implementation of ele-
mentary 2�2{rotations. In Section V the restriction of the
full parameter space to the orthogonal �{rotation angles is
outlined resulting in wavelet transforms which are simple to
implement. Then, these wavelet transforms requiring only a
few shift and add operations (per parameter) are compared
to the standard wavelet transforms.

II. Preliminaries

Using an orthogonal wavelet transform a continuous signal
s(t) is analyzed by translated versions �0;k(t) = �(t�k) of
the scaling function �(t) at scale 0 and translated versions
	j;k = 2�j=2	(2�jt � k) of the wavelet function 	(t) at
di�erent scales j. For synthesis the same bases are used
such that

s(t) =
X
k2Z

�0;k(t)

+1Z
�1

s(t)��0;k(t)dt



+
1X
j=0

X
k2Z

	j;k(t)

+1Z
�1

s(t)	�j;k(t)dt: (1)

In the frequency domain the wavelet series can be written
as follows:

ŝ(!) =
X
k

ŝ(!)�̂0;k(!)�̂
�

0;k(!)

+
X
j

X
k

ŝ(!)	̂j;k(!)	̂
�

j;k(!); (2)

where the Fourier transformation of a function s(t) is de�-
ned as

ŝ(!) =

+1Z
�1

s(t)e�j!tdt :

The functions � and 	 have to ful�ll the dilation equations,
that relate the continuous bases to the discrete coe�cients
hi and gi:

� (t) =
n�1X
i=0

gi�(2t� i) ; 	(t) =
n�1X
i=0

hi�(2t� i)

With these coe�cients hi; gi 2 IR the transfer functions of
the discrete{time �lters, which are used to implement the
discrete wavelet transform can be formulated. These �lters
form one stage of the �lterbank structure shown in Fig. 1,
where the transfer functions are given by:

H(z) =
n�1X
i=0

hiz
�i; G(z) =

n�1X
i=0

giz
�i :
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Fig. 1. Filterbank structure implementing a discrete wavelet trans-
form

III. Parameterization of Orthonormal Wavelet

Transforms

An e�cient structure for the implementation of ortho-
gonal wavelet transforms (orthogonal, nonrecursive �lters
in general) is the lattice �lter. The orthogonal �lters of
length n (H(z); G(z)) can be implemented by a lattice �l-
ter using n=2 orthogonal rotations. The rotation angles �i
(i = 1; : : : ; n=2) are determined by the factorization eit-
her of [G(z) G(�z)]T or [G(z) H(z)]T into a shift pro-
duct of orthogonal rotations [20], [5]. Theoretically (in�nite
wordlength) both factorizations yield the same result, but
[G(z) H(z)]T is numerically ill{conditioned as compared

to [G(z) G(�z)]T . Fig. 2 shows a lattice �lter implemen-
tation of one stage of Daubechies' wavelet transform of
length n = 4. Obviously, the basic modules of the �lter are
orthogonal 2�2 rotations. By using these orthogonal rota-
tions orthogonality of the whole transform is structurally
imposed [21] and therefore perfect reconstruction is simply
possible.
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Fig. 2. Lattice �lter implementing one stage of Daubechies' wavelet
transform of length n = 4

In order to perform an orthogonal wavelet transform the
lattice �lter must full�ll another property. This property
ensures that the wavelet function has zero mean which is
equivalent to the wavelet having at least one vanishing mo-
ment and the transfer functions H(z) and G(z) having at
least one zero at z = 1 and z = �1, respectively. These
conditions are full�lled if the sum of all rotation angles is
exactly �45o [24], i.e.X

k

�k = �45o :

Therefore, a lattice �lter whose sum of all rotation angles
is �45o performs an orthogonal wavelet transform indepen-

dent of the angles of each rotation.
A lattice �lter of length n consists of n=2 orthogonal rota-
tions. Let �i, i = 1 : : : ; n=2 be the rotation angles of these
n=2 orthogonal rotations. Then, by using the representa-
tion

�1 = �45o � '1

�i = (�1)i('i�1 + 'i) for i = 2; : : : ; n=2� 1 (3)

�n=2 = (�1)n=2'n=2�1
all orthogonal wavelet transforms of length n can be pa-
rameterized by the n=2 � 1 rotation angles 'i. Note, that
except for i = 1 and i = n=2 two rotations by the angles
'i�1 and 'i are always required to implement the respec-
tive rotation angle �i. Furthermore, note that each angle
'i appears twice in this representation.
In the following we will frequently use a wavelet transform
of length n = 6 to illustrate the results. The parameteri-
zation consists of n=2 = 3 orthogonal rotations where the
angles have the following representation

�1 = �45o � '1

�2 = '1 + '2 (4)

�3 = �'2:
Of course, not all pairs of ('1,'2) lead to a suitable wavelet
transform. How the parameters ('1,'2) are chosen depends
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on the desired properties. These properties are discussed
subsequently:
Compact Support: The compact support is equivalent to
the �nite length n of the wavelet basis. While with '1 6= 0
and '2 6= 0, wavelets with support n = 6 can be construc-
ted, by setting '2 = 0, the length is reduced to n = 4. If
'1 = '2 = 0, one obtains the Haar basis (n = 2).
Vanishing Moments: The approximation properties of a
wavelet basis are de�ned by the number of vanishing mo-
ments. In the continuous case, a wavelet with p vanishing
moments can represent a polynomial function up to degree
p� 1 [3]. Therefore, wavelet systems are often designed in
order to maximize the number of vanishing moments. This
number p is identical to the number of zeros of the trans-
fer function H(z) at z = 1. How many of the following
equations are full�lled by the coe�cients hi determines the
number of vanishing moments:

mj =
X
i

ijhi = 0 j = 0; : : : p� 1: (5)

In Fig. 3 (upper left) a Daubechies' wavelet of length n = 6
is shown. It has p = 3 vanishing moments, which requi-
res the values of the parameters to be '1 = 22:60o and
'2 = 6:03o. Wavelet transforms with a maximal number
of vanishing moments and length n are called OD

n in this
paper.
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Fig. 3. Wavelet functions (n = 6) with certain properties: Version
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with maximal vanishing moments (upper left), most regular
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OF
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Regularity: The fact, that wavelets with the maximal
number of vanishing moments are not the only proper ba-
ses, was also in Daubechies' mind when she designed most
regular, orthogonal wavelets [3]. Therefore, one task is to
optimize the regularity of the orthogonal bases.
To precisely evaluate the regularity, the H�older coe�cient
r is widely used. A function, which is d times continuously
di�erentiable possesses a H�older coe�cient r = d+ e, if its

dth derivative f (d) is H�older continuous with exponent e,
i.e.

j f (d)(x)� f (d)(x+ t) j� C j t je 8x; t:

Some methods to compute the H�older coe�cient r nume-
rically were given in [16]. The analysis of the exact H�older
regularity usually causes high computational costs. In this
paper a simple method to compute an upper bound of the
H�older coe�cient r is used, whereby the polynomial G(z)
is analyzed.

G(z) = (1 + z�1)pFp(z);

implies that the wavelet system has exactly p vanishing
moments. A matrix F p de�ned by the coe�cients of the
polynomial Fp(z) leads to an estimation of the H�older co-
e�cient.With Fp(z) = fp;0+fp;1z+fp;2z2+: : :+fp;n�pzn�p

the matrix F p is given by

F p =

2
6666664

fp;1 fp;0 0 : : : 0
fp;3 fp;2 fp;1

fp;5 fp;4 fp;3
...

...
. . .

0 : : : fp;n�p�1

3
7777775
:

An upper bound r for the H�older coe�cient is

r = p� 1� log2max(j fp;0 j; j fp;n�p j; �(F p));

where �(F p) is the spectral radius of F p. The spectral ra-
dius of F p is de�ned as �(F p) = maxi(j �i j), where �i
denotes the eigenvalues of F p.
In contrast to Daubechies' wavelet (n = 6) with a maximal
number of vanishing moments having a H�older coe�cient
r = 1:0878, the most regular solution (called OR

n ) for n = 6
shows an increased smoothness as r = 1:4176 (Fig. 3, upper
right). This solution requires '1 = 26:06o and '2 = 8:40o.
It was shown in [3], if the wavelet function  (t) of an or-
thogonal wavelet basis is (p � 1) times continuously di�e-
rentiable, then the wavelet function possesses p vanishing
moments. The converse, however, is not true since a wave-
let function with p vanishing moments only exhibits a de-
gree of smoothness that asymptotically increases linearly
by � 0:2075 � p [3]. Recently, this relationship (the gap)
between the number of vanishing moments and the actual
degree of smoothness has caused various approaches for
the design of wavelet transformations, where the condition
of possessing a maximal number of vanishing moments is
waived. In [11] it was shown how one can systematically sa-
cri�ce higher order vanishing moments to achieve smoother
wavelet (scaling) functions. Also, the meassure of smooth-
ness for the design of wavelet basis in the discrete case
(when continuous derivatives do not really exist) are dis-
cussed in [12] leading to a design of \smooth" wavelets in
the discrete domain (i.e. regularity up to a certain scale j
of the discrete wavelet transform). The condition of vanis-
hing moments will also be sacri�ced in our approach for
achieving a simple implementation of orthogonal discrete
wavelet transforms.
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Frequency behavior: As each stage of the wavelet trans-
form is a pair of halfband �lters, one optimization criterion
is to place the roots of the coe�cients of the scaling func-
tion such that an ideal lowpass is approximated as good as
possible.
An orthogonal wavelet transform divides a signal into the
di�erent spaces spanned by the scaling function �0;k and
the wavelets 	j;k. The reconstruction is based on the same
bases as it is shown in (1). The wavelet series in the fre-
quency domain is given in (2).

For the optimal solution the improvement of �̂(!) with re-
spect to its frequency behavior is not only necessary, but
su�cient to improve the whole orthogonal wavelet system.
Note that because of the orthogonality of spaces the wa-
velet 	̂ is directly related to �̂. Therefore, improving the
frequency behavior of �̂(!) is equivalent to improving the
frequency behavior of the whole transform.
The scaling function � can be determined from the dila-
tion equation (given the discrete coe�cients hi). In the
discrete case the discrete values of the scaling function
are given by �(k). Using the vector representation � =

[�(1); : : : ;�(N)]T the DFT yields �̂ = [�̂(1); : : : ; �̂(N)]T :

�̂ = DFT (�) : (6)

The vector �̂ can be divided into a passband part and a
stopband part:

�̂ =

�
�̂P

�̂S

�
; (7)

where the upper N=2m elements of �̂ belong to �̂P and

the remaining N �N=2m � 1 elements of �̂ belong to �̂S .
While the elements of the passband part should contain
large values, the elements of the stopband part should be
small. Therefore, the norm t = k�̂Sk2 should be minimal.
While the Daubechies wavelet with a maximal number of
vanishing moments yields t = 0:2119, the best frequency
behavior solution (called OF

n ) achieved for n = 6 with
'1 = 19:08o and '2 = 7:66o leads to a stopband norm of
t = 0:1461. In Fig. 4 the frequency characteristic of the re-
spective scaling functions are compared and in Fig. 3 (lower
left) the wavelet function with best frequency behavior is
plotted.
Symmetry: Symmetry is a prefered property in some ap-
plications (e.g. image coding) but exact symmetry and
orthogonality are not simultaneously possible. Therefore,
least asymmetric wavelets were designed. In [3] Coiets are
discussed, which show an improved symmetry in compari-
son to standard wavelets. These Coiets can be designed by
requiring not only the wavelets to have vanishing moments
but also the scaling functions. Additional to the equati-
ons (5) the discrete coe�cients of these Coiets full�ll the
following equations:X

i

(n+ 1� i)jhi = 0 j = 0; : : : p � 1: (8)

The parameters of a Coiet transform (calledOS
n ) for n = 6

and p = 2 are '1 = �122:85o and '2 = �167:85o. The
resulting wavelet function is plotted in Fig. 3 (lower right).
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IV. Efficient Implementation of Orthonormal

Rotations

As shown in the previous section all orthogonal wavelet
transforms can be implemented with a �lterbank structure
composed of lattice �lters (see Figs. 1 and 2 as an example).
The lattice �lters consist of orthogonal 2�2{rotationsR(�)
which are de�ned as follows:

R(�) =

�
cos� � sin�
sin� cos�

�
= (9)

=
1p

1 + tan2 �

�
1 � tan�

tan� 1

�
(j � j< 90o):

The discretization tan�k = 2�k leads to the rotation angles
that are used by the CORDIC procedure [22], [23], which
is a common method to execute orthogonal rotations with
respect to a simple implementation. Any rotation is repre-
sented by a sequence of (w + 1) �{rotations (w being the
wordlength):

R(�) =
1

Kw

wY
k=0

�
1 ��k2�k

�k2�k 1

�
; �k 2 f�1g;

(10)
with 1

Kw
being the scaling factor that is independent of the

angle �

1

Kw
=

wY
k=0

1p
1 + 2�2k

: (11)

This corresponds to the representation of the rotation angle
� in the basis �k = arctan2�k with digits �k 2 f�1g:

� =
wX
k=0

�k�k =
wX
k=0

�k arctan2
�k: (12)

Now instead of using the entire sequence of basis angles �k
to represent � we restrict the set of available rotations to
one speci�c recursion step of (10), i.e. the set of available
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rotations is

R(�k) =
1p

1 + 2�2k

�
1 ��k2�k

�k2�k 1

�
; �k 2 f�1g;

(13)
R(�k) is called an orthogonal �{rotation and can be in-
terpreted as an approximation of the rotation R(�), if
�k is chosen such that it is the angle of the sequence �k
(k = 0; 1; : : : ; w) which is closest to the exact rotation angle
� [9], i.e.

min
k
j�k � �j : (14)

In [9] approximate rotations in form of orthogonal double
�{rotations consisting of two equal orthogonal �{rotations
(13) were used

R(��k) = R(�k)R(�k) (15)

=
1

K2
k

�
1 ��2�k

�2�k 1

� �
1 ��2�k

�2�k 1

�
:

The basis angles of the orthogonal double �{rotations are
given by ��k = 2�k. The reason for using orthogonal dou-
ble �{rotations is to avoid the square root of the scaling
factor of an orthogonal �{rotation (13). The resulting sca-
ling factor 1

K2

k

can be factored such that the scaling can be

executed by shift and add operations. The factorization

1

K2
k

=
1

1 + 2�2k
= (1�2�2k)(1+2�4k)(1+2�8k) : : : (16)

leads to the following scaling procedure

1

K2
k

= (1� 2�2k)
bY

s=1

(1 + 2�2
s+1k) with b = log2d

w

2k
e :

(17)
One orthogonal double �{rotation with a speci�c shift va-
lue k chosen according to (14) is the basic element for ap-
proximating any orthogonal rotation of our parameteriza-
tion of Section III. By using r � w orthogonal double �{
rotations an approximate rotation can be composed, that
enables a simple implementation and approximates any or-
thogonal rotation to a certain accuracy.

V. Restriction of the Parameter Space

For the parameterization of wavelet transforms, two items
of Section III are important. The orthogonality of the trans-
forms is structurally imposed by using lattice �lters. By
choosing the rotations such that the sum of angles is con-
stant �45o, the lattice structure always performs a wavelet
transform. Therefore, the orthogonal �{rotation R(�45o)
always appears once in the presented wavelet �lters:

R(�45o) = R(��0) = 1p
2

�
1 1

�1 1

�
:

The scaling factor 1=
p
2 does not need to be implemented.

With each rotation appearing in the analysis part and in
the synthesis part, also the scaling factor appears twice.
As 1=

p
2 � 1=p2 = 1=2 can be implemented with one shift

operation, the only price that must be paid is the loss of
normality by a factor 1=

p
2 in the transform domain.

By using only one (instead of w + 1) �{rotation per pa-
rameter 'i of (3) the computational complexity is reduced
signi�cantly.We elaborate this in detail in our example (4).
The two free parameters '1 and '2 of (4) are approximated
by

~'1 = �'1 arctan2
�k'1 ~'2 = �'2 arctan2

�k'2 :

The corresponding orthogonal �{rotations appear twice in
our parameterization schemes (3). Therefore, it is always an
orthogonal double �{rotation, which must be implemented
(note the di�erent sign in contrast to (16) since '1 and
'2 each appear twice in (4) but with opposite signs). This
implies that the simple realization of the scaling factor (16)
can be applied.
The price one has to pay for the simplicity of the �lters is,
that the parameter space consisting of all possible rotation
angles is reduced to a discrete parameter space spanned by
the angles �k = arctan2�k. But by using di�erent para-
meterization schemes all having a constant sum of anglesP

k �k = �45o, the grid of the reduced parameter space
becomes more dense. Some of these schemes are given in
Table I. The parameters '1 and '2 of the di�erent schemes
are not equal and one parameterization scheme might be
better suited than the other for an approximation by the
available set of �{rotation angles.

S. �1 �2 �3

1 �45o � '1 '1 + '2 �'2
2 �45o � '1 + '2 '1 �'2
3 �90o + '1 45o � '1 + '2 �'2
4 �90o + '1 + '2 45o � '1 �'2
5 90o � '1 45o + '2 + '1 �180o � '2

TABLE I

Parameterization schemes for n = 6 wavelet transforms
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Fig. 5. Zero{distribution of H(z) in the reduced parameter space

Fig. 5 shows the zeros of the polynomial G(z) generated
in the reduced parameter space with the parameteriza-
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tion schemes 1{4 of Table I. Plotted are only those ze-
ros, which are interesting with respect to the properties of
compact support, vanishing moments, regularity and fre-
quency behavior. The characteristic zeros are located close
to z = �1, therefore, the area around this point is shown in
detail. Though the parameter space is reduced to the do-
main of angles �k = arctan2�k, the zero{distribution still
allows the generation of wavelet transforms, whose zeros
are placed close to z = �1 or close to the unit circle.

Besides the use of di�erent parameterization schemes, ano-
ther possibility for obtaining a denser grid is using other
classes of orthogonal �{rotations [7]. Of course, one has
always the possibility to increase the accuracy of the ro-
tation approximation (equivalent to tighten the grid) by
using more than one �{rotation per parameter.

The decisive question is whether or not the reduced para-
meter space leads to suitable alternatives to the optimal
wavelets of Section III. Wavelet transforms were parame-
terized in the reduced parameter space that show the best
performance with respect to the discussed properties (i.e.
compact support, vanishing moments, regularity, frequency
behavior and symmetry), whereby the parameters k'1 and
k'2 of a certain parameterization scheme with the best per-
formance are determined. In the Figs. 6{11 the plots of the
scaling functions of the versions ~OD

4 , ~OR
4 , ~OD

6 , ~OR
6 , ~OF

6 ,
~OS
6 designed in the reduced parameter space (solid line)

and the scaling functions belonging to the standard ver-
sions OD

4 , O
R
4 , O

D
6 , O

R
6 , O

F
6 , O

S
6 (dotted line) are compa-

red. Also the zeros of G(z) of the standard versions (up-
per right) and the approximate version (lower right) are
given. The resulting lattice structure of the new versions
showing the simple implementation (only very few shift and
add operations are necessary) are given at the bottom of
each Figure. Table II compares all solutions with respect
to vanishing moments, regularity (upper bound), frequency
behavior and rotation angles.

Obviously, the di�erences between the scaling functions
showing the e�cient implementation and the standard ver-
sions are very small. The comparison of the regularity r
and the stopband norm t of the approximate and stan-
dard versions stresses the good performance of the wavelet
transforms parameterized in the reduced parameter space.
Of course, this is due to the small di�erences in the ro-
tation angles, i.e. �k � �. Only in the case of ~OR

6 the
smaller H�older coe�cient might be improved with an addi-
tional pair of �{rotations. Adding �6 to �2 and subtract �6
from �3 increases the upper bound of the regularity from
r = 1:0612 to r = 1:3714, whereby the regularity of the
standard solution (r = 1:4176) is almost achieved.

Since only one of the zeros of G(z) is preserved exactly at
z = �1 the number of vanishing moments is reduced to one
by the approximation. Of course, this also a�ects the exact
regularity of the continuous bases. For many applications,
however, only the �nite scale regularity of the (discrete)
wavelet transform is essential, i.e. the regularity is evalua-
ted only for a certain number of �nite scales. This number
is given by the actual number of stages used for the dis-
crete wavelet transform. It is shown in [8] that the approxi-
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mate versions show a good �nite scale regularity although
the number of exactly vanishing moments is always p = 1
(higher moments only vanish approximately). In Fig. 12
the scaling function and the �rst and second numerical
derivative of the original Daubechies scaling function OD

6

(p = 3 vanishing moments; plots in the upper row) and
the approximate scaling function (m0 = 0, m1 = �0:0761,
m2 = �0:9247; plots in the bottom row) are shown for the
�nite scale j = 7.
Obviously, the regularity of the scaling function is hardly
degraded. This regularity can explicitly be analyzed using
the discrete time de�nitions of regularity (slopes) in [17].
As long as the function and the respective �nite scale re-
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gularity show a reasonable behavior, the approximate dis-
crete wavelet transform will be as well suited as the exact
discrete wavelet transform. Note that the continuous ap-
proximate scaling function (i.e. for j !1) is actually not
di�erentiable. However, the �nite scale regularity (slopes)
is de�ned.

If the approach with one �{rotation does not guarantee
the suitability of the discrete transform, of course, one has
always the possibility of using more than one orthogonal
�{rotation per parameter. Fig. 13 demonstrates the im-
provement of the approximation by using more than one
�{rotation per parameter. The di�erence between the sca-
ling function realized by the exact rotations and the sca-

ling function realized by using z �{rotations per parameter
(z = 1; 2; 3) is shown for OD

6 .

VI. Conclusion

In this paper a method was presented for parameterizing
orthogonal wavelet transforms with respect to certain pro-
perties. Besides the standard properties (i.e. compact sup-
port, vanishing moments, regularity, frequency behavior,
symmetry) a simple implementation of the wavelet trans-
forms is also taken into consideration. Using only one sim-
ple orthogonal �{rotation per parameter (rotation angle of
the lattice �lter) guarantees the most simple implementa-
tion of the transform. Di�erent parameterization schemes,
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di�erent types of �{rotations as well as more than only
one �{rotation per parameter can be used to design wa-
velets which are closer to the standard versions. The most
simple version (one �{rotation per parameter), however,
already leads to wavelets which approximate the standard
versions very well, such that for many practical applicati-
ons these fast/simple wavelet transforms perform as good
as the standard versions. O�ering the possibility of a very
simple implementation, the presented approach has already
been used for an e�cient VLSI{realization of discrete, or-
thogonal wavelet transforms [18].
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