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Abstract. For multiparameter bilinear paraproduct operators B we prove the estimate

B : Lp � Lq 7! Lr; 1 < p; qay:

Here, 1=pþ 1=q ¼ 1=r and special attention is paid to the case of 0 < r < 1. (Note that the
families of multiparameter paraproducts are much richer than in the one parameter case.)
These estimates are the essential step in the version of the multiparameter Coifman-Meyer
theorem proved by C. Muscalu, J. Pipher, T. Tao, and C. Thiele [10, 11]. We o¤er a di¤erent
proof of these inequalities.

1991 Mathematics Subject Classification: 42B20; 42B25, 42B30.

1 Introduction

Our subject concerns the Coifman-Meyer theorem in a multiparameter setting.
Namely, for bounded function t : Rd ! C, we set

Tð f1; . . . ; fdÞðxÞ ¼def
ð
Rd

tðxÞe iðx1þ���þxd ÞxQn
j¼1

f̂fjðxjÞ dx1 � � � dxd

in which fj are Schwartz functions on R and ĝg denotes the Fourier transform, namely

ĝgðyÞ ¼def
ð
gðxÞe�iyx dx:

One is interested in conditions under which T extends to a bounded multilinear op-
erator on a product of Lp spaces. And the motivation for this paper is the Theorem
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1.1. Theorem. Suppose that t obeys the estimates

qa

qxa tðxÞ
����

����k jxj�a ¼
Qd
j¼1

jxjj�aj ; jajaN;ð1:2Þ

where x ¼ ðx1; . . . ; xdÞ and likewise for the multiindices a. There is a finite choice of N

so that for all 1 < pj ay, with not all pj being equal to infinity, the operator T extends

to a bounded linear operator

T : Lp1 � � � � � Lpd 7! Lr

where 1=r ¼
Pd

j¼1 1=pj.

In the statement of the Theorem, AkB means that AaKB for some unspecified
constant K .

This theorem has been the subject of wide ranging investigations since the inital re-
sults of Coifman and Meyer [3, 4]. The methods and techniques of the proof, built
around the subject of paraproducts, is the main focus of this article.

The singularities permitted in t in (1.2) invoke elements of the product theory of
maximal functions, singular integrals, and related subjects. Some cases of the theo-
rem above were found by Journé [8], following the identification of product BMO by
S.-Y. Chang and R. Fe¤erman [1, 2, 5].

The possibility that the image space Lr can have index less than one is the primary
new contribution of C. Muscalu, J. Pipher, T. Tao, and C. Thiele [10, 11]. The pur-
pose of this article is to give a somewhat di¤erent proof, one that discusses end point
issues, and is a little more leisurely than the cited articles.

The method of proving these inequalities is by way of paraproducts. And we take the
the latter as the primary focus of this article. See the next section for a definition of
the most familiar paraproducts. Many proofs of paraproduct results depend upon the
Calderón Zygmund decomposition, which has only weak analogs in the product
theory.

A very nice feature of the work of Muscalu et al. is that they find that the proof of the
theorem can be understood in terms that avoid the intricacies of the product BMO

theory of Chang and Fe¤erman. We find that some aspects of that theory enter into
di¤erent endpoint estimates, such as at p ¼ 1, where L1 should be replaced by the
Hardy space H 1, and p ¼ y, where the BMO space enters in.

The main result is Theorem 4.32 below, a discrete form of the Theorem above. This
theorem is contained in [10, 11], and our proof borrows elements of theirs. We o¤er
the proof as it di¤ers in some details. In addition, the rich family of multiparameter
paraproducts is not necessarily well understood. We hope that this paper adver-
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tises [10, 11] in particular, and, more generally, the subject of multiparameter para-
products.1

In the next section, we discuss the one parameter paraproducts. The proofs in this
case feature initial details that can be used in the multiparameter case. We present
proofs of these results in the special case of paraproducts formed from Haar func-
tions. The subject of mutliparameter paraproducts is taken up in Section 4. Our pre-
sentation and proofs in Section 3 have been influenced by the CBMS lectures of C.
Thiele [12].

2 One parameter paraproducts

For an interval I , we say that j is adapted to I i¤ kjk2 ¼ 1 and

jDnjðxÞjk jI j�n�1=2 1 þ jx� cðIÞj
jI j

� ��N

; n ¼ 0; 1:ð2:3Þ

Here, cðIÞ denotes the center of I , and N is a large integer, whose exact value need
not concern us, except to say that its value can depend upon the Lp inequalities that
we are considering.2 D denotes the derivative operator. We shall consistently work
with functions which have L2 norm at most one. Some of these functions we will also
insist to have integral zero. (Terminology for this will be introduced below.)

Intervals will most typically be dyadic, and we use the notation D for these intervals.
To be specific,

D ¼def f½ j2k; ð j þ 1Þ2kÞ : j; k A Zg:

With the control on the function and its derivative in the definition of adapted, ele-
ments of Littlewood-Paley theory will apply. Namely, we will have the inequalities
(2.16)–(2.18) for the square function constructed from the functions fjI : I A Dg.

Operators are built up from rank one operators f 7! h f ; jij 0. A paraproduct is, in
its simplest manifestation, of the form

Bð f1; f2Þ ¼def P
I AD

jI j�1=2
j3; I

Q2
j¼1

h fj; jj; Ii:

Here, the functions jj; I , for j ¼ 1; 2; 3 are adapted to I . Two of these three functions
are assumed to be of integral zero. We should emphasize that each individual sum-
mand is of the form

1 A substantial part of the di‰culties in [7, 9] is attributable to the variety of paraproducts in
the multiparameter setting.
2 It will be clear in the sequel that N ¼ minð3p1 þ 4; 3p2 þ 4Þ is su‰cient for the bilinear case,
for example. The main size requirement can be found in (4.67).
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ð f1; f2Þ 7! jI j�1=2
j3; I

Q2
j¼1

h fj; jj; Ii:

This is certainly a bounded operator from, say, L2 � L2 ! L1, and our desired con-
clusion is that the same is true for the sums above.

We will also consider higher linearities

Bð f1; f2; . . . ; fnÞ ¼def P
I AD

jI j�ðn�1Þ=2jnþ1; I

Qn
j¼1

h fj ; jj; Iið2:4Þ

where the functions jj; I are assumed to be adapted to I and two are of integral zero.
In the course of the proofs, it is convenient to consider the nþ 1 sublinear forms

Lð f1; f2; . . . ; fnþ1Þ ¼def P
I AD

jI j�ðn�1Þ=2 Qnþ1

j¼1

jh fj; jj; Iij:ð2:5Þ

Notice that this just assigns a number to the nþ 1 tuple of functions and that it
dominates hBð f1; f2; . . . ; fnÞ; fnþ1i. It is also of interest to consider the related sub-
linear operator

Lð f1; f2; . . . ; fn; fnþ1Þ ¼def P
I AD

jI j�ðnþ1Þ=2

� Qnþ1

j¼1

jh fj; jj; Iij
�
1I :ð2:6Þ

In particular, if L maps a product of Banach spaces into L1, then we conclude that L
is bounded on a related product of spaces, see (2.20).

2.7. Theorem. For nb 3 and 1 < pj ay, define 1
r
¼

Pn�1
j¼1

1
pj
. Then,

B :
Nn�1

j¼1

Lpj ! Lr:ð2:8Þ

In addition we have the endpoint estimates:

B :
Nn�1

j¼1

L1 ! L1=ðn�1Þ;yð2:9Þ

B :
Ns
j¼1

L1 �
Nn�1�s

j¼1

BMO ! L1=s;y:ð2:10Þ

In this last display, we require that the functions jj; I have integral zero for any choice of

j for which fj is only assumed to be BMO.

328 M. Lacey, J. Metcalfe

Brought to you by | Georgia Institute of Technology (Georgia Institute of Technology)
Authenticated | 172.16.1.226

Download Date | 2/18/12 5:11 PM



The estimates above follow immediately from the corresponding estimates for the
sublinear operator, in the case that the index of the range is between 1 and y.
Namely for 1 < r < y, this can be derived from

2.11. Theorem. For nb 3 and 1 < pj ay, define 1
s
¼

Pn
j¼1

1
pj
. If it is the case that

0 < s < y, then

kLð f1; f2; . . . ; fnÞks k
Qn
j¼1

k f kpj :ð2:12Þ

In the case that any pj ¼ 1, then L1 can be replaced by H 1, and the estimate above is

true. If we do not replace L1 by H 1, then only the weak type inequality is true. In

particular, we have the estimate

L :
Nn
j¼1

L1 ! L1=n;y:ð2:13Þ

In the case that any of pj equaly and the functions jj; I have integral zero for all I , then

the space Ly above can be replaced by BMO.

The essential case is that of n ¼ 3 above, and to avoid unnecessary notations, that is
the case discussed in the proof. Thus, we have three functions jj; I . Two of these are
assumed to be of integral zero. Due to the symmetry of the estimates we are to prove,
we can assume that these two functions occur for j ¼ 2; 3.

This in particular means that we have the estimate

sup
I AD

1I ðxÞ
jh f1; j1; Iijffiffiffiffiffi

jI j
p kMð f1ÞðxÞð2:14Þ

where M denotes the maximal function. There is another bound that applies to the
second and third functions. Namely, we set

Sjg ¼def
� P
I AD

jhg; jj; Iij
2

jI j 1I

�1=2

:ð2:15Þ

It is a consequence of the integral zero assumption placed on the functions j2; I and
j3; I that the usual Littlewood-Paley theory applies to these square functions. There-
fore, they map all Lp into themselves, for 1 < p < y, and we have the usual endpoint
estimates. To be explicit, these estimates are

kSj f kp k k f kp; 1 < p < y;ð2:16Þ

kSj f k1 k k f kH 1 ;ð2:17Þ

kSj f kBMO k k f ky:ð2:18Þ
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Note that as we are using the maximal function and square functions, we have access
to the following upper bound for numerical sequence

P
n

Q3
j¼1

aj;n a ka1;nklyka2;nkl2ka3;nkl2 :ð2:19Þ

2.1. Generalities on the proof. If 1 < pj < y and 1
p1
þ 1

p2
þ 1

p3
¼ 1, we can estimate,

based on (2.19) and Hölder’s inequality,

ð2:20Þ
ð
Bð f1; f2Þ f3 dx

a

ð
Lð f1; f2; f3Þ dxa

ð
ðMf1Þ � ðS2 f2Þ � ðS3 f3Þ dx

a kMf1kp1
kS2 f2kp2

kS3 f3kp3
k k f1kp1

k f2kp2
k f3kp3

:

This argument also applies when p1 ¼ y. When, however, any of the pj ¼ 1, one
should replace the L1 norm on fj with the H 1 norm.

The argument must be modified when, e.g., p2 ¼ y. For then the square function
kS2 f2ky is no longer bounded. And indeed, the sharp estimate on the square func-
tion replaces Ly with BMO.

Alternate methods are required when duality cannot be applied. Here, we shall obtain
inequalities of weak type. For example,

ljfBð f1; f2Þ > lgj1=r k k f1kp1
k f2kp2

;
1

p1
þ 1

p2
¼ 1

r
:ð2:21Þ

Interpolation will then supply the strong type inequalities, except for the endpoint
estimates.

As the class of operators B we consider are invariant under dilations by powers of 2,
this inequality follows from

jfBð f1; f2Þ > Kgja 1ð2:22Þ

where K is an absolute constant, and the inequality holds for all choices of smooth
compactly supported functions fj with Lpj norm 1.

The usefulness of this observation is already evident in that we have the following
(obvious) estimate

k fgk1=2;y k k f k1;ykgk1;y:ð2:23Þ
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This inequality immediately generalizes to general products and indices. We use this
generalization below.

One can e¤ectively use the symmetry in the formulation of the paraproducts in
passing to the sublinear function L, and considering weak type inequalities for it.
Namely, for 1a p1; p2 ay, we define p3 by 1

p1
þ 1

p2
þ 1

p3
¼ 1. In particular, p3 can

be negative: For p1 ¼ p2 ¼ 1, we have 1
p3
¼ �1, which we interpret as the dual index

to 1
2 . Let XðEÞ be the space of functions supported on a measurable set EHR and

bounded by 1. We then prove the inequality

jLð f1; f2; f3Þjk jE3j1=p3
Q2
j¼1

k fjkpj f3 A XðE3Þ:ð2:24Þ

Observe that this implies (2.22). Also observe that the inequality for L follows from
the following formulation: For all E3, we can choose E 0

3 HE3 with jE 0
3jb 1

2 jE3j, and

jLð f1; f2; f3Þjk jE3j1=p3
Q2
j¼1

k fjkpj f3 A XðE 0
3Þ:ð2:25Þ

By dilation invariance, it su‰ces to prove this estimate in the case that k f1kp1
¼

k f2kp2
¼ 1 and jE3j ¼ 1. All of these comments apply equally well in the multi-

parameter case.

2.2. H1 and BMO. We will restrict ourselves to the dyadic versions of the real Hardy
space H 1 and its dual BMO.

The Haar functions are

hI ¼ jI j�1=2ð1I� � 1IþÞ; I A D;ð2:26Þ

where I� ðIþÞ is the left (right) half of I . These functions form a basis for L2. The
dyadic square function from Haar functions is formed as follows.

Sf ¼def
� P
I AD

jh f ; hIij2

jI j 1I

�1=2

:

We define the real dyadic Hardy space H 1 as those functions f with

k f kH 1 ¼def k f k1 þ kSf k1 < y:

The dual to H 1 is BMO. This space has the equivalent norm

k f kBMO ¼def
sup
J AD

�
jJj�1 P

IHJ

jh f ; hIij2
�1=2

:ð2:27Þ
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These spaces are substitutes for L1 and Ly. In the current setting sharp endpoint es-
timates can be phrased in terms of these norms. And there is a rich interpolation
theory between these spaces.

3 Proofs in the one parameter case

The case of Haar paraproducts is the only case that we consider in the one parameter
case. The rationale is the proof in the multiparameter case includes the one parameter
case as a special instance. In addition, the Haar case is especially attractive, due to
the presence of the dyadic grid.

A particular way that it enters is this. Suppose that I is a collection of disjoint dyadic
intervals, not necessarily a partition of R. We define the conditional expectation with
respect to I as

Eð f jIÞðxÞ ¼def jI j�1Ð
I
f ðyÞ dy x A I ; I A I;

f ðxÞ x B
S

I AI I

(

We leave it as an exercise that these properties of the conditional expectation are true.

(1) Integrals are preserved under conditional expectation:
Ð
f dx ¼

Ð
Eð f jIÞ dx.

(2) f 7! Eð f jIÞ is a projection.

(3) f 7! Eð f jIÞ is of norm one on all Lp, 1a pay.

(4) f 7! Eð f jIÞ is bounded as a map from dyadic H 1 into itself.

We first turn to the range of inequalities for the sublinear operator L and the proof of
Theorem 2.11. Observe that by (2.19), we have

Lð f1; f2; f3ÞaMf1 � Sf2 � Sf3.ð3:28Þ

Here, we assume that we have mean zero in the second and third places, and we con-
tinue with this assumption below. To be specific, the sublinear operator is

Lð f1; f2; f3Þ ¼
P
I AD

jI j�3=2
1I jh f1; jhI jih f2; hIih f3; hIij:

For f1, we form the inner product with the absolute value of the Haar function. The
inequalities in (2.12) then follow from Hölder’s inequality, provided that all we are
not discussing an endpoint estimate. When s < 1, one can instead apply an appro-
priate version of (2.23).

If any pj ¼ 1, then we only conclude that Mfj and Sj fj are in L1;y. But we can apply
(2.23) to conclude the weak type estimate. If any pj ¼ 1 and fj A H 1, then we con-
clude that both Mfj and Sj fj are in L1, so that again Hölder’s inequality or (2.23) will
apply.
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We concern ourselves with the endpoint estimates where either of p2, p3 is infinity and
Ly is replaced with BMO. One class of inequalities are in fact easily available; they
are

ð3:29Þ
L : Ly nBMOnH 1 ! L1;

L : Ly nBMOnBMO ! BMO:

Notice that these estimates can be interpolated by standard linear methods.

Since the Haar functions are an unconditional basis for both H 1 and BMO,3 we can
conclude that

ð
Lð f1; f2; f3Þ dx ¼

P
I AD

jh f1; jhI jijffiffiffiffiffi
jI j

p jh f2; hIij jh f3; hIij

k k f1kyk f2kBMOk f3kH 1 :

This proves the first bound.

For the BMO estimate, for each dyadic interval J we have

P
IHJ

jh f1; jhI jijffiffiffiffiffi
jI j

p jh f2; hIij jh f3; hIijk k f1ky
Q2
j¼2

� P
IHJ

jh fj; hIij2
�1=2

k jJj k f1ky
Q2
j¼1

k fjkBMO:

This concludes the proof of the estimates (3.29).

The last estimates to prove are these:

L : Lp1 nBMOnLp3 ! Ls;
1

s
¼ 1

p1
þ 1

p3
:

At this point we make a more substantive reliance on the dyadic structure. The
strategy is first to prove the weak type inequalities, and in particular (2.24). Namely,
we will choose an exceptional set on which we will not attempt to estimate Lð f1; f2; f3Þ
and a conditional expectation to apply to f1, after which we will have a bounded
function in the first coordinate. But then we will be in a situation for which we can
appeal to the estimates in which we have duality.

3 While we are specifically appealing to the properties of the Haar functions here, this aspect
does generalize to the non-Haar functions.
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We will prove that L satisfies (2.24). Thus, fix fj functions in the appropriate spaces,
of norm one. Define

E ¼def fMf1 > 1g:

We do not attempt to estimate L on this set. That has the practical implication that
we need only consider the sum

LEð f1Þ ¼def P
IQE

jI j�1 jh f1; jhI jijffiffiffiffiffi
jI j

p jh f2; hIij jh f3; hIij1I

(Recall that we are assuming that f2 and f3 are fixed.) Let I be the collection of
maximal dyadic subintervals of E, and set g1 ¼def Eð f1jIÞ.

Note that by construction we will have the estimate kg1ky a 2. For otherwise, let J
be the smallest dyadic interval that strictly contains I (i.e. the parent of I ), and ob-
serve that

Ð
J
jgj dxb jJj. That is, we contradict the maximality of I .

In addition, for each dyadic interval I not contained in E, we have
Ð
I
f1 dx ¼

Ð
I
g dx.

Thus, we have

LEð f1Þ ¼ LEðg1Þ:ð3:30Þ

Therefore, using (3.29), we can estimate

jfLð f1; f2; f3Þ > 1gj

a jEj þ jfLðg1; f2; f3Þ > 1gjk 1 þ ½kg1kyk f2kBMOk f3kp3
�p3 k 1:

Our discussion of the estimates in Theorem 2.11 is complete.

Let us turn to the bilinear operator Bð f1; f2Þ and the proof of Theorem 2.7. In the
inequality (2.8), if the index r of the target space is between 1 and y, then we can
appeal to duality, as is done explicitly in (2.20).

We discuss the proof of the weak type bounds for B, in the case that duality does
not apply, namely 1

2 a r < 1. Marcinkiewicz interpolation will then deduce the strong
type Lr inequalities.

In so doing, we need only prove (2.22), and we will repeat the use of conditional
expectation in the argument (3.30) above. Take fj A Lpj of norm one, for j ¼ 1; 2.
Suppose that we have in fact k fjky a 1. We conclude that in fact k fjkq a 1 for all
pj < q < y, and so for q > 4 large, we can use the proven bound of Lq � Lq into
Lq=2 to conclude that

jfBð f1; f2Þ > Kgja 1:

The general case can be reduced to this situation.
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Define

E ¼def S2
j¼1

fMfj > 1g; F ¼def
M1E >

1

2

� �
:

Clearly, the set F has measure bounded by an absolute constant. We will now esti-
mate Bð f1; f2Þ on the set F . Define

BF ð f1; f2Þ ¼
P
IQF

jI j�1=2
hIh f1; jhI jih f2; hIi;

and set I to the collection of maximal dyadic intervals contained in F . We set
gj ¼

def Eð fjjIÞ. Then, certainly we have kgjky a 1. We claim that

BF ðg1; g2Þ1F c ¼ Bð f1; f2Þ1F c :ð3:31Þ

And this will complete our proof.

Suppose that I is a dyadic interval that is not contained in F . The Haar function as-
sociated to I is constant on the two sub halves of I , which we denote as IG. By our
definition of F , neither IG can be contained in E, hence we have

ð
IG

fj dx ¼
ð
IG

gj dx:

This proves (3.31), and so we have completed the proof of the norm bounds for B.

4 Multiparameter paraproducts

We now consider paraproducts formed over sums of dyadic rectangles in Rd . The
class of paraproducts is then invariant under a d parameter family of dilations, a
situation that we refer to as ‘‘multi-parameter.’’4

Let us say that a function j is adapted to a rectangle R ¼
Nd

j¼1 Rj i¤ jðx1; . . . ; xdÞ ¼Qd
j¼1 jjðxjÞ, with each jj adapted to the interval Rj in the sense of (2.3).

Our paraproducts are of the same general form

Bð f1; f2; . . . ; fnÞ ¼def P
R AR

jnþ1;R

jRjðn�1Þ=2

Qn
v¼1

h fv; jv;Ri:

4 In this paper, the number of dimensions will be the number of parameters. In general, the
two are however distinct. Consider Rd1 nRd2 and rectangles in this space formed from a cube
in each space Rdj .
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Here, we let R ¼def
Dd be the class of dyadic rectangles. With the obvious changes, we

will also use the notations for the sublinear forms and operators given in (2.5) and
(2.6).

The Theorem in this setting is

4.32. Theorem. Let nb 2 and 1 < pv ay for 1a va n, and define 1
r
¼

Pn
v¼1

1
pv
.

Assume that for each choice of coordinate 1a ja d, there are two choices of

1a va nþ 1 for which we have

ð
R
jv;Rðx1; x2; . . . ; xnÞ dxj ¼ 0; for all xk with k0 j and all R:ð4:33Þ

Then, we have the inequality

B :
Nn
v¼1

Lpv ! Lr:ð4:34Þ

Assume that the functions jv;R satisfy (4.33) for all j. In the instance that pv ¼ 1, the
inequality remains true if we replace L1 by H 1 defined below. In the instance that

pv ¼ y, we can replace Ly by the larger space BMO ¼ ðH 1Þ� defined below.

The critical distinction comes from the assumption about the zeros, (4.33). Let us say
that there are xj zeros in the vth position i¤

ð
jv;Rðx1; . . . ; xdÞ dxj ¼ 0 for all xk with k0 j:ð4:35Þ

And so our assumption is that for each 1a ja d there are two choices of v for which
we have zeros in the vth position.

Again, the critical case is n ¼ 2, so that B is bilinear. There are essentially d distinct
cases. The first case, with the greatest similarity to the one parameter case, is where we
have, for example, xj zeros in first and second positions for all 1a ja d. The other
cases do not have a proper analog in the one parameter case.

4.1. H1 and BMO. We turn to the product Hardy space theory, as developed by
S.-Y. Chang and R. Fe¤erman [1, 2]. This section is not strictly speaking needed, but
does inform the modes of proof below.

H 1ðCd
þÞ will denote the d-fold product real valued Hardy space. This space consists

of functions f : Rd ! R where Rd is viewed as the boundary of

Cd
þ ¼

Nd
j¼1

fz A C : ReðzÞ > 0g:
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We require that there is a function F : Cd
þ ! C that is holomorphic in each variable

separately and

f ðxÞ ¼ lim
kyk!0

ReF ðx1 þ iy1; . . . ; xd þ iydÞ:

The norm of f is taken to be

k f kH 1 ¼ lim
y1#0

� � � lim
yd#0

kFðx1 þ iy1; . . . ; xd þ iydÞkL1ðRd Þ:

Product H 1ðCd
þÞ has the equivalent norm

k f kH 1 ¼def k f k1 þ kSf k1ð4:36Þ

where S is the square function formed over the product Haar basis

Sf ¼def
� P
R AR

jh f ; hRij2

jRj 1R

�1=2

:

For a rectangle R ¼
Qd

j¼1 Rð jÞ A Dd , we have set

hRðx1; . . . ; xdÞ ¼
Qd
j¼1

hRð jÞ ðxjÞ:

The last product is over one dimensional Haar functions as in (2.26). The basis
fhR : R A Ddg is the d-fold tensor product of the Haar basis.

The dual of H 1ðCd
þÞ is BMOðCd

þÞ, the d-fold product BMO space. It is a Theorem of
S.-Y. Chang and R. Fe¤erman [2] that this space has an explicit characterization in
terms of the product Haar basis. In particular, Chang and Fe¤erman showed that the
product BMO space has the equivalent norm

kbkBMO ¼ sup
UHRd

�
jU j�1 P

RHU

jhb; hRij2
�1=2

where it essential that the supremum be formed over all subsets U HRd of finite
measure.

4.2. The governing operators. We describe a range of operators, which encompass
the d parameter maximal function at one end and the d parameter square function
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at the other. These operators, as we shall see, govern the behaviors of these para-
products.

To be explicit, in the two parameter setting, these operators are as follows. First we
have the maximal function,

MM f ¼def
sup
R AR

jh f ; jRijffiffiffiffiffiffiffi
jRj

p 1R;

which is a variant of the strong maximal function.

The reason for the iterated style notation becomes clearer with the second type of
governing operator. It is

S1M2 f ¼def
� P
Rð1Þ AD

sup
Rð2Þ AD

jh f ; jRð1Þ�Rð2Þ
ij2

jRj 1R

�1=2

; R ¼ Rð1Þ � Rð2Þ:

In order for this to be a bounded operator, the functions fjRg must have zeros in
the first coordinate. But then, the operator will be bounded on all Lp’s for 1 <
p < y. There is also the operator S2M1 in which the role of the coordinates is
changed.

A third type of operator is

M1S2 f ¼def
sup

Rð1Þ AD

� P
Rð2Þ AD

jh f ; jRð1Þ�Rð2Þ
ij2

jRj 1R

�1=2

; R ¼ Rð1Þ � Rð2Þ:

The functions fjRg must now have zeros in the second coordinate. And there is a
corresponding operator M2S1 in which the roles of the coordinates are reversed.

A fourth type of operator is the familiar two parameter square function

SSf ¼def
� P
R AR

jh f ; jRij
2

jRj 1R

�1=2

:

Here, we require that the functions jR have zeros in both coordinates. As with the
maximal function MM, the subscripts are not needed in this case.

In general, we set Tj to be either the square function S or the maximal function M,
both formed over a set of functions fjI : I A Dg acting on the jth coordinate. For a
permutation of the coordinates p : f1; . . . ; dg 7! f1; . . . ; dg, set

T ¼def
Tpð1Þ � � �TpðdÞ:ð4:37Þ
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The subscript pð jÞ indicates in which coordinate the operator Tpð jÞ operates. In
each position in which coordinate Tpð jÞ is the square function, we require that the
functions fjR : R A Rg have zeros in that coordinate. Note that these operators can
be viewed as

ð4:38Þ Tf ðxÞ ¼

						 � � �
					
(
jh f ; jRijffiffiffiffiffiffiffi

jRj
p 1R : R

¼ Rð1Þ � � � � � RðdÞ A R

)					
lsðpðdÞÞðRðpðdÞÞÞ

� � �

						
lsðpð1ÞÞðRðpð1ÞÞÞ

where sð jÞ is either 2 or y for all j.

The point of these definitions is that for all paraproducts B of d parameters, there are
three choices of Tk, k ¼ 1; 2; 3, operators as in in (4.37) for which we have

hBð f1; f2Þ; f3ia
ð Q3
k¼1

Tkð fkÞ dx:ð4:39Þ

This is a consequence of the essential hypothesis on there being two zeros in each co-
ordinate. In those two positions, one uses the square function. In every other position,
the maximal function is used.

Lp bounds for the operators T. Let us discuss the mapping properties of these oper-
ators, beginning with the maximal operator. We have been careful to insist that the
functions jR are products of adapted functions. Thus, in the two parameter case, we
can appeal to the one parameter maximal function twice, as follows.

kM1M2 f kp k kM1fM2 f gkp k kM2 f kp k k f kp:

Likewise, by a d fold iteration of this argument, it follows that

kM � � �Mf kp k k f kp; 1 < pay:

The same estimates are true for the square function, but are not as straightforward to
deduce.

4.40. Lemma. Assume that the functions fjRg have zeros in every coordinate. Then we

have the inequalities below
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ð4:41Þ kS � � �Sf kp k k f kp; 1 < p < y;

ð4:42Þ kS � � �Sf k1 k k f kH 1 :

At the Ly endpoint, the correct estimate is

sup
U

jU j�1 P
RHU

jh f ; jRij
2
k k f k2

Ly :ð4:43Þ

The supremum is formed over all subsets U HRd of finite measure.

Proof. We should consider the one parameter inequality

kSf k2 k k f k2;ð4:44Þ

as this will explain in part the assumptions used in the definition of adapted (2.3).

Consider first the inner product hjI ; jJi for two dyadic intervals jI ja jJj. Using the
fact that jI has integral zero and that jJ admits a control on it’s first derivative, we
estimate

rðI ; JÞ ¼def jhjI ; jJij

a

ð
jjI ðxÞ½jJðxÞ � jJðcðIÞÞ�j dxa

jI j
jJj

� �3=2

1 þ jcðIÞ � cðJÞj
jJj

� ��2

:

Here recall that cðIÞ is the center of I . For this particular argument we only need
N ¼ 3, say, though other parts of the argument require higher values.

Now, observe that we have

r1 ¼def
sup
I

P
J:jI jajJj

rðI ; JÞ < y;

r2 ¼def
sup
J

P
I :jI jajJj

rðI ; JÞ < y:

To prove (4.44), observe that by duality, it su‰ces to prove the estimate

				P
I

aIjI

				
2

k

�P
I

jaI j2
�1=2

:

Assume that the right hand side is one, and estimate the square of the left hand side as
follows, with a generous use of the Cauchy-Schwarz inequality.
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				P
I

aIjI

				
2

a 2
P

jI jajJj
jaIaJ jrðI ; JÞa

�P
I

���� P
J:jI jajJj

jaJ jrðI ; JÞ
����

2�1=2

a 2

�P
I

� P
J:jI jajJj

jaJ j2rðI ; JÞ
�� P

J:jI jajJj
rðI ; JÞ

��1=2

a 2r1r2:

This completes the proof of (4.44).

The proof of (4.41) in the case of p ¼ 2 follows from an iteration of the one parameter
result, just like the argument for the maximal function.

The H 1 to L1 estimate is an easy consequence of the definition of the H 1 norm in
(4.36).

The last estimate (4.43) is not as accessible, as it relies upon a ‘‘localization lemma’’
Lemma 4.48. Fix a set U HRd of finite measure and a function f bounded uniformly
by one.

Set T0 to be the d parameter maximal function, and define a sequence of functions fk
by taking

f0 ¼def
f 1fT01U>2�1g;

and then inductively define fk, kb 1 by

f0 þ � � � þ fk ¼ f 1fT01U>2�1�kg:ð4:45Þ

Of course we have

P
RHU

jh f0; jRij
2
k jU j

by the L2 boundedness of the square function. By Lemma 4.48, for integers kb 1 we
have

P
RHU

jh fk; jRij
2
k 2�kjU jð4:46Þ

for an appropriate choice of integer N in the definition of adapted, (2.3). As this last
estimate is summable in k, the proof is complete. r

The case of general operators T is treated in this proposition.
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4.47. Proposition. All possible operators T as in (4.37) map Lp into itself for all

1 < p < y. This holds provided the functions fjR : R A Rg have zeros in each coordi-

nate in which T is equal to a square function. The norm depends only on the constants

that enter into the definition of adapted in (2.3).

Proof. In the two parameter case, observe that

M1S2 aS2M1;

the inequality holding pointwise. More generally, for any operator T as in (4.37), we
can make the operator larger by moving all maximal functions to the right of all
square functions. Thus, it su‰ces to bound operators of the form

T ¼ S1 � � �SvMvþ1 � � �Md :

Recall that the maximal function is bounded as a vector valued map from Lpðl2Þ into
itself for all 1 < p < y. This is a well known result of C. Fe¤erman and Stein [6].
Namely, we have the estimate

				
�P

n

jM � � �Mgnj2
�1=2				

p

k

				
�P

n

jgnj2
�1=2				

p

:

For a function f A LpðRdÞ and a dyadic rectangle Rv A Dv, set

fRv
ðx1; . . . ; xv; xvþ1; . . . ; xdÞ

¼def
jRv

ðx1; . . . ; xvÞ
ð
f ðx1; . . . ; xv; xvþ1; . . . ; xdÞjRv

ðx1; . . . ; xvÞ dx1 . . . dxv:

It is a consequence of the one variable Littlewood-Paley inequalities that we have

				
� P
Rv AD

v

j fRv
j2
�1=2				

p

k k f kp:

To conclude, observe that we have

Tf k

� P
Rv AD

v

jMvþ1 � � �Md fRv
j2
�1=2

:

The Lp norm of the last quantity is clearly bounded by k f kp. r

The proof of Theorem 4.32 for a particular range of indices can now be given. Sup-
pose that we are seeking to bound the paraproduct B from Lp1 nLp2 into Lr where
1 < r < y. Then, by (4.39) and the previous lemma, we have
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hBð f1; f2Þ; f3ia
Q3
k¼1

kTk fkkpk

where by abuse of notation we take p3 to be the conjugate index to r.

The remainder of the theory that we develop is needed to address the case in which
the paraproduct does not obey a duality estimate.

4.3. A Localization Lemma. We will need an estimate which refines the L2 estimates
for the operators T proved in Proposition 4.47.

We will make a further definition in which these operators, defined as as mixture of
sums and supremums over rectangles, are restricted to a subset of rectangles. Thus, if
OHR, and T ¼ SSS, for instance in the three parameter case, we set

TO f ¼
� P
R AO

jh f ; jRij
2

jRj 1R

�1=2

:

Of course here we insist that the function jR have zeros in each coordinate. More
generally, to define TO, in the expression (4.38), we restrict the rectangles to be in the
collection O rather than all possible rectangles.

4.48. Lemma. Suppose that OHR and that there is a constant m > 1 so that for a

function f ,

suppð f ÞX mR ¼ j; R A O:ð4:49Þ

Then it is the case that we have

kTO f k2 k m�N 0 k f k2:ð4:50Þ

The exponent N 0 is a function of only the exponent N in the definition of adapted,

(2.3).

Proof. This lemma is a corollary to the proof of L2 boundedness of the operators Tj,
and to deduce it, we will rely upon a degree of flexibility built into the definition of
adapted.

If we knew that the functions jR were supported on, e.g.,
m

2 R, then the conclusion
of the Lemma would be obvious. Thus, the problem at hand is one of Schwartz
tails.

We make a further specification of the definition of adapted, (2.3), which is applied to
functions on the real line. Fix a constant K and an integer N say that j is ðK ;NÞ-
adapted to an interval I i¤
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jDnjðxÞjaK jI j�n�1=2 1

2
þ jx� cðIÞj

jI j

� ��N

; n ¼ 0; 1:

In addition, the L2 norm of j is at most one.

Say that j is ðK ;NÞ-adapted to a rectangle R ¼
Nd

j¼1 Rð jÞ HRd i¤ j is a product

jðx1; . . . ; xdÞ ¼
Qd
j¼1

jjðxjÞ

with each jj ðK ;NÞ-adapted to Rð jÞ. This definition naturally extends to collections of
rectangles.

Now, fix K0 and N0 so that Proposition 4.47 holds for all functions fjR : R A Rg
which are ðK0;N0Þ-adapted to R (and have zeros in the right coordinates). Here, we
take K0 b 1 so that there will be no di‰culties with having the functions jR be of L2

norm one.

For N 0 as in the conclusion of the Lemma, set N1 ¼ N0 þN 0. Consider functions
fjR : R A Rg that are ðK0;N1Þ-adapted to R. And let T be the corresponding operator
constructed from these functions.

Observe that we can define a new set of functions f~jjR : R A Rg that are ð2K0;N0Þ
adapted to R, and satisfy

~jjRðxÞ ¼ mN 0
jRðxÞ; x B mR:

In those coordinates 1a ja d where there is no zero, this is accomplished by mul-
tiplying by a smooth function that is zero on a large neighborhood of R, and identi-
cally mN 0=d in R� mRð jÞ. If the coordinate has a zero, observe that

���� Ð
R�mRð jÞ

jRð jÞ
ðxjÞ dxj

����a 2K0jRð jÞj1=2ðmÞ�N1þ1

provided N1 > 2. And so we can set ~jjRð jÞ
in a neighborhood of R to cancel out this

integral.

The operator ~TT constructed from the functions f~jjR : R A Rg will satisfy an L2 bound
that is independent of m. For a function f as in (4.49), we have

mN 0
TO f ¼ ~TTO f :

And the right hand side admits an L2 bound independent of m and N 0, so the proof is
complete. r

We will also need the following corollary to the previous Lemma.
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4.51. Corollary. Let O be a collection of rectangles whose shadow has finite measure. If

f is a bounded function, we have the estimate

kTO f k2 k jshðOÞj1=2k f ky:ð4:52Þ

Proof. Let f A Ly be bounded by one, set U ¼ shðOÞ, and define fk, for kb 0 as in
(4.45). We shall see that

P
k

kTO fkk2 k jshðOÞj1=2:ð4:53Þ

Indeed, applying Lemma 4.48, we see that

kTO fkk2 k 2�N 0kjshðOÞj1=2

where we can assume that N 0 > 4 say. r

4.4. The Proof of Theorem 4.32. We only treat the bilinear case of the theorem, as the
higher order linearities are easy to accommodate into this proof. We also restrict our
attention to the two parameter setting. Straightforward modifications adapt the argu-
ment to an arbitrary number of parameters. The first cases that we consider are those
in which B is to be mapped into a space Lr with 1

2 a ra 1.

Some of the generalities of the proof of the one dimensional case remain in force
in the current setting, in particular, it will su‰ce for us to establish (2.25). That is,
we shall demonstrate this: For all fj A Lpj of norm 1 and set E3 HR2 of measure one,
there is an open subset E 0

3 HE3 of measure at least 1
2 , so that for f3 a smooth function

compactly supported in E 0
3 and with Ly norm at most one, we have

P
R

jRj�1=2Q3
j¼1

jh fj; jj;Rijk 1:ð4:54Þ

Moreover, it su‰ces to take fj in a dense class of functions, and so we take f1 and f2
to be smooth and compactly supported.

Observe that as all fj smooth and compactly supported, the sum above is at most 1
if the sum is restricted to rectangles that have at least one side length either small or
large, as in these cases the inner products above decay rapidly.5 Thus, we can assume
that the sum is restricted to a finite number of rectangles, and we should provide an
estimate for the sum that is independent of the exact number or nature of the rect-
angles.

This last sum is over positive summands. It will be useful to us to organize the sum
over appropriate subcollections of R. For a collection of dyadic rectangles O set

5 With the precise definition of small and large depending upon the functions fj .
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SumðOÞ ¼def P
R AO

jRj
Q3
j¼1

jh fj ; jj;Rijffiffiffiffiffiffiffi
jRj

pð4:55Þ

where the functions jj;R are associated with the bilinear paraproduct that we con-
sidering.

We will be working with di¤erent collections of rectangles O. The shadow of O is de-
fined to be

shðOÞ ¼def S
R AO

R:

The Definition of EO3. Let Tj, for j ¼ 1; 2; 3, be the three operators as in (4.39).
(Though at this point the function f3 is not yet specified.) For the sake of symmetry,
set T0 to be the maximal operator in 2 parameters.

Define 4n ¼def
minðp1; p2Þ, and set

ð4:56Þ Wj; l ¼def fTj fj > k2 lg; l A Z; j ¼ 1; 2

ð4:57Þ Wl ¼
def S2

j¼1

Wj; l ;

ð4:58Þ W ¼def S
l AN

T01Wl
>

1

100
2�nl

� �
;

ð4:59Þ ~WW ¼def
T01W >

1

2

� �
:

In these definitions, we fix a value of kF 1 so that j~WWj < 1
2 , and then take E 0

3 ¼
E3 X ~WWc, so that the measure of this set is at least 1

2 . This is possible, since we can
estimate, using the L2 bound for the maximal function and the Lpj bounds for the Tj,

jWja
P
l AN

jfT01Wl
> 2�nlgjaK1

P
l AN

22nl jWl jaK2

P
l AN

P2

j¼1

k�pj2ð2n�pjÞl :

And the last sum is less than 1
8 for a fixed kF 1.

The Decomposition of R. We decompose the collection of all rectangles. A rectangle
R is in Oj; l i¤ l is the greatest integer such that

jRXWj; l j ¼ jRX fTj fj > k2 lgjb 1

100
jRj:ð4:60Þ

Here, we are extending the definition in (4.56) to j ¼ 1; 2; 3 and to l A Z.
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Observe that as each fj is smooth, it is necessarily the case that Tj fj is a bounded
function. Thus, the definition above makes sense, and for each j, every rectangle
R A R will be a member of some Oj; l , for l A Z.

For integers~ll ¼ ðl1; l2; l3Þ A O ¼def ð�NÞ � ð�NÞ � Z, we define

O~ll
¼def T3

j¼1

Oj; lj :ð4:61Þ

This is not a complete decomposition of the collection of rectangles, a point we return
to below.

We appeal to the principal technical estimate, proved below. Observe that, by Lemma
4.70 and using the notation of (4.55), it is the case that

SumðO~ll
Þk 2 l1þl2þl3 jshðO~ll

Þj:ð4:62Þ

We therefore need e¤ective estimates for the shadow. Since each Tj operator is
bounded on all Lp spaces, we of course have the estimate

jshðO~ll
Þjk min

j
2�pj lj k 2�y1p1l1�y2p2l2�y3p3l3 ; ~ll A O:ð4:63Þ

Here, l1; l2 < 0 while l3 A Z, and yj b 0 with y1 þ y2 þ y3 ¼ 1. Recall that p1 and p2

are specified to us in advance, but as f3 is a bounded function on a set of finite mea-
sure, we are free to take any value of 1 < p3 < y that we wish. In particular, it is
e¤ective to take p3 to be relatively close to one for l3 > 0 while we take p3 large for
l3 a 0.

The sums are treated separately based on the sign of the last coordinate of ~ll A O.
Combining (4.62) and (4.63), we see that

P
~ll A ð�NÞ3

SumðO~llÞk
P

~ll A ð�NÞ3

2l1ð1�p1y1Þþl2ð1�p2y2Þþl3ð1�p3y3Þ:ð4:64Þ

We should choose 0 < y1 < 1
p1

, and 0 < y2 < 1
p2

so that y1 þ y2 < 1. We are then still

free to chose p3 > 1, but close enough to one so that p3y3 ¼ p3ð1 � y1 � y2Þ < 1.
Thus, this last sum is no more than a constant.

Let us consider the case of l1; l2 a 0 while l3 > 0. The minimum in (4.63) occurs for
j ¼ 3, and we have the estimate

P
~ll A ð�NÞ2nN

SumðO~llÞk 2 l1þl2�l3ðp3�1Þ:ð4:65Þ

This clearly sums to a constant for p3 su‰ciently large.
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Some rectangles are not in the classes defined above. To treat the remaining cases,
set

ð4:66Þ
P~ll

¼def
O1; l1 XO2; l2 ;

~ll ¼ ðl1; l2Þ A P ¼def fZ� ð�NÞg � fZ� ð�NÞg:

This decomposition does not take the role of f3 into account, and so our next steps
are to deduce information about this function.

Suppose that R A P~ll . Then either l1 or l2 must be positive. Suppose that l1 is. By
(4.58), it is then the case that, by definition, RHW, but moreover

2n 0l1RXE 0
3 ¼ j

where 2n 0 ¼ n.

Now, the function f3 satisfies the conditions of (4.49), with O ¼ P~ll
and m ¼ 2n 0l1=2.

Then by Lemma 4.48, we have

kT3;P~ll
f3k2 k 2�nN 0l1=2

k 2�10l1ð4:67Þ

for appropriate choice of N in (2.3).

Note that we have proved the inequality

kT3;P~ll
f3k2 kminð2�10l1 ; 2�10l2Þ:

We can then apply (4.73) to see that

SumðP~ll
Þk 2 l1þl2 minð2�10l1 ; 2�10l2Þ:

This is clearly summable to a constant over the indices P, as either l1 or l2 must be
positive.

This proof will permit e.g. p1 ¼ 1, with the additional hypothesis that f1 A H 1, and
that all functions j1;R satisfy (4.33) for all coordinates 1a ja d. By duality, this
implies the BMO estimate of our Theorem.

The endpoint estimates. The endpoint estimates concern the case when, say, p2 ¼ y,
which is a case not handled in the discussion above. (Note that assuming that
f2 A Ly, we do not need to make additional assumptions about the zeros of the
functions j2;R.)

We again prove (4.54). And the method of proof is quite close to the argument above.
Use the same notation as in (4.56), but now define
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ð4:68Þ W ¼def S
l AN

T01W1; l
>

1

100
2�nl

� �
;

ð4:69Þ ~WW ¼def
T01W >

1

2

� �
:

We take E 0
3 ¼ E3 XW, so that again we have jE 0

3jb 1
2 .

We define the sets Oj; l as in (4.60) but we shall only use this for j ¼ 1; 3. Set (in
contrast to (4.61)),

O~ll
¼ O1; l1 XO3; l3 ;

~ll ¼ ðl1; l3Þ:

We then have the estimate below, as a consequence of Corollary 4.51 and (4.73),

SumðO~ll
Þa 2�l1�l3 jshðO~ll

Þj1=2kTO~ll
f2k2 k 2 l1þl3 jshðO~ll

Þj:

We estimate the shadow

jshðO~llÞjkminð2�p1l1 ; 2�p3l3Þ:

This follows on the one hand from the assumption that f1 A Lp1 . But recall that we
can choose 1 < p3 < y in an arbitrary fashion, as f3 is bounded by one and sup-
ported on a set of measure at most one.

Pulling these estimate together, we see that

SumðO~llÞk 2l1ð1�y1p1Þþl3ð1�y3p3Þ;

where the y1, y3 are non-negative and sum to one. The index p1 is specified to us,
but p3 can be taken arbitrarily. For~ll A ð�NÞ � Z, we should take p3 close to one for
l3 a 0, but p3 ¼ 4, say, for l3 > 0. Doing so we see that

P
~ll A ð�NÞ�Z

SumðO~llÞk 1:

We turn to the case where l1 > 0. As before, we should now gain additional infor-
mation about the function f3. But the reasoning of the previous section, and in par-
ticular (4.50) and (4.67), leads us immediately to

kT3;O1; l1
f3k2 k 2�10p1l1 :

On the other hand, Corollary 4.51 implies that

kT2;O1; l1
f2k2 k jshðO1; lÞj1=2

k 2�ð1=2Þp1l1 :

Appealing to (4.74), we see that
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SumðOl1Þk 2 l1ð1�10�p1=2Þ;

which is clearly summable over l1 > 0.

The principal technical estimate. In this section we isolate the principal technical es-
timate in proof of Theorem 4.32.

4.70. Lemma. Suppose that for three constants 0 < lj < y, j ¼ 1; 2; 3 and a collection

of rectangles O we have

jRX fTj fj > ljgja
1

100
jRj; R A O; j ¼ 1; 2; 3:ð4:71Þ

Then we have the estimate

SumðOÞk jshðOÞj
Q3
j¼1

lj:ð4:72Þ

Suppose that (4.71) does not hold for j ¼ 3. Then we have the estimate

SumðOÞk l1l2jshðOÞj1=2kT3;O f3k2:ð4:73Þ

Suppose that (4.71) does not hold for j ¼ 2 and j ¼ 3. Then we have the estimate

SumðOÞk l1kT2;O f2k2kT3;O f3k2:ð4:74Þ

We will apply this in settings in which we have a good estimate for the shadow of O
in terms of the lj.

Proof. Set

W ¼ shðOÞX
T3
j¼1

fTj fj < ljg:

Then RXW has measure at least 97
100 jRj. This permits us to restrict the range of in-

tegration below to W .

SumðOÞk
ð
W

P
R AO

Q3
j¼1

jh fj; jj;Rijffiffiffiffiffiffiffi
jRj

p 1R dxk

ð
W

Q3
j¼1

Tj fj dxk jshðOÞj
Q3
j¼1

lj:

This proves our first conclusion. The remaining conclusions follow from the same
reasoning, with the use of the Cauchy-Schwarz inequality. r
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