
ParaProf: A Portable, Extensible, and Scalable
Tool for Parallel Performance Profile Analysis

Robert Bell, Allen D. Malony, and Sameer Shende

University of Oregon, Eugene, OR 97403 USA
{bertie,malony,sameer}@cs.uoregon.edu

Abstract. This paper presents the design, implementation, and appli-
cation of ParaProf, a portable, extensible, and scalable tool for parallel
performance profile analysis. ParaProf attempts to offer “best of breed”
capabilities to performance analysts – those inherited from a rich his-
tory of single processor profilers and those being pioneered in parallel
tools research. We present ParaProf as a parallel profile analysis frame-
work that can be retargeted and extended as required. ParaProf’s design
and operation is discussed, and its novel support for large-scale parallel
analysis demonstrated with a 512-processor application profile generated
using the TAU performance system.

1 Introduction

Perhaps the best known method for observing the performance of software and
systems is profiling. Profiling techniques designed over thirty years ago [11], such
as prof [17] and gprof [5] for Unix, are still apparent in the profiling approaches
for modern computer platforms (e.g., vprof [9] and cvperf [20]). While ideo-
logical differences exist in profiling instrumentation and data collection, most
notably between sample-based versus measurement-based approaches, profiling
is the most commonly used tool in the performance analyst’s repertoire. Unfor-
tunately, despite the ubiquitous nature of profiling, profile analysis tools have
tended to be system specific, proprietary, and incompatible. Not only does this
pose difficulties for cross-platform performance studies, but the lack of reusable
profile analysis technology has slowed the development of next-generation tools.
With the general availability of hardware counters in modern microprocessors,
the complexity of performance profile data will increase, further exacerbating
the need for more robust profile analysis tool support. Parallel software and
systems introduce more difficult challenges to profile analysis tools. All the con-
cerns for single processor performance analysis are present in parallel profiling,
except now the profile data size is amplified by the number of processors in-
volved. Profile analysis scalability is important for large-scale parallel systems
where each thread of execution may potentially generate its own profile data
set. Parallel execution also introduces new performance properties [1] and prob-
lems that require more sophisticated analysis and interpretation, both within a
single profiling experiment and across experiments. The identification of paral-
lel inefficiencies and load imbalances requires analysis of all execution threads

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 17–26, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



18 R. Bell, A.D. Malony, and S. Shende

in a profile, whereas pinpointing reasons for poor scalability, for example, must
combine detailed analysis across profiles generated with different numbers of
processors. Lastly, the performance problem solving provided by the parallel
profile analysis tool should reflect the system architecture as well as the model
of parallelism used in the application.

This paper presents the design, implementation, and application of ParaProf,
a portable, extensible, and scalable tool for parallel performance profile analysis.
ParaProf attempts to offer “best of breed” capabilities to performance analysts
– those inherited from a rich history of single processor profilers and those being
pioneered in parallel tools research. However, ParaProf should be regarded not
as a complete solution, but rather a parallel profile analysis framework that can
be retargeted and extended as needed. Thus, in this paper we emphasize, in
equal measure, the design of ParaProf and its support for customizability, in
addition to its application in the context of the TAU performance system.

In the sections that follow, we first relate ParaProf to selected profiling tools,
sequential and parallel, that highlight important features that ParaProf incorpo-
rates, or aspires too. Section §3 describes the ParaProf architecture and section
§4 goes into more detail of the operation of core components. While ParaProf is
being applied in many applications, for this paper, we focus on its novel support
for large-scale profile analysis. Section §5 demonstrates ParaProf’s core capabili-
ties on a highly-parallel application developed with the SAMRAI framework [8],
one of several large-scale parallel environments where ParaProf is being deployed.
In conclusion, we remark on how we see ParaProf evolving and its integration
in a parallel performance diagnosis environment.

2 Related Work

Performance profiling characterizes the execution behavior of an application as
a set of summary statistics associating performance data and metrics with pro-
gram structure and semantics.1 Profiling tools are distinguished by two aspects:
what performance information is being analyzed, and how profile results are
mapped to the program and presented to the user. Since prof [17] and gprof [5],
execution time has been the standard performance data profiled, and the dom-
inant mapping of execution time has been to program source statements. The
inclusion of hardware performance counts in profile data (e.g., SGI’s ssrun [20])
has significantly increased the insight on processor and memory system behavior.
The performance API (PAPI [2]) provides a common interface to hardware per-
formance counters across microprocessors and is in use by most current profiling
tools. The types of program mapping to source statements include statement-,
loop-, and routine-level mapping. Callgraph profiling, pioneered in gprof, has
also been extended to callpath profiling [6].

All of the above profiling features can be found in various forms in sequen-
tial profile analysis tools (e.g., cvperf [20], DynaProf [14], and vprof [9]). The
1 We can also speak of profiling the performance of a system, but to simplify the

discussion, we will focus on application performance.



ParaProf: A Portable, Extensible, and Scalable Tool 19

HPCView tool [13] best exemplifies the integration of sequential analysis capa-
bilities. Profile data from multiple sources can be input to HPCView, including
performance data sets from hardware counters and different program executions.
Internally, an extensible profile data format allows different data to be associ-
ated with program sites, each identified by a unique name and source mapping
information. HPCView can compute derived performance statistics from math-
ematical expressions that involve performance data variables. The user interface
allows navigation, grouping, and sorting of the profile data to assist in results
analysis. However, HPCView is not a parallel profile analysis tool, per se. Para-
Prof can support many of HPCView’s features, as well as provide scalable parallel
profile analysis.

Parallel profile analysis tools often target specific parallel programming mod-
els. The GuideView [10] tool analyzes performance of multi-threaded OpenMP
applications. It has sophisticated analysis functions, including handling of mul-
tiple experiments and relating performance metrics to ideal values. VGV [7]
extends GuideView to hybrid OpenMP and MPI applications. Unfortunately,
neither GuideView nor VGV are open systems (now Intel proprietary), and,
thus, are able to accommodate more general parallel profile data. The HPM
Toolkit [3] also targets OpenMP and MPI applications, with emphasis on the
analysis of hardware performance monitor data and derived statistics, but it only
runs on IBM platforms. Aksum [4] handles OpenMP and MPI applications run
on Linux clusters and can analyze profiles across multiple experiments. SvPablo
[15] processes profiles captured for multiple processes on several platforms, and
like HPCView, presents performance results in a source-level view. Expert [19]
analyzes more extensive profile information to associate performance properties
and problems to different program and execution views. With its general event
representation and programmable analysis, ParaProf is able process the profile
information for many of the scenarios handled by these tools. Moreover, although
none of these tools is specifically focussed on large-scale parallelism, ParaProf’s
profile data management and analysis is scalable to thousands of processors.

3 ParaProf Architecture

Software reuse and componentization lies at the heart of much current research
in software engineering. Our goal in the ParaProf project is to apply these de-
sign principles to performance profile analysis and visualization. Given the com-
monalities of profile data and semantics, the opportunity is there to develop a
framework for analysis and visualization that can be specialized for the parallel
profiling problem. To this effect, we have abstracted four key components in the
design of ParaProf: the Data Source System (DSS), the Data Management Sys-
tem (DMS), the Event System (ES), and the Visualization System (VS). Each
component is independent, and provides well-defined interfaces to other com-
ponents in the system. The result is high extensibility and flexibility, enabling
us to tackle the issues of re-use and scalability. The remainder of this section
describes each these components.



20 R. Bell, A.D. Malony, and S. Shende

(Java event model)

Event System

A
cc

es
s Profile Management

Displays

Profile Data Model

(node, context, thread)

D
at

ab
as

e
Fi

le
 S

ys
te

m
A

cc
es

s
D

ir
ec

t f
ro

m
A

pp
lic

at
io

n

A
P

I

Fig. 1. ParaProf Architecture.

Current performance profilers provide a range of differing data formats. As
done in HPCView [13], external translators have typically been used to merge
profile data sets. Since much commonality exists in the profile entities being
represented, this is a valid approach, but it requires the adoption of a common
format. ParaProf’s DSS addresses this issue in a different manner. DSS consists of
two parts. One, DSS can be configured with profile input modules to read profiles
from different sources. The existing translators provides a good starting point
to implement these modules. An input module can also support interfaces for
communication with profiles stored in files, managed by performance databases,
or streaming continuously across a network. Two, once the profile is input, DSS
converts the profile data to a more efficient internal representation.

The DMS provides an abstract representation of performance data to exter-
nal components. Its supports many advanced capabilities required in a modern
performance analysis system, such as derived metrics for relating performance
data, cross experiment analysis for analyzing data from disparate experiments,
and data reduction for elimination of redundant data, thus allowing large data
sources to be tolerated efficiently. The importance of sophisticated data manage-
ment and its support for exposing data relationships is an increasingly important
area of research in performance analysis. The DMS design provides a great de-
gree of flexibility for developing new techniques that can be incorporated to
extend its function.

The VS components is responsible for graphical profile displays. It is based
on the Java2D platform, enabling us to take advantage of a very portable devel-
opment environment that continues to increase in performance and reliability.
Analysis of performance data requires representations from a very fine granular-
ity, perhaps of a single event on a single node, to displays of the performance
characteristics of the entire application. ParaProf’s current set of displays range
from purely textual based to fully graphical. Significant effort has been put into



ParaProf: A Portable, Extensible, and Scalable Tool 21

making the displays highly interactive and fast to draw. In addition, it is rela-
tively easy to extend the display types to better show data relations.

Lastly, in the ES, we have provided a well-defined means by which these com-
ponents can communicate various state changes, and requests to other compo-
nents in ParaProf. Many of the display types are hyper-linked enabled, allowing
selections to be reflected across currently open windows. Support for runtime
performance analysis and application steering, coupled with maintaining con-
nectivity with remote data repositories has required us to focus more attention
on the ES, and to treat it as a wholly separate component system.

4 Operation

Let us now examine a typical usage scenario. A ParaProf session begins with
a top-level profile management window that lets the user decide what perfor-
mance experiments they want to analyze. An experiment is generally defined
by a particular application and its set of associated performance profiles com-
ing from experiment trials. As shown in Figure 2, the profile manager provides
access to different profile sources (e.g., file system, performance database, or
online execution) and to different profile experiments. Several profile data sets
can be active within ParaProf at the same time. These may be from different
experiments, allowing the user to compare performance behavior between ap-
plications, or from multiple runs of the same application where each profiled a
different performance value. Note that the profile management window is where
the user can also specify performance data calculations involving profile data
values to derive new performance statistics. We discuss this further below.

Once performance profiles have been selected, ParaProf’s view set then offers
means to understand the performance data at a variety of levels. The global
profile view is used to see profile data for all application events across all threads2

of execution in a single view. Of course, not all of the profile data can be shown,
so the user has control over what performance metrics to display through menu
options. The global view is interactive in the sense that clicking on various parts
of the display provides a means to explore the performance data in more detail
through other views. For example, the global view of a 20-processor VTF [18]
parallel profile is shown in Figure 3. The two other views show 1) the performance
of one event across all threads, gotten from clicking one color segement, and 2)
the performance of all events across a single thread, gotten from clicking on the
node/context/thead identifier. The full profile data for any thread can be shown
in an ASCII view at any time.

All of the profile views are scrollable. For large numbers of events or large
numbers of threads, scrolling efficency is important and we have optimized this
in our Java implementation. We have also provided support for sizing down the
2 We use the term “thread” here in a general sense to denote a thread of execution.

ParaProf’s internal profile data is organized based on a parallel execution model
of shared-memory computing nodes where contexts reside, each providing a virtual
address space shared by multiple threads of execution.



22 R. Bell, A.D. Malony, and S. Shende

Fig. 2. ParaProf Profile Management Window.

display bars so that larger numbers of threads can be visualized. Nevertheless, for
applications with high levels of parallelism, the two-dimensional profile displays
can become unwieldy when trying to understand performance behavior. We have
recently implemented histogram analysis support to determine the distribution of
data values across their value range. A histogram display shows the distribution
as a set of value bins (the number of bins is user defined) equally spaced between
minimum and maximum. The number of profile values falling in a bin determines
the height of the bin bar in the display.

Concurrent graphical and textual data representation at every stage pro-
vides for a seamless translation between levels of data granularity. In addition,
the DMS controllers enable easy navigation between data sources thus facilitat-
ing understanding of data relationships in the AE. To highlight the importance
of this last point, let us consider the following important analysis requirement.
Most modern CPUs provide support for tracking a variety of performance met-
rics. The TAU performance system [16], for example, can simultaneously track
CPU cycles, floating point instructions, data cache misses, and so on, using the
PAPI library. A consistent problem in performance analysis has been how to ex-
amine on a large scale other useful performance metrics that can be derived from
measured base values. For example, to determine how efficiently the pipelines
of modern super-scalar architectures are being used, our performance system



ParaProf: A Portable, Extensible, and Scalable Tool 23

Fig. 3. ParaProf Display of VTF Profile.

might have access to both CPU cycles, and instruction counts, but gives us no
correlation between the two. It is cumbersome to identify performance bottle-
necks in CPU pipe utilization across thousands of events or threads if one has
to make visual comparisons. To solve such problems, ParaProf’s DMS can apply
mathematical operations to the performance metrics gathered, thus obtaining
more detailed statistics. These operations can be applied to single executions,
to executions in different runs, and even across experiments, thus allowing a
complex range of derived metrics to be gathered. When examining data across
experiments, the DMS can tolerate disparities in data sources (an event might
be present in one source, but not another) by examining the commonalities that
do exist, and presenting only those. Data sources are treated as operands in the
system, and the DMS allows a user to compose operations to produce a vari-
ety of derived statistics. Results from this analysis can then be saved for future
reference.

To aid in the visual process, the ES passes user activity between windows so
that areas of interest highlighted in one window are propagated to all related
windows. This greatly reduces the time spent correlating data shown in different
displays. Another feature of ParaProf (not show here) is its ability to recog-
nize and create event groupings. Events can be grouped either at runtime by
the performance system (supported in TAU), or post-runtime by ParaProf. Dis-
plays can then be instructed to show only events that are members of particular
groups. This provides another mechanism for reducing visual complexity, and
focusing only on points of interest or concern. ParaProf’s DMS demonstrated
its ability to simultaneously handle the large quantity of data comfortably. Any
data redundancies present in the source data were eliminated as expected, and
we showed (via duplication and renaming) that the only practical limits to Para-
Prof’s operation are the memory limitations of the platform. Even these can be



24 R. Bell, A.D. Malony, and S. Shende

alleviated to a great extent by the use of a central repository of data (such as a
database) to which ParaProf can be directed to simply maintain links.

5 ParaProf Application

ParaProf, in its earlier incarnation as jRacy, has been applied in many appli-
cation performance studies over the last several years. The additions we have
made for profile management, multi-experiment support, derivative performance
analysis, performance database interaction, and large-scale parallel profiles, plus
overall improvements in efficiency, have elevated the tool to its new moniker dis-
tinction. Here we would like to focus on ParaProf’s support for profile analysis
of large-scale parallel applications. This will be an important area for our future
work with the DOE laboratories and ASCI platforms.

Fig. 4. Scalable SAMRAI Profile Display.

To demonstrate ParaProf’s ability to handle data from large parallel appli-
cations in an informative manner, we applied ParaProf to TAU data obtained
during the profiling of a SAMRAI [8] application run on 512 processor nodes.
SAMRAI is a C++ class library for structured adaptive mesh refinement. Figure
4 shows a view of exclusive wall-clock time for all events. The display is fully
interactive, and can be “zoomed” in or out to show local detail. Even so, some



ParaProf: A Portable, Extensible, and Scalable Tool 25

Fig. 5. SAMRAI Histogram Displays.

performance characteristics can still be difficult to comprehend when presented
with so much visual data. Figure 5 shows one of ParaProf’s histogramming op-
tions that enable global data characteristics to be computed and displayed in a
more concise form. In this case, we see binning of exclusive time data across the
system for the routine whose total exclusive time is largest, MPI Allreduce().
We have included another histogram showing the floating point instructions of a
SAMRAI module; this data was obtained using TAU’s interface to PAPI. Clearly,
the histogram view is useful for understanding value distribution.

6 Conclusion

The ParaProf profile analysis framework incorporates important features from
a rich heritage of performance profiling tools while addressing new challenges
for large-scale paralle performance analysis. Although ParaProf was developed
as part of the TAU performance system, our primary goals in ParaProf’s design
were flexibility and extensibility. As such, we are positioning ParaProf to accept
profile data from a variety of sources, to allow more complete performance anal-
ysis. We will also continue to enhance ParaProf’s displays to aid in performance
investigation and interpretation. In particular, there are opportunities to apply
three-dimensional graphics to visualize profile results for very large processor
runs. Currently, we are developing an advanced visualization library based on
OpenGL that can be used by ParaProf.

There are two areas where we want to improve ParaProf’s capabilities. First,
other parallel profile tools provide linkage back to application source code. The
information needed for this is partly encoded in the profile event names, but
ParaProf needs to have a standard means to acquire source mapping metadata
(e.g., source files, and line and column position) to associate events to the pro-
gram. We will apply our PDT [12] source analysis technology to this problem,
and also hope to leverage the work in HPCView. In addition, source text display
and interaction capabilities are required.

The second area is to improve how performance calculations are specified
and implemented in ParaProf. Our plan is to develop an easy to use interface to



26 R. Bell, A.D. Malony, and S. Shende

define analysis formalae, whereby more complex expressions, including reduction
operations, can be created. These can then be saved in an analysis library for
reuse in future performance profiling studies.

References

1. APART, IST Working Group on Automatic Performance Analysis: Real Tools. See
http://www.fz-juelich.de.

2. S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A Portable Program-
ming Interface for Performance Evaluation on Modern Processors,” International
Journal of High Performance Computing Applications, 14(3):189–204, Fall 2000.

3. L. DeRose, “The Hardware Performance Monitor Toolkit,” Euro-Par 2001, 2001.
4. T. Fahringer and C. Seragiotto, “Experience with Aksum: A Semi-Automatic

Multi-Experiment Performance Analysis Tool for Parallel and Distributed Appli-
cations,” Workshop on Performance Analysis and Distributed Computing, 2002.

5. S. Graham, P. Kessler, and M. McKusick, “gprof: A Call Graph Execution Pro-
filer,” SIGPLAN ’82 Symposium on Compiler Construction, pp. 120–126, June
1982.

6. R. Hall, “Call Path Profiling,” International Conference on Software Engineering,
pp. 296–306, 1992.

7. J. Hoeflinger et al., “An Integrated Performance Visualizer for MPI/OpenMP Pro-
grams,” Workshop on OpenMP Applications and Tools (WOMPAT), July 2001.

8. R. Hornung and S. Kohn, “Managing Application Complexity in the SAMRAI
Object-Oriented Framework, Concurrency and Computation: Practice and Expe-
rience, special issue on Software Architectures for Scientific Applications, 2001.

9. C. Janssen, “The Visual Profiler.”
http://aros.ca.sandia.gov/ cljanss/perf/vprof/.

10. KAI Software, a division of Intel Americas, “GuideView Performance Analyzer,”
2001. http://www.kai.com/parallel/kapro/guideview.

11. D. Knuth, “An Empirical Study of FORTRAN Programs,” Software – Practice
and Experience, 1:105–133, 1971.

12. K. Lindlan, J. Cuny, A. Malony, S. Shende, B. Mohr, R. Rivenburgh, C. Rasmussen,
“Tool Framework for Static and Dynamic Analysis of Object-Oriented Software
with Templates,” Proc. Supercomputing 2000, November, 2000.

13. J. Mellor-Crummey, R. Fowler, and G. Marin, “HPCView: A Tool for Top-down
Analysis of Node Performance,” The Journal of Supercomputing, 23:81–104, 2002.

14. P. Mucci, “Dynaprof.” http://www.cs.utk.edu/ mucci/dynaprof
15. D. Reed, L. DeRose, and Y. Zhang, “SvPablo: A Multi-Language Performance

Analysis System,” 10th International Conference on Performance Tools, pp. 352–
355, September 1998.

16. TAU (Tuning and Analysis Utilities). http://www.acl.lanl.gov/tau.
17. Unix Programmer’s Manual, “prof command,” Section 1, Bell Laboratories, Mur-

ray Hill, NJ, January 1979.
18. VTF, Virtual Test Shock Facility, Center for Simulation of Dynamic Response of

Materials. http://www.cacr.caltech.edu/ASAP.
19. F. Wolf and B. Mohr, “Automatic Performance Analysis of SMP Cluster Applica-

tions,” Technical Report IB 2001-05, Research Centre Jülich, 2001.
20. M. Zagha, B. Larson, S. Turner, and M. Itzkowitz, “Performance Analysis Using

the MIPS R10000 Performance Counters,” Supercomputing ’96, November 1996.


	Introduction
	Related Work
	ParaProf Architecture
	Operation
	ParaProf Application
	Conclusion

