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The generation of bond, angle, and torsion parameters for

classical molecular dynamics force fields typically requires fit-

ting parameters such that classical properties such as energies

and gradients match precalculated quantum data for struc-

tures that scan the value of interest. We present a program,

Paramfit, distributed as part of the AmberTools software pack-

age that automates and extends this fitting process, allowing

for simplified parameter generation for applications ranging

from single molecules to entire force fields. Paramfit imple-

ments a novel combination of a genetic and simplex algorithm

to find the optimal set of parameters that replicate either

quantum energy or force data. The program allows for the

derivation of multiple parameters simultaneously using signifi-

cantly fewer quantum calculations than previous methods, and

can also fit parameters across multiple molecules with applica-

tions to force field development. Paramfit has been applied

successfully to systems with a sparse number of structures,

and has already proven crucial in the development of the

Assisted Model Building with Energy Refinement Lipid14 force

field. VC 2014 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23775

Introduction

Classical molecular dynamics (MD) simulations integrate New-

ton’s equations of motion over a molecule for a set time step.

This method has been used to study condensed phase biomo-

lecular systems including proteins, nucleic acids, carbohy-

drates, and lipids on biological (ms) timescales. Critical to the

success of classical MD simulations is the accuracy of the

underlying parameters, collectively termed a force field.

Assisted Model Building with Energy Refinement (AMBER) is

a MD software suite widely used by researchers to simulate

proteins and biomolecules.[1,2] The potential energy is

described in terms of the following equation: [3]
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This equation calculates energy as the sum of a harmonic

potential for bonds and angles, a truncated Fourier series for

dihedrals, and Lennard-Jones and pairwise electrostatic poten-

tial function for nonbonded forces, with the prime on the non-

bonded term sum indicating that the calculation is only

performed for atoms in different molecules or separated by at

least three bonds. Partial derivatives of this equation with

respect to atom position in the x, y, and z directions provide

the forces from which to propagate Newton’s equations of

motion.

The force field parameters in the AMBER Hamiltonian are

typically refined to fit quantum level equations at an appropri-

ate level of theory and basis set, typically the highest possible

level of theory that can be completed in a reasonable time-

scale without known biases. Force fields are validated through

comparison of simulation derived values (e.g., heat of vaporiza-

tion, density, or area per molecule) with experimental ones.

The parameters that describe the harmonic potential for

bonds and angles may be obtained simply from scanning a

set of structures containing a sampling of bond or angle val-

ues and plotting the energy of the resulting structures.[4,5] The

equilibrium value parameter corresponds to the bond or angle

value resulting in a minimal energy structure, and the force

constant is described by fitting a quadratic function around

this minimum.

Dihedrals are represented by a more complex potential

function, but are parameterized in a similar way—a scan of

the energy of structures with many possible torsion angles for

that dihedral is conducted, and the resulting plot is fit to a

truncated Fourier series with typically up to six terms.

The equilibrium value for bonds and angles may also be

obtained from experimental data such as infrared, microwave,

or neutron diffraction studies. Nonbonded forces are defined

by the partial charges and Van der Waals potentials on each
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atom, and well defined methods such as RESP exist for their

derivation.[6]

Obtaining the truncated Fourier series describing dihedrals

presents a significant obstacle to force field development. Usu-

ally, dihedral terms are derived by fitting to a quantum-level

rotational scan about a dihedral of interest or to several sta-

tionary points on the dihedral potential[7] either manually[8] or

with algorithms such as Monte Carlo simulated annealing.[9]

However, this method requires a large number of expensive

quantum calculations requiring significant computational

investment. Furthermore, it can prohibit fitting multiple dihe-

dral types simultaneously, which is problematic given the

coupled nature of most molecular dihedrals.

Existing methods for parameterization of custom small mol-

ecules, such as Antechamber[10] or Paramchem,[11,12] usually

retrieve parameters by analogy to similar molecules that have

already been parameterized as part of an existing forcefield.

However, the assumption that parameters from seemingly

analogous molecules are identical may not be valid, especially

if the analogy is determined by software. Methods used to

derive parameters as part of force field development rely on a

small number of conformational samples,[7] involve expensive

calculations of vibrational spectra and geometry optimization

at a quantum level of theory,[13] or require hand-tuning of

resulting parameters.[14] These methods additionally have little

to no support for the simultaneous fitting of multiple parame-

ters, resulting in more quantum calculations and potential

neglect of coupling effects as each parameter must be fitted

individually to a set of quantum data that sample that param-

eter rather than using a common set of calculations to derive

all parameters.

There is a dearth of software that can assist the average

computational chemist in obtaining parameters for a small

molecule—if assigning parameters by analogy to other mole-

cules fails to accurately describe the system of interest, the

researcher must become familiar with force field development

to obtain parameters from first principles. Several projects

aimed at addressing this need are still under development or

defunct—the ParamChem gateway[11] does not yet provide

functionality to generate dihedral parameters, and the visual

molecular dynamics (VMD) plugin ParaTool, which aimed to

derive Chemistry at HARvard Macromolecular Mechanics

(CHARMM) parameters from quantum mechanical (QM) calcu-

lations, halted in the development stage years ago. Similarly,

the ParmScan[15] program, which could obtain the Fourier

series for a dihedral using a genetic algorithm, is not publicly

available. Existing user-friendly tools such as ffTK[16] and gen-

eral automated atomic model parameterization (GAAMP)[17]

can fit parameters to QM data, and can derive a single dihe-

dral force constant at a time through a rotational scan.

We present here a program named Paramfit that is designed

to address derivation of bonded terms in the AMBER equation

in a systematic way with an emphasis on minimizing the

amount of necessary quantum calculations. Paramfit’s interface

guides users through the creation of ab initio calculation input

files to the generation of parameter files for AMBER’s prepara-

tory programs for simulation.

Paramfit is capable of refining any parameter in the bonded

terms, including force constants Kr and Kh, equilibrium bond

length req or angle heq, dihedral barrier height Vn, dihedral

phase c or periodicity n. Any combination of these parameters

can be fit simultaneously, given a single set of input structures.

In fact, Paramfit can fit multiple parameters at once given any

reasonable conformational set.

The program is designed to address the needs of all users

who wish to generate force field parameters for use in AMBER

or other programs that use the AMBER force field. Paramfit

played an integral role in the refinement of the AMBER lipid

force fields GAFFLipid[18] and Lipid14,[19] where it was used to

fit multiple coupled torsional terms in glycerophospholipid

molecules. Paramfit provides a powerful tool for new molecu-

lar systems for where there are incomplete or insufficient

parameter sets available, offering an efficient method for man-

ual parameterization.

Methodology

Force fields are parameterized against ab initio quantum data

or experimental measurements so that energies or forces cal-

culated with force field parameters match the given quantum

or experimental data. Traditionally, terms used in the AMBER

force fields have been parameterized by conducting a scan

across a variety of structures sampling the torsion angles of

interest. Paramfit is designed for fitting to ab initio quantum

data, and can fit to either single-point quantum energies or

atomic forces. When fitting to energies, the program optimizes

parameters with the goal of minimizing the following least

squares fitness function:

f ðN; EQM; KÞ5
XN

i51

ðEMMðiÞ2EQMðiÞ1KÞ2
h i

(2)

where N is the number of molecular conformations to con-

sider, EQM is the single-point quantum energy of each confor-

mation, and EMM is the energy calculated using the AMBER

equation [eq. (1)] with a potential parameter set. K is a con-

stant offset that accounts for the different origins in the quan-

tum and AMBER energies, and allows minimization to zero to

be conducted.

Fitting to first derivatives operates under a similar approach,

using the vector norm to quantify differences in forces:

f ðN;Natoms; FQMÞ5
XN

i51

XNatoms

atom51

jFði; atomÞMM2Fði; atomÞQMj
2 (3)

Forces are summed either for all atoms in the molecule, or

only for those involved in a parameter to be optimized. This

option can reduce noise and ambiguity that is often present

in the energy landscape, especially for structures that are not

minimized before parameter fitting.

This optimization poses an extremely challenging problem,

especially when fitting more than one parameter. The fitness

landscape is very complicated, with a number of minima, and

often features attractive local minima with parameters that are
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physically unreasonable. The dimensionality of the problem is

often very high in a typical use case, and given the possible

parameter space to search, it is difficult to sample a represen-

tative landscape. To be efficient, any minimization algorithm

implementation must quantify the number of samples

required for convergence and reduce the number of function

evaluations to find the minimum, and provide reproducible

results while exploring a maximal amount of the search

space.[20]

Paramfit implements a hybrid genetic algorithm to conduct

the minimization, with refinement using a simplex algorithm

to accelerate convergence. A genetic algorithm minimizes in a

method analogous to biological evolution—an initial popula-

tion of size g is created at random and selection, recombina-

tion, and mutation operations are carried out on this

population in successive generations until an optimum is

reached.

The genetic algorithm starts with an initial population of

randomly generated parameter sets within a physically reason-

able range. The sets are then ranked according to their per-

formance on the fitness function. A certain percentage as

defined by the algorithm parameter q of the sets is allowed to

proceed to the recombination step.

For recombination, two parents are chosen uniquely from

the selection pool and are combined in one of two ways,

selected at random. Several recombination methods common

to genetic algorithms were tested and extensive trials found

the combination of these two methods that produced the

most effective convergence.[21]

The intermediate recombination method sets each child

parameter randomly within the range between that of the two

parents.[22] This method is most beneficial to the population

when a parameter is close to the optimum. The linear cross-

over recombination method chooses a split point at random;

all parameters in the set that occur before the split point

come from one parent, and the remainder from the other.[23]

This method improves fitness by allowing parameters to be

inherited independently of each other but retain the favorable

value found in the parent.

Following recombination, the mutation operation takes

place on a randomly chosen amount of parameters in the

population as defined by the algorithm parameter d. The fit-

ness of each member of the population is recalculated, the

population is sorted, and the next generation begins.

Convergence is reached when the best fitness within the

population remains unchanged for a threshold number of gen-

erations s. In Paramfit’s hybrid genetic algorithm, when the

best fitness remains unchanged from one generation to the

next, a simplex algorithm is run with weak convergence crite-

ria starting with the parameters specified by each of a random

5% of the population.

This novel combination of genetic and simplex algorithms

results in increased convergence speed compared to a genetic

algorithm alone, as shown in Figure 1. Genetic algorithms

excel at producing an exponential decrease in function value

within the first few generations, but following finding the

neighborhood of the minimum begin to stagnate and rely on

rare mutation events to improve fitness. Conversely, simplex

algorithms are excellent at finding a minimum given its neigh-

borhood, and improve the genetic algorithm population in a

much more directed manner than random mutation.

The algorithm is quite sensitive to the choice of its own

internal parameters, and as such they must be chosen carefully

to ensure optimal performance. For example, if the mutation

rate d is too high, good solutions will be frequently eliminated

as the mutation operation is usually destructive, but if it is too

low the algorithm may become trapped in local minima. This

d was optimized by running Paramfit repeatedly to scan this

value, obtaining a function-independent optimum at d50:05.

This q50:35 was obtained via the same method, and is also

function-independent as shown in Figure 2.

Perhaps the most important algorithm parameter is the

number of generations to converge, s. If s is too small, values

that do not represent the global minimum will be returned,

and if it is too large, computing power will be wasted running

needless generations. A pure genetic algorithm requires a

large value for s, as infrequent mutations will often improve

fitness in later generations; however, Paramfit’s combined

genetic-simplex approach reduces s considerably, as the sim-

plex iterations will always result in population improvement

unless the minimum has been found. A value of s 5 5 is the

default for the program, and results in a notably decreased

number of function evaluations.

All of the values for these parameters may be adjusted in

Paramfit’s input to establish stricter convergence criteria.

The population size g is function-dependent. Large values of

g provide greater sampling of the solution space, which may

result in faster initial progress, but require many more function

evaluations for convergence. A smaller value of g can result in

slower convergence and also more function evaluations,

depending on the initial generation. However, following con-

vergence the algorithm will retrieve the same parameters

regardless of g. The default population size of 50 results in a

near-minimal number of function evaluations for the majority

Figure 1. Algorithm convergence with simplex iterations for 50 runs on

blocked alanine tetrapeptide. In red are the runs with simplex refinement,

and in blue those without. All runs with simplex found the correct global

minimum within 35 generations, but many without continued to run for

100 generations or more without convergence.
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of molecular fits, however when the algorithm is applied to

other minimization problems, g should be rederived as shown

in Figure 6.

Additional fitting features

To facilitate force field development, fitting may be performed

to one or more parameters over several different molecules in

independent input structures. The fitness function used by the

algorithm then becomes:

f ðN; EQM;molecules; KÞ5
X

molecules

XN

i51

½ðEMMðiÞ2EQMðiÞÞ21K � (4)

This fitness function is minimized by the same algorithm as

single-molecule fits, and the resulting parameters will be appli-

cable over all of the molecules given. This enables the devel-

opment of general parameters that describe classes of

molecules rather than individual structures, and has been

applied to phospholipid force field development in Lipid14

(see Results section).

Additionally, input structures may be given weights within the fit-

ting algorithm. This method may be used, for example, in Lipid14

to fit alkane chain torsions. High energy structures with less favor-

able conformations can be given lower weights. These results in

the following fitness function being used for fitting to energies:

f ðN;w; EQM; KÞ5
XN

i51

wi½ðEMMðiÞ2EQMðiÞÞ21K � (5)

A higher wi for some structure i will increase the relative

energy agreement of that structure.

Figure 2. A plot of the mean converged function value (grey, triangles) and the mean number of function evaluations (black, circles) over several values of

the parent percentage parameter q. The optimal value of q preserves accuracy with the fewest number of function evaluations, and is system-

independent, with a value of approximately 0.35. Multiple amide backbone dihedrals were fit over 100 and 500 conformations of alanine tetrapeptide and

N-methylacetamide, respectively, for 10 runs at each q value. A scan of q was also performed for 30 trials at each value for minimizing a 10-dimensional

Rastrigin function (see Results).
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Usability

Paramfit contains a number of features designed to make it acces-

sible to computational researchers. Automated functionality is

included to create input files for several quantum programs given

an input set of structures in AMBER coordinate or restart format.

Paramfit parses the resulting outputs from the quantum

package (currently automatic parsing of Gaussian, Amsterdam

Density Functional (ADF), and general atomic and molecular

electronic structure system (GAMESS) outputs is supported) to

extract the relevant energy or forces for each structure, elimi-

nating the need for scripting.

Prompts allow the user to define the specific parameters to

be fit efficiently, and the list of these parameters is saved for

use in subsequent runs.

There are several structure validation tools included with Para-

mfit to evaluate the quality of the input conformations, which

are crucial for parameter refinement. Paramfit includes functional-

ity to generate plots demonstrating sampling of relevant bond,

angle, and dihedral length, angle, or torsion values, and will give

warnings in program output when structures inadequately sam-

ple certain conformational space, potentially leading to poorly

refined parameters. For example, dihedral parameterization

requires a structure sampling at least every 10� for the dihedral

of interest. Bond and angle parameters require the final con-

verged equilibrium angle value be within p/20 of a sampled con-

formational value. These thresholds may be changed by the user

to adjust the strictness of the bounds checking functionality.

Run time options, including the format of input and output

as well as algorithm parameters, are specified in an input job

control file. Given the numerous features of Paramfit, a wizard is

included that assists the user in the creation of the input files.

Results

Three case studies of Paramfit’s usage in a variety of scenarios were

examined to assess the program’s performance and robustness.

The Rastrigin function

The efficacy of Paramfit’s core algorithm was verified by mini-

mizing to the Rastrigin function, a function commonly used in

minimization algorithm testing that features numerous local

minima and one global minimum.[24] The function in n dimen-

sions is as follows:

RðxÞ510n1
Xn

i51

ðx2
i 210cos 2pxiÞ (6)

The function is defined for all xi, and the global minimum is

at 8xi50, R(x) 5 0 (Figure 3).

Paramfit’s genetic algorithm was used to minimize the Ras-

trigin function in a variety of dimensions, and was able to suc-

cessfully identify the global minimum in all trials with an

efficient number of function evaluations.

The algorithm started with an initial population of 50–500,

with initial values randomly selected in the range

xi�½21000; 1000�.
The algorithm was able to successfully find the global mini-

mum to at least 4 decimal places in all cases, and was tested

on systems up to 15 dimensions. Although the number of

function evaluations required predictably increases with

dimensionality, the algorithm scales well, as shown in Figure 4.

The algorithm is less efficient than other genetic algorithms

on this problem,[25] but this can be attributed to its stricter

convergence criteria and use of simplex iterations to ensure

the bottom of the well is reached.

Interestingly, when the algorithm was given a uniform initial

population with 21000 for each value, convergence to the

correct global minimum was achieved, albeit with a very high

number of function evaluations. This demonstrates that the

algorithm’s success does not depend on the values contained

within the randomly selected initial population (Fig. 5).

To verify algorithm parameter tuning, the algorithm was run

100 times with a variety of values for the initial population

size g on an eight-dimensional Rastrigin function and the

number of function evaluations required for convergence aver-

aged. The resulting curve, shown in Figure 6, illustrates how

the optimal population size of approximately 400 is evident.

Alanine tetrapeptide

To verify the algorithm’s ability to fit a realistic molecular sys-

tem, Paramfit was used to generate the ff99SB modified ver-

sion[26] of the ff99 force field using the same system used in

the original derivation. The original AMBER ff99 [27] parameters

misrepresented torsion terms on the amide backbone, result-

ing in over-stabilization of a-helices in protein simulations, and

ff99SB corrected this bias by adjusting dihedral torsion terms.

The correction was derived on blocked alanine tetrapeptide

(Fig. 7) by fitting each dihedral individually to an ab initio level

quantum scan. Paramfit was used to do a similar derivation

while fitting all backbone dihedrals simultaneously. To confirm

that the algorithm finds the global minimum energy difference

for realistic systems, the fit is conducted to classical energies

calculated with the ff99SB parameters.

Initial input structures were generated from a scan of / and

w from 0 to 180� every 5�. The energy of the structures was

calculated using the AMBER equation and ff99SB parameter

Figure 3. Three-dimensional view of the Rastrigin function in two dimen-

sions from x�½22; 2�. The landscape is complicated, with multiple local min-

ima that are very close to the global minimum at 0.

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2014, DOI: 10.1002/jcc.23775 5

http://onlinelibrary.wiley.com/


set. Any structures with an energy higher than 2000 kcal/mol

(representing severe clash or even overlap between atoms)

were discarded. This left a number of strained structures in the

remaining 1301 valid structures, but prevented the fit from

being biased by attempting to describe extremely rare and

high energy conformations.

Paramfit was used to fit the six dihedral torsion values for /
and w. The initial parameters given were set to a value of 1.00

for each term, although this value is not important as for this

experiment the program did not base its search on the initial

value. (If desired, Paramfit can be used to refine existing parame-

ters). A random selection of structures were chosen to fit to,

ranging in number from 2 to all 1301 and the fit was performed.

In all cases, Paramfit fit the objective function to 0.000. With

structures numbering greater than 10, the program always

Figure 6. Number of function evaluations vs. g for the Rastrigin function in

eight dimensions with a line of best fit. The number of function evalua-

tions refers to the mean evaluations required for convergence over 100 dif-

ferent runs of the algorithm.

Figure 4. Scaling of algorithm function evaluations with minimizing increasing dimensions of fit for both the Rastrigin test case and a fit to 50 conforma-

tions of blocked alanine tetrapeptide (Fig. 7). To account for variance between individual fits, the algorithm was run 50 times on each dimension.

Figure 5. Paramfit’s algorithm functions is capable of finding the global

minimum independently of initial population variance, demonstrating ran-

dom sampling of solution space is not required for successful convergence.

The algorithm was modified to sample initial populations with

xi�ð21000;210001varianceÞ, with variance 5 2000 representing a normal

use case’s completely random sampling. The algorithm run 50 times on the

six-dimensional Rastrigin function, and the final function value plotted.
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correctly recovered the ff99SB parameters. With a smaller

amount of structures, the algorithm still minimized the sum

squares energy difference to zero, but recovered a similar but

nonidentical dihedral torsion profile for the parameters (Table

1).

The structures used in the fit were chosen at random from

a set of 1301 each time the algorithm was run. The program’s

success at recovering the ff99SB parameters each time using

as few as 10 structures from the set demonstrates how a com-

plete scan of each dihedral is not necessary for parameter

generation. However, some degree of sampling of torsion

space is required for the parameters to be applicable in simu-

lations. If structures that represent only a small range of tor-

sion angles are used in fitting, the resulting parameters will

result in accurate energy calculations when that dihedral is

within that torsion range, but are not guaranteed to provide

accurate results for other values (Fig. 8).

Lipid 14

Paramfit was used in the development of the GAFFLipid[18]

and Lipid14[19] force fields to generate dihedral parameters for

lipid tails, resulting in the current Lipid14 parameter set that

allows tensionless simulation of lipid bilayers with AMBER. Par-

amfit was used to fit torsion parameters for tail and ester link-

age regions of several lipids during the development of these

force fields.

The CH2ACH2ACH2ACH2 alkane torsion potential was fit

with Paramfit to the energy of structures from torsion scans

performed on hexane and octane molecules evaluated using

the hybrid method for interaction energies (HM-IE).[28] Initial

structures were generated from a 15
�

torsion scan of hexane

and octane and then optimized at the MP2/cc-pVDZ level

before performing the single-point energy calculation (Fig. 9).

To emphasize physically reasonable conformations, the tgt hex-

ane local minima and tgttt octane local minima were given a

weighting of 10, all other local minima were given a weight of

4. The remainder of the structures was weighted at 1, while

the high-energy cis conformers were given a weight of 0.1.

The resulting torsion parameters reproduce the quantum

energy profile with considerably more success than standard

general amber force field (GAFF) parameters.

Paramfit was also used to generate torsion parameters

involving atoms of the ester linkage region between the lipid

head group and tail group, bringing their energy into agree-

ment with quantum data.

Lipid14 used the new force field refinement features of Para-

mfit including the hybrid genetic algorithm, structure weight-

ing, and fitting to multiple molecules. Validation of the new

parameter set was conducted by comparison to multiple

experimental lipid bilayer properties including density and X-

Ray scattering profiles. Paramfit was able to successfully

parameterize critical lipid torsions from quantum mechanics

energies that reproduce experimental lipid bilayer properties.

Discussion

Paramfit greatly simplifies the generation of bonded parame-

ters for use with AMBER MD simulations. Previously, the

Figure 8. The conformational space sampling of the input structures to

Paramfit determines the quality of the resulting parameters. The energy of

500 structures was evaluated with parameters obtained from a 10 struc-

tures fit to ff99SB energies randomly sampling dihedral space for / and w
(blue circles), and with those obtained from a 10 structures fit sampling a

15
�

range of both dihedrals (red stars). Each fit successfully minimized the

algorithm function to 0.00. The parameters resulting from the adequately

sampled run reproduce the true ff99SB parameters (black) while the other

set can be off by over 6 kcal/mol. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 9. An energy scan of the CH2ACH2ACH2ACH2 torsion angle of

octane at the QM level with the HM-IE relation (blue diamonds), the GAFF

parameters (red triangles) and Lipid14 parameters (black circles) demon-

strates improved energy calculations following the use of Paramfit. [Color

figure can be viewed in the online issue, which is available at wileyonlineli-

brary.com.]

Figure 7. Blocked alanine tetrapeptide. The carboxy carbons are assigned

atom type C, while the alpha carbons have atom type CT. Dihedral / con-

sists of atoms C-N-CT-C, and w is N-CT-C-N, and each is represented three

times in the molecule.
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problem of generating bonded parameters required a large

number of quantum calculations and a serial process of fitting

one parameter at a time.[12,17] Paramfit simplifies this process

by automating the fit using a novel combination of a genetic

and simplex algorithm.

This algorithm is able to consistently find the global mini-

mum within a poorly sampled, multidimensional landscape

with many local minima, as verified by its performance on the

Rastrigin function as well as its ability to recover known

parameters.

Obtaining parameters with Paramfit requires far fewer quan-

tum calculations than other methods due to its novel ability to

fit to an arbitrary set of input structures rather than requiring a

scan over parameters of interest. Additionally, Paramfit can fit

multiple parameters simultaneous, allowing for parameter cou-

pling to be accounted for in the resultant force field as well as

further reducing the number of quantum calculations required

to obtain a comprehensive set of parameters for a system.

Paramfit also greatly simplifies the development of force

fields that describe entire classes of molecules, by allowing the

derivation of one parameter across multiple molecules. For

example, data from every amino acid could be weighted and

used to generate terms that describe the behavior of dihedrals

in protein backbones in general.

Aimed at both average users and force field developers, the

program’s options streamline the parameter derivation work-

flow at each step, from writing the quantum input files to fit-

ting parameters to generating an output that can be easily

read into preparatory programs for simulation. A text-based

wizard can walk users who wish to generate parameters for a

specific system of interest through the entire process, while

powerful features such as weighting individual structures and

fitting multiple molecules allow the force field developer to

produce general parameters with ease.

Conclusions

Paramfit is open-source and distributed with AmberTools, the

free component of the AMBER suite of programs. Its algorithm

minimizes the energy or force fitness function in a na€ıve man-

ner that allows it to be applied to any minimization problem,

and has been demonstrated to successfully find the global

minimum of complicated landscapes such as the Rastrigin

function. This core algorithm may be applied to other minimi-

zation problems outside of MD, and within MD Paramfit’s

range of potential applications is large. This program is a

powerful and efficient solution for refining force fields.

We aim to apply Paramfit to further force field development

problems, including the extension of the Lipid14 force field to

other lipids or membrane components such as cholesterol. Its

release as part of AmberTools and emphasis on useability also

make it attractive to users seeking to refine general parame-

ters such as those from GAFF to better describe small mole-

cules. Finally, Paramfit’s powerful minimization algorithm may

be applied to other MD force fields through the addition of

support for other force field equations.
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