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Lactobacilli comprise an important group of probiotics for both human and animals.

The emerging concern regarding safety problems associated with live microbial

cells is enhancing the interest in using cell components and metabolites derived

from probiotic strains. Here, we define cell structural components and metabolites

of probiotic bacteria as paraprobiotics and postbiotics, respectively. Paraprobiotics

and postbiotics produced from Lactobacilli consist of a wide range of molecules

including peptidoglycans, surface proteins, cell wall polysaccharides, secreted proteins,

bacteriocins, and organic acids, which mediate positive effect on the host, such as

immunomodulatory, anti-tumor, antimicrobial, and barrier-preservation effects. In this

review, we systematically summarize the paraprobiotics and postbiotics derived from

Lactobacilli and their beneficial functions. We also discuss the mechanisms underlying

their beneficial effects on the host, and their interaction with the host cells. This review

may boost our understanding on the benefits andmolecular mechanisms associated with

paraprobiotics and probiotics from Lactobacilli, which may promote their applications in

humans and animals.

Keywords: paraprobiotics, postbiotics, Lactobacilli, metabolites, immunomodulatory effect

INTRODUCTION

The genus Lactobacillus is the largest genus among lactic acid bacteria (LAB), consisting of
more than 237 species (1), with continuous new species discoveries, such as Lactobacillus
metriopterae (2) and Lactobacillus timonensis (3). Some Lactobacillus species are among
the most widely used probiotics (4). Accumulating evidences are proposing that probiotic
cell components or metabolites which interacting with the host cells may trigger probiotic
effects (5–9). The advantages of metabolites and cell components of these probiotic bacteria
over probiotic bacteria were clarified (10, 11). Furthermore, it has been reported that not
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all probiotic bacteria are safe. Concerns associated with
live probiotic bacteria administration have been described in
case reports, clinical trials and experimental models (12–14).
Therefore, the applications of cell components or metabolites
derived from probiotic strains are gaining more interest.

Regarding the use of cell components and metabolites
of probiotics, different terms have been proposed, such as
“paraprobiotics,” “ghost probiotics” “inactivated probiotics”
“non-viable microbial cells,” “metabolic probiotics” “postbiotics,”
etc. The concept of paraprobiotics was proposed to indicate
the use of inactivated microbial cells or cell fractions that
confer health benefit to the host (15). In some studies, cell wall
components of the probiotics are categorized as paraprobiotics
(16). Postbiotics are defined as soluble products or metabolites
secreted by probiotics that have physiological benefits to the
host (9). Similar definition as “factors resulting from the
metabolic activity of a probiotic or any released molecules
capable of conferring beneficial effects to the host in a direct
or indirect way” was made by other researchers (17). To better
differentiate cellular structural components and metabolites of
probiotic strains, we define the cell structural components
(mainly cell wall components) as paraprobiotics and secretory
metabolites/componnets as postbiotics in this review.

The potential health benefits of probiotic Lactobacillus species
isolated from the intestine of humans and animals have been
documented in a plethora of research publications to date.
The terms of paraprobiotics and postbiotics have emerged
recently, but they have been adopted rapidly in several study
areas including food science, food microbiology, and health
and nutrition of human and animals. However, knowledge on
the types of paraprobiotics and postbiotics is limited and some
aspects related to the bioactivities and the action mechanisms
of health-promoting effects of paraprobiotics and postbiotics
remain unclear. The present review aims to update the evidence
on the paraprobiotics and postbiotics derived from Lactobacilli,
their physiological benefits and mechanism of interaction with
the host cells.

ISOLATION AND PURIFICATION OF
PARAPROBIOTICS AND POSTBIOTICS

Scientific evidences showed that there are different methods to
isolate and purify paraprobiotics and postbiotics from several
Lactobacilli species. Isolation of paraprobiotics and postbiotics
from different probiotic bacteria involve cell disruption
techniques including thermal treatment (18, 19), enzymatic
treatments (60), solvent extraction (20), radiation (ionizing and
UV rays) (21), high pressure (22) and sonication (23–26). Several
other methods also have the potential to be used for production
of paraprobiotics and postbiotics, such as ohmic heating and
supercritical CO2, drying, pulsed electric field (PEF), and pH
changes (27).

During the production of paraprobiotics from probiotics, it is
important to expose the cells to factors (27) without disrupting
cell structure (9). On the other hand, to isolate intracellular
postbiotics, it is required to disrupt the bacterial membrane

via combined treatments in order to obtain the intracellular
metabolites (9). Furthermore, extraction and clean-up steps
have been applied to help the isolation procedures, such as
centrifugation, dialysis, lyophilization and column purification
(23, 28–30). Secreted postbiotics by viable cells can be recovered
from supernatants, and the viable cells can be eliminated from
the medium by centrifugation and/or filtration (31). In most of
the time, we can isolate paraprobiotics and postbiotics. However,
in some cases it is difficult to separate them, and additional steps
such as microfiltration are necessary to isolate the postbiotic
fraction. The choice of techniques for isolation of postbiotics
and paraprobiotics depend on the characteristics of molecules
under study (32). Since the health benefits of paraprobiotics
and postbiotics are influenced by their isolation methods, it is
important to select the best methods and conditions for probiotic
inactivation to obtain paraprobiotics and postbiotics (33).

CATEGORIES, PROPERTIES, AND
POSITIVE EFFECTS OF PARAPROBIOTICS
AND POSTBIOTICS DERIVED FROM
LACTOBACILLUS

Studies described that most of the paraprobiotics are located
in the bacterial cell-envelope (5, 34). Generally, paraprobiotics
consist of a wide range of molecules including peptidoglycans,
surface proteins, cell wall polysaccharides, while postbiotics
include secreted proteins and peptides, bacteriocins, organic
acids, etc (10, 35–37). Furthermore, the paraprobiotics and
postbiotics mediate a wide range of positive effects on
the host such as immunomodulatory, anti-tumor, barrier-
preservation, and antimicrobial properties (24, 38). Different
species of Lactobacillus have different types of paraprobiotics
and postbiotics. In the following part, we summarized the
chemical composition and beneficial functions of paraprobiotics
and postbiotics derived from Lactobacilli (Table 1).

Paraprobiotics
Studies confirmed that cell surface components of Lactobacilli
are considered as an important part of effector molecules, as
this part of the microbial cell is the first to interact with
host cells. The cell envelope components of Lactobacilli, here
categorized as paraprobiotics, include peptidoglycan, teichoic
acid, cell-wall polysaccharides, cell surface-associated proteins,
and proteinaceous filaments, which have been reported to
mediate beneficial effects to the host (Figure 1).

Peptidoglycan
The cell wall of Lactobacilli contains a thick peptidoglycan layer,
which is a multilayer, cross-linked glycan chain with a repeating
pentapeptide unit of β-1,4-linked N-acetylglucosamine and
N-acetylmuramic disaccharide units (107) and the fundamental
composition of the glycan strands and pentapeptides was strain-
specific for Lactobacilli (108). At the time of biosynthesis,
assembly, and incorporation of peptidoglycan components,
modifications happen in the bacterial peptidoglycan which could
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TABLE 1 | Probiotic effects of paraprobiotics and postbiotics in Lactobacilli.

Probiotic

effects

Paraprobiotics/

postbiotics

Model References

Immunomodulatory

effects

Peptidoglycan Mice (39)

Teichoic acid Porcine intestinal

epithelial cell line

(7)

Cell-wall

polysaccharides

Exopolysaccharides

S-layer proteins

Mice and human cell

lines

Human cell lines

Mice, 3T3 cells,

Mouse cells

(40–42)

(8, 43)

(39, 44, 45)

Pili proteins Human cell, Murine

cell lines

(46–48)

Oligodeoxynucleotide

(ODN)

Human cell lines (49)

Pyroglutamic acid

dipeptides

Mouse cell lines (50)

Serine-Threonine

peptide

Human cell lines (51)

Bacteriocins Human and Mouse

cell lines

(52–54)

Short chain fatty

acids

Mouse cell lines (55);

(56)

Trp-Indole

derivatives

Mouse cell (57, 58)

Conjugated linoleic

acids

Human epithelium

cell lines

(59)

Antagonistic

effects against

pathogens

Cyclic dipeptides Human cells (60)

Bacteriocins Human, Mouse cells (61);

(62)

Conjugated linoleic

acids

Human epithelium

cell lines

(59)

Anti-tumor

effects

Exopolysaccharides Human colon cancer

HT-29 cell

(63, 64)

Conjugated linoleic

acid

S-layer proteins

Human epithelium

cell lines, human

prostate cancer cell

line

Human HT-29 cell

line

(65);

(66)

(67);

(68)

Preservation of

intestinal barrier

LPXTG proteins Human HT-29 cell

line

(69)

S-layer proteins Human HT-29 cell

line

(70)

Moonlighting

proteins

Human intestinal cell

lines

(71)

Pili proteins Caco-2 cell line (46, 72)

Aggregation-

promoting

factor

Caco-2 epithelial cell

lines

(73)

p40 and p75

proteins

Mouse cell lines (74, 75)

enhance the sensitivity to autolysis, hydrophobicity of the cell
envelope, and resistance to lysozyme (109).

Peptidoglycan of Lactobacillus casei (L. casei), Lactobacillus
johnsonii (L. johnsonii) JCM 2012 and Lactobacillus plantarum
ATCC 14917 was reported to suppress interleukin-12 (IL-12)
production via Toll-like receptor 2 (TLR2) which have been

associated with autoimmune and inflammatory bowel diseases
(94). Purified peptidoglycan from Lactobacillus salivarius (L.
salivarius) Ls33 also exerted anti-inflammatory properties by
inducing IL-10 production. Moreover, Ls33 peptidoglycan
stimulated dendritic cell and T-cell regulatory functions
upon sensing of nucleotide-binding oligomerization domain
protein 2 (NOD2), and rescued mice from colitis induced
by trinitrobenzene sulfonic acid (TNBS) (95). Furthermore,
peptidoglycan from Lactobacillus rhamnosus (L. rhamnosus)
CRL1505 was able to improve innate and systemic adaptive
immune responses in mice (39). Notably, strain- or species-
specific modifications of the conserved peptidoglycan polymers,
including amidation, acetylation, and glycosylation, can lead to
specific immunomodulatory capacities, which may contribute to
the strain-specificity of probiotic effect.

Teichoic Acid
Teichoic acids (TAs) are the second main constituent of cell walls
of Lactobacilli and account for up to half of the cell wall dry
weight (110). Due to the anionic polymers nature of the TA, it can
be covalently linked to peptidoglycan as wall teichoic acid (WTA)
or anchored to the cytoplasmic membrane by their lipid anchors
as lipoteichoic acid (LTA) (111).

Plethora studies reported the immunomodulatory
characteristics of TA from many species of Lactobacillus
(112). L. plantarum LTA (Lp.LTA) attenuated the expression
of IL-8 induced by Pam2CSK and exerted anti-inflammatory
effects on human intestinal epithelial cells (92). LTA of L.
plantarum also showed anti-inflammatory responses in porcine
intestinal epithelial cells (7). The anti-inflammatory functions
and effects of LTAs are species or strain-specific. For instance,
it has been shown that the majority of immunomodulatory
properties induced by L. plantarum TA were dependent on
D-alanylation (93).

Cell-Wall Polysaccharides
Polysaccharides are common in gram-positive bacteria surface
including Lactobacilli. The most studied polysaccharides are
exopolysaccharides (EPS). EPS may facilitate the interaction of
the bacteria with the environment, mediate adhesion properties,
protect against pathogens, and also act as a protective layer
(43, 113).

Studies revealed that EPS derived from several species of
Lactobacillus has a capacity to modulate systemic and mucosal
immune responses, and provide direct health-promoting
benefits. Purified EPS produced by L. rhamnosus RW-9595M
exhibited immuno-suppressive effect on macrophages by
inducing high levels of IL-10 and low or no tumor necrosis
factor alpha (TNF-α), IL-6, and IL-12 (99). Moreover, the
EPS-producing L. plantarum BGCG11 strain showed anti-
inflammatory effect, pointing to an immune-suppressive role
of EPS (100). Acidic fraction of EPS produced by L. plantarum
14 was able to decrease the production of pro-inflammatory
cytokines (IL-6, IL-8, and MCP-1) in porcine intestinal
epithelial cells in response to enterotoxigenic Escherichia
coli (E. coli) (ETEC) challenge (101). Apart from the anti-
inflammatory effect, EPS can also stimulate the immune
response. EPS derived from yogurt fermented with Lactobacillus
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FIGURE 1 | Schematic representation of the cell surface architecture of Lactobacilli, the bilipidic cell membrane (CM) with embedded proteins is covered by a

multilayered peptidoglycan (PG) shell decorated with lipoteichoic acids (LTA), wall teichoic acids (WTA), pili, proteins, and lipoproteins. Exopolysaccharides (EPS) form

a thick covering closely associated with PG and are surrounded by an outer envelope of S-layer proteins. The beneficial effects of the paraprobiotics and postbiotics

are denoted by numbers. (1) immunomodulatory effects; (2) antagonistic effects against pathogens; (3) anti-tumor effects; (4) preservation of intestinal barrier. Related

references are as follows. Pili: immunomodulatory effects (46–48), preservation of intestinal barrier (46, 72). Protein p40/p75: immunomodulatory effects (74),

preservation of intestinal barrier (17, 75–78). Aggregation promoting factor (APF) proteins: antagonistic effects against pathogens (79–83). Bacteriocins:

immunomodulatory effects (9, 84–87), antagonistic effects against pathogens (88–91). LTA: immunomodulatory effects (7, 92, 93). Peptidoglycan:

immunomodulatory effects (39, 94, 95). S-layers proteins: antagonistic effects against pathogens (96–98). Exopolysaccharides (EPS): immunomodulatory effects

(99–102), anti-tumor effects (75, 103–106).

delbrueckii (L. delbrueckii) subssp. bulgaricus OLL1073R-1
induced interferon gamma (IFN-γ) production and activated
natural killer (NK) cells in mice (102), which contributed
to anti-viral infection effect (114). EPS can also regulate
the energy metabolism of host. The EPS isolated from L.
rhamnosus GG inhibited adipogenesis, and deceased the level of
triacylglycerols and cholesterol ester in the liver and serum in
mice (115).

Besides to the immunoregulatory effect of EPS, studies also
described their anti-tumor abilities. In vitro anti-tumor assay
of the EPS from L. plantarum YW32 proved their powerful
inhibitory activity against colon cancer HT-29 cells (63). EPS
isolated from Lactobacillus acidophilus 20079 strain can regulate
both apoptotic and nuclear factor kappa B (NF-κB) inflammatory
pathways in human colon cancer and have a potentiality to up-
regulate the expression of IKbα, P53 and TGF genes (103). EPSs
extracted from L. casei M5, L. casei SB27, L. casei X12, and L.
casei K11 strains suppressed HT-29 cell growth via induction
of G0/G1 cell cycle arrest and apoptosis (104). EPS from L.
plantarum NCU116 induced c-Jun dependent Fas/Fasl-mediated
apoptosis via TLR2 in mouse CT26 cells (105). Moreover, EPS

from L. acidophilus inhibited the expressions of genes involved in
tumor angiogenesis and survival of the colon cancer cell lines in
vitro (106). Similarly, EPS from L. acidophilus LA1 demonstrated
their anti-tumor activity in vivo against Ehrlich ascites carcinoma
cells by suppressing the serum levels of malondialdehyde and
nitric oxide (116) and EPS of Lactobacillus gasseri strains also
showed their capability to inhibit cervical cancer cell growth and
modulate immune response (117).

Cell Surface Proteins
Surface layer proteins are one of the most important components
of the outermost cell envelope structures on Lactobacilli cell
surface and other probiotic bacteria species. Cell surface proteins
are classified as the proteins which are covalently or non-
covalently attached to the cell surface. Recent study indicated
that many types of surface proteins including LPXTG proteins,
S-layer proteins, pili proteins, moonlight proteins are produced
by Lactobacillus species including L. plantarum, L. rhamnosus,
Lactobacillus helvetics (L. helveticus), and L. acidophilus (118).
These proteins play significant positive roles on the host
biological processes.
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LPXTG PROTEINS

LPXTG protein is one of the proteins covalently attached to
the peptidoglycan of bacterial cell wall. These proteins contain
a C-terminal LPXTG signal, and are linked to the cell wall by
sortase A (SrtA). In Lactobacilli, LPXTG proteins are among the
best-known covalent anchored surface proteins. LPXTG proteins
were found in many Lactobacillus species including L. plantarum
WCFS1, L. johnsonii NCC533, Lactobacillus sakei (L. sakei) 23K
and L. salivarius UCC118 (119).

LPXTG proteins from different Lactobacillus species have
been shown to bind to mucus and epithelial cells, and play
major roles in bacteria-host interaction (120). About 12 proteins
containing LPXTG motifs were identified from L. plantarum,
which were involved in adhesion activity (120–122). Their major
role was adherence to collagen, fibronectin, chitin, or mucus
(123). Furthermore, studies with SrtA mutants of L. casei BL23
suggested that SrtA-dependent proteins participated in adhesion
of this strain to Caco-2 and HT29 cells (69).

S-LAYER PROTEINS

Many Lactobacilli strains, including Lactobacillus cripatus (L.
crispatus) ZJ001 and JCM 5810, L. acidophilus ATCC 4356,
Lactobacillus buchneri (L. buchneri) CD034, and Lactobacillus
brevisATCC 8287, display a surface coating made of a crystalline,
glycoprotein subunits also known as the S-layer (121). S-layer
proteins are mostly anchored to peptidoglycan by non-covalent
bonds (124). S-layer proteins of Lactobacilli account about 15% of
total cell wall proteins and they differ from counterparts of other
bacteria in their smaller size (25–71 kDa) and higher isoelectric
point values (9.4–10.4) (125). In some species of Lactobacillus, S-
layers with distinctive features can be found, such as glycosylated
S-layers in L. buchneri and Lactobacillus kefiri (L. kefiri) (96).

Adhesive S-layers proteins of probiotic Lactobacilli can inhibit
adherence and infection of pathogenic bacteria. S-layer proteins
isolated from Lactobacilliwere shown to bind to host cell proteins
and extracellular matrix (44, 126). The S-layer protein from
L. kefiri CIDCA 8348 improved the response of macrophages
to lipopolysaccharide (LPS) (125) and was able to enhance the
ovalbumin-specific immune response by triggering maturation
of antigen presenting cells through the recognition of glycan
moieties in mice (127). Lactobacillus paracasei subp. paracasei,
L. rhamnosus, and L. casei strains isolated from natural dairy
products are able to inhibit Shigella sonnei adhesion to HT-
29 cells via their S-layer proteins (128). Similarly, the S-layer
proteins from L. helveticus fb213, L. acidophilus fb116 and L.
acidophilus fb214 contributed to the adhesion of the Lactobacillus
strains to HT-29 cells and helped to inhibit the adherence
and invasion of E. coli ATCC 43893 (96). S-layer proteins of
Lactobacillus have also been demonstrated to competitively bind
the intestinal epithelium in vivo and inhibit pathogen infection
(97, 98).

PILI PROTEINS

Pili are elongated protein structures protruding outside bacterial
cells. Initially pili were considered as special features of pathogens

(129), until they were found in L. rhamnosus. Pili bind to
the intestinal mucusa and promote persistence of Lactobacillus
strains in GI tract (130, 131). The SpaCBA pili of L. rhamnosus
GG were a binding factor to human intestinal mucus, collagen,
and intestinal epithelial cell (IEC) lines (46), and SpaC was
credited as the major adhesion determinant (71, 107).

Studies also suggested other beneficial effects of pili derived
from Lactobacillus strains. Mutant of L. rhamnosus GG devoid
of SpaC induced increased mRNA expression of the pro-
inflammatory cytokines IL-8 and TNF-α in Caco-2 cells while
wild-type L. rhamnosus GG or SpaC alone had little impact on
cytokine production (46). The immunomodulatory effect of SpaC
was also observed in human fetal intestinal epithelial cell line H4
by modulating TLR-related gene expression (47). Comparative
analysis of L. rhamnosus GG wild-type and isogenic pili mutants
have shown immunoregulatory function of pilli by interactions
with monocytes and dendritic cells (46, 48). Similar comparison
also demonstrated that pilli can promote pathogen exclusion
including pilliated Enterococcus faecium (132). Furthermore,
SpaCBA pilli have been reported to be involved in promotion
of cell proliferation in intestinal crypts, and protection against
radiological insults (133). The SpaC pilin of L. rhamnosus
GG (LGG) has been confirmed to induce the generation of
reactive oxygen species (ROS) in epithelium and play a role
in stimulating ERK phosphorylation and protecting the gut’s
epithelial barrier (133).

MOONLIGHTING PROTEINS

Moonlighting proteins include various classes of proteins,
including translational elongation factors, metabolic enzymes,
ribosomal proteins, and molecular chaperones (134–138). They
are found in many species of Lactobacillus including L. crispatus,
L. plantarum, Lactobacillus reuteri (L. reuteri) and Lactobacillus
jensenii (L. jensenii) (135, 139–141).

Moonlighting proteins can mediate the colonization of the
probiotic strains in intestinal tract. L. acidophilus used surface
GAPDH to colonize the gut (142). Lactobacillus species including
L. plantarum, Lactobacillus fermentum (L. fermentum), and L.
jensenii were found to use moonlighting proteins in competitive
exclusion and displacement of pathogens (140). Furthermore,
moonlighting proteins including GAPDH, enolase and EF-Tu
were involved in plasminogen/plasmin binding and activation
(143), whichmight interfere with the exploitation of plasminogen
by gastrointestinal pathogens that express plasminogen receptors
or activators, such as Helicobacter pylori and Salmonella
sp. (144).

Postbiotics
As postbiotics, different secretory components of probiotic
Lactobacillus strains have been reported to mediate beneficial
effects, including proteins, peptides, organic acids, and other
small molecules. These components can be secreted by
live bacteria or released into the host environment after
bacteria lysis and confer various physiological benefits to
the host.
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Secreted Proteins and Peptides

Protein p40 and p75
Protein p40 and p75 were identified from many Lactobacilli
species including L. casei, L. paracasei, and L. rhamnosus (145).
They are secreted cell wall muramidases and have approximately
molecular sizes of 40 and 75 kDa, respectively (74). The positive
contribution of these proteins secreted from Lactobacillus
species has been described in several studies. The protein p40
from L. rhamnosus GG showed an immunomodulatry action
in mice (74). The p40 transactivated the epidermal growth
factor receptor (EGFR) in intestinal epithelial cells, inhibited
apoptosis and preserved barrier function in the colon, thereby
ameliorating intestinal injury and inflammation (17, 75, 76,
78, 109). Besides, p75 purified from L. rhamnosus GG and L.
casei BL23 have anti-apoptotic activity by inducing the EGF/Akt
pathway (145). Furthermore, the p40 and p75 proteins were able
to protect the intestinal epithelial tight junctions and barrier
functions by a protein kinase (PKC) and MAP kinase-dependent
mechanism (76).

Aggregation-promoting factor (APF)
Lactobacillus species have been reported to secrete a number
of aggregation promoting factor (APF) proteins, which are
extracellular proteins responsible for bridging of conjugal
pairs, self-aggregation, maintenance of cellular shape,
and co-aggregation with other commensal or pathogenic
bacteria (73, 82).

The function of APF from Lactobacilli mainly involves
host colonization and pathogen exclusion. Previous studies
demonstrated that L. gasseri SBT2055 decreased adhesion and
invasion of Campylobacter jejuni (C. jejuni) in vitro and hindered
its infection in chickens via co-aggregation with the pathogens,
and the co-aggregation was mediated by proteinaceous cell-
surface components (79). Similarly, Yungareva and Urshev
(81) also confirmed that APF in Lactobacillus delbr (L. delbr).
subspp Bulgaricus had co-aggregation property which inhibited
the growth of pathogenic bacteria. APF-2 from L. gasseri
ATCC 9857 strain contributed to inhibition of the adhesion
of Trichomonas vaginalis to human vaginal ectocervical cells
(80, 81). Furthermore, the presence of high concentration of
intracellular GGDEF protein (DgcA) in L. acidophilus and a
serine/threonine-rich APF protein from L. plantarum NCIMB
8826 resulted in increased production of EPS and enhanced
the co-aggregation ability (82, 83). The aggregation phenotype
enables Lactobacilli strains to colonize the GI tract, and to
inhibit adhesion of pathogens by competitive exclusion or by
co-aggregation with pathogens (62, 146).

Bacteriocins
Bacteriocins are a class of powerful small ribosomally synthesized
antimicrobial peptides with bactericidal or bacteriostatic
functions (147). Various types of bacteriocins were produced by
Lactobacilli species, such as lactacin B from L. acidophilus and
L. johnsonii, lactocin from L. casei, Lactocin 705 from L. casei,
Lactoccin G from L. lactis and plantaricin from L. plantarum
(148, 149).

Bacteriocins of probiotic Lactobacilli can mediate inhibitory
effect against pathogens. Bacteriocin PJ4 produced by L.
helveticus PJ4 isolated from rat gut microflora was active against
enteric pathogen (88) and bacteriocin DT24 produced by vaginal
L. brevis DT24 was antagonistic against uropathogenic E. coli
(89). Pangsomboon et al. (150) reported that bacteriocins
from L. paracasei were able to kill P. gingivalis. Moreover,
the bacteriocin extracted from probiotic L. acidophilus KS40
was able to inhibit urogenital pathogens such as Gardnerella
vaginalis, Streptococcus agalactiae, and Pseudomonas aeruginosa
(90). Reuterin produced by L. reuteri (6) exerted antimicrobial
effects by modifying thiol groups and inducing oxidative stress
in bacterial cells (151). L. salivarius UCC118, a probiotic
strain of human origin, produced bacteriocin Abp118, which
mediated the inhibitory effect of the probiotic against Listeria
monocytogenes infection in mice (91). Additionally, purified
bacteriocins from different Lactobacillus species have shown
anti-infective functions in mice models, demonstrating
that bacteriocins can be a promising alternative against
gastrointestinal infections (152).

Besides the antimicrobial effects, bacteriocins produced
by Lactobacillus may also affect host immunity. Plantaricin
was identified as the factor in L. plantarum WCFS1 that
modulate the immune response of DCs (84). Notably,
plantaricin can be produced during L. plantarum WCFS1
colonization in mice, thus supporting the function of this
bacteriocin under in vivo conditions (85). Phagocytosis
activities of macrophage were improved by bacteriocins isolated
from L. acidophilus (87). Moreover, bacteriocins can affect
the immune function of the host by selectively competing
with specific bacterial strains and shaping the microbiota
composition (9, 86).

Small Molecules
Small molecules differ from the above mentioned paraprobiotics
and protein/peptide postbiotics in that they do not have
strain-specific differences in the biochemical characteristics and
therefore are generally not responsible for strain-specificity of
probiotic functionality. Moreover, different from protein/protein
postbiotics, they can be produced by strategies independent of
the probiotic strains. However, subsets of the probiotic effects are
mediated by small molecules. Therefore, in this review, we also
categorized small molecules as postbiotics, and summarized their
beneficial effects.

Short chain fatty acids
SCFAs are produced by gut microbiota from indigestible food
components such as fiber, oligosaccharides and polysaccharides
via different metabolism channels (153, 154). The SCFAs have
a wide range of positive effects on the host, such as providing
energy sources for colonic epithelium cells (155), maintaining
metabolic homeostasis (156), regulating T regulatory cells (157,
158), and anti-inflammatory effects (159–162). Generally they are
essential for the health and well-being of the host when present
in sufficient amounts (163). Studies showed that Lactobacillus
strains can produce different types of SCFAs. L. rhamnosus
GG and L. gasseri PA 16/8 produce propionate (163, 164).
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Moreover, SCFAs have been associated with the beneficial effects
of probiotic Lactobacillus strains in some research. Dhaliwal et al.
(165) confirmed that supplementation of mice with L. plantarum
showed an increase in acetate and butyrate levels and reduced
intestinal permeability and monoamine oxidases in the brain.
SCFAs-promoting probiotic L. johnsonii L531 treatment have
been shown to control Salmonella infection and maintaining
metabolic homeostasis in pig (166). In a screening of LAB to
reduce cholesterol levels, the strain of L. plantarum CECT 7529,
which produced higher quantities of propionic and butyric acids,
showed excellent properties for reducing cholesterol levels (167).
Furthermore, probiotic strains L. salivarius FP25 and FP35, and
L. reuteri NCIMB exhibited inhibitory effect on colon cancer cell
proliferation, which was mediated by the production of SCFAs
(168, 169).

Conjugated linoleic acid (CLA)
Studies showed that many Lactobacillus species are able to
synthesize conjugated linoleic acids (CLAs) (170, 171). The
ability of L. rhamnosus PL60 to produce cis-9, tra-11 and tra-
10, cis-12-CLA in humans was the first report indicating that
probiotic bacteria produce CLA (172). Further studies showed
that some Lactobacilli species isolated from GI tract of human
and animals, including L. rhamnosus, L. acidophilus and L.
plantarum, are CLA producers (173, 174).

CLA inhibited the growth of HT-29 and Caco-2 cancer cell
lines in vitro (175). Proliferation of MDAMB-231 cells was
inhibited by L. plantarum-produced CLA in a dose dependent
manner (176). In vivo administration of CLA to rats could
decrease the occurrence of colonic tumors and increase the
apoptotic indices (177). Moreover, CLA has been shown to
reduce the incidence of colonic, skin, mammary, and prostate
carcinogenesis in animal models (178).

CLAs produced by probiotic Lactobacillus have remarkable
anti-tumor effect. CLA inhibited the growth of HT-29 and Caco-
2 cancer cell lines in vitro (175). Proliferation of MDAMB-231
cells was inhibited by L. plantarum-produced CLA in a dose
dependent manner (176). In vivo administration of CLA to rats
could decrease the occurrence of colonic tumors and increase
the apoptotic indices (177). Moreover, CLA has been shown to
reduce the incidence of colonic, skin, mammary, and prostate
carcinogenesis in animal models (178).

Neurotransmitters
Gut bacteria contribute to the proper function of gut-brain
axis by producing neurotransmitters, such as γ-aminobutyric
acid (GABA), glutamate, serotonin (5-HT), dopamine (DA),
norepinephrine, histamine and acetylcholine (179). Particularly,
Lactobacillus can produce multiple neurotransmitters, such
as GABA (180–186), serotonin (181), catecholamines (181),
dopamine (181), and acetylcholine (187). Different probiotic
Lactobacillus strains have been reported to confer beneficial
effects on mental health, acting as “psychobiotics,” including
L. paracasei (188), L. helveticus (189, 190), L. plantarum (165,
191), and L. rhamnosus (192). Moreover, studies have shown
that histamine and dopamine produced by gut commensal
Lactobacillus imparted significant role in sleep related disorders

and regulates neuronal signaling in depression, anxiety related
conditions disease (193), suggesting that the beneficial effects of
probiotic Lactobacillus on mental health might be attributable to
the neurotransmitters production.

INTERACTION OF PARAPROBIOTICS AND
POSTBIOTICS WITH THEIR RECEPTORS
ON HOST CELLS

The beneficial effects of paraprobiotics or postbiotics are
mediated through an interaction between the microbial products
and host. Probiotic Lactobacilli possess conserved MAMPs,
including peptidoglycan, LTA, S-layer protein A (SlpA), EPS, and
genomic DNA, which can be recognized by pattern recognition
receptors (PRRs), induce downstream signaling cascades that
confer the beneficial functions (5).

The importance of Toll-like receptors (TLRs) and Nucleotide-
binding oligomerization domain-like receptors (NLRs) in
mediating differential host interaction with paraprobiotics and
probiotics has been widely acknowledged (107, 194). In this
review we summarize four types of the PRRs that play principal
roles in the regulation of the host’s immune response and these
different types of PRRs can bind to specific paraprobiotics or
postbiotics of Lactobacillus strains (Figure 2).

Toll-Like Receptors (TLRs)
TLRs recognize distinct families of MAMPs. For instance,
TLR2 recognizes LTA and peptidoglycan; TLR2/TLR4 recognize
bacterial EPS with the help of RP105/DM1; TLR9 is responsive to
unmethylated CpG oligonucleotide (CpG-ODN) (195) (Table 2).
L. reuteri DSM 17938 strain showed a positive effect against
necrotizing enterocolitis via TLR2 (203). TLR2 recognized the
LTA of L. plantarum, and attenuated Pam2CSK4-induced IL-8
expression (46).

The EPS of L. delbrueckii TUA4408L can act as TLR2 and
TLR4 ligands, and exert anti-inflammatory activities in porcine
IECs by modulating MAPK and NF-κB signaling pathways
(197). L. plantarum N14 EPS reduced inflammation in intestinal
epithelial cells depending on RP105/MD1 complex (a member
of TLR family). (101). Similarly, L. rhamnosus GG and its
components (surface layer protein and EPS) inhibited MAPK
and NFκB signaling and alleviated LPS-induced inflammatory
cytokines in porcine intestinal epithelial cells by modulating TLR
expressions (204).

Nucleotide-Binding Oligomerization
Domain-Like Receptors (NLRs)
NLRs constitute a large family of PRRs and includes a number
of subfamilies, which can be distinguished depending on the
N-terminal effector domains (195). Two well-studied NLR
proteins are NOD1 and NOD2. The NOD1 recognizes molecules
containing D-Glu-mDAP (205), whereas NOD2 are vital for
the regulation of NAM-D-Ala-D-Glu unit of the molecules
(206). Recognition of muropeptide from Lactobacilli by NOD2
can induce anti-inflammatory properties and protect mice
from colitis development (94). Different types of signaling
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FIGURE 2 | Interactions of the MAMP of Lactobacillus with PRRs of the epithelial and immune cells of the host. Probiotic Lactobacillus possess conserved

microbe-associated molecular patterns (MAMPs), including peptidoglycan, lipoteichoic acids (LTA), S-layer protein A (SlpA), exopolysaccharides (EPS), and genomic

DNA which can be recognized by certain pattern recognition receptors (PRRs). Peptidoglycan and LTA interact with TLR2. Moreover, specific components of

peptidoglycan, such as meso-DAP and MDP, are recognized by NOD1 and NOD2, respectively. The EPSs of L. delbrueckii TUA4408L, act as TLR2 and TLR4 ligands

to exert anti-inflammatory activities by inhibiting the production of IL-6, IL-8, and MCP-1. On the apical side of IECs, CpG-DNA stimulated TLR9 interacts with MYD88

and the inhibitor of NF-κB kinase (IKK) complexes, which may induced IL-10 expression. Binding of SlpA to the DC-SIGN (dendritic cell-specificICAM3-grabbing non

integrin) receptor can induce IL-10 production in DCs and development of T cells. IEC, intestinal epithelial cell; DC, dendritic cell; Treg, T regulatory cell; Th, T helper

cell; MCP-1, monocyte chemoattranctant protein-1.

molecules from Lactobacilli species including the fragments
of peptidoglycan were sensed by NODs (207), and this
sensing results in the activation of NF-κB and antimicrobial
activity (208).

C-Type Lectin-Like Receptors (CTLRs)
CTLRs recognize carbohydrates molecules, through one or
more carbohydrate recognition domains (CRDs) (209). The
sugar moieties found in the glycan backbone of the bacterial
peptidoglycan bind CTLRs (210). After the ligand recognition,
specialized CTLRs trigger or inhibit wide ranges of signaling
pathways, thus modulate diverse immune responses (211).

DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) is a
CLR expressed mainly on dendritic cells (DCs) and recognizes
mannose- and fucose-containing glycans that are present on
many species of Lactobacilli bacterial cell surfaces. DC-SIGN
was previously shown to bind L. acidophilus SlpA in vitro
(200). SlpA-DC-SIGN interaction induced IL-10 production in

DCs promoted of T cells that secrete high amounts of IL-4,
thereby decreasing the Th1/Th2 ratio (200). Further, in vivo
role of the SlpA-induced protective immune regulation was
demonstrated (212).

G-Protein-Coupled Receptors (GPCRs)
The best characterized GPCRs are GPR41 and GPR43, which are
highly expressed by epithelial cells, adipocytes, enteroendocrine
cells and the cells of the sympathetic nervous system (213), and
are mainly activated by SCFAs (214). Butyrate and propionate
produced by microbiota in the gut acted with GPR43 and
regulated the accumulation of Foxp3+ Treg cells (215). The
recognition of SCFAs by GPR109A has also been reported. For
instance, activation of the GPR109A receptor by butyrate induced
the differentiation of regulatory and IL-10-producing T cells,
which suppressed colonic inflammation and carcinogenesis by
promoting anti-inflammatory properties in colonic macrophages
and dendritic cells (216). Furthermore, SCFAs produced by gut
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TABLE 2 | Receptors, ligands, and immunological effects.

ReceptorsLigands Probiotic effects Model References

TOLL-LIKE RECEPTORS (TLRs)

TLR2 PeptidoglycanDown-regulate IL-12 Mouse cell

lines

(94)

TLR2 LTA Down-regulate IL-8,

balance

IL-10/IL-12

Human

epithelial

Caco-2

cell line

(92, 196)

TLR2,

TLR4,

RP105/MD

EPS Down regulate IL-6,

IL-8, MCP-1,

Porcine

intestinal

cell lines

(101, 197)

TLR9 Unmethylated

CpG DNA

Suppress NF-κB

signaling pathway

Porcine

cell lines,

Mouse cell

lines

(198, 199)

NUCLEOTIDE-BINDING OLIGOMERIZATION DOMAIN-LIKE RECEPTORS

(NLRs)

NOD1

and

NOD2

Meso-DAP,

MDP

Up-regulate IL-10,

suppress

the production of IL-12

Mouse cell

lines

(94)

C-TYPE-LECTIN RECEPTORS (CLRs)

DC-SIGNSlpA Up-regulate IL-10, IL-4 Human cell

lines

(200)

G-PROTEIN-COUPLED RECEPTORS (GPCRs)

GPR41

GPR43

GPR109A

Acetate,

propionate,

and butyrate

Down-regulate TNF-α,

IL-6, IL-12, and NO

up-regulate IL-10

Human cell

lines

(201);

(202)

microbiota may regulate lipid metabolism, glucose homeostasis
and insulin sensitivity through GPCR signaling (156).

CONCLUSIONS

Paraprobiotics and postbiotics derived from Lactobacillus species
consist of a wide range of effector molecules. These products
and byproducts of probiotic Lactobacillus have been found to
possess magnificent beneficial functions including preservation
of epithelial barrier, anti-tumor effect, immunomodulation, and
antagonistic effects against pathogens. Furthermore, they have
various advantages compared with probiotics, including clear
chemical structures and safety dose parameters, as well as longer
shelf life (217, 218). Therefore, the use of paraprobiotics and

postbiotics may represent a valid and safer alternative to live
probiotic bacteria, and have exhibited good potential to replace
probiotics (219, 220).

The mechanisms underlying the beneficial effects have been
less known, especially the signaling pathways downstream
the interaction of paraprobiotics/postbiotics and PRRs, which
deserve more investigation. Furthermore, the structure-activity
relationship (SAR) of paraprobiotics and postbiotics will
be an interesting topic, which may guide the functional
improvement of these probiotic components, by either chemical
or biological strategies.

Currently the application of postbiotics and paraprobiotics
in human food, animal feed and pharmaceutical industries is
increasing and several paraprobiotic and postbiotics products
derived from Lactobacill species are commercially available
for prevention or treatment of some diseases (221–225).
Nevertheless, more evidence is needed to validate the beneficial
effects of paraprobiotics and postbiotics. Current advancement of
molecular technologies such asmulti-omics have been promoting
the identification of more paraprobiotics and postbiotics from
probiotic Lactobacillus strains. Moreover, novel probiotics from
other family or phylum are being discovered and studied,
such as commensal bacterium isolated from the intestine
of both human and animals (226, 227). The techniques
and experience of paraprobiotics and postbiotics discovery
from probiotic Lactobacilli may guide the investigation of
novel functional components derived from the new probiotics.
Collectively, paraprobiotics and postbiotics have good potential
as prophylatctic or therapeutic agents as well as functional food
or feed additives for human or animal use.
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