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Abstract

We consider the dynamics of a mosquito-transmitted pathogen in a multi-
patch Ross-Macdonald malaria model with mobile human hosts, mobile vec-
tors, and a heterogeneous environment. We show the existence of a globally
stable steady state, and a threshold that determines whether a pathogen is
either absent from all patches, or endemic and present at some level in all
patches. Each patch is characterized by a local basic reproduction number,
whose value predicts whether the disease is cleared or not when the patch
is isolated: patches are known as “demographic sinks” if they have a local
basic reproduction number less than one, and hence would clear the disease if
isolated; patches with a basic reproduction number above one would sustain
endemic infection in isolation, and become “demographic sources” of para-
sites when connected to other patches. Sources are also considered focal areas
of transmission for the larger landscape, as they export excess parasites to
other areas and can sustain parasite populations. We show how to deter-
mine the various basic reproduction numbers from steady state estimates in
the patched network and knowledge of additional model parameters, hereby
identifying parasite sources in the process. This is useful in the context of
control of the infection on natural landscapes, because a commonly suggested
strategy is to target focal areas, in order to make their corresponding basic
reproduction numbers less than one, effectively turning them into sinks. We
show that this is indeed a successful control strategy -albeit a conservative
and possibly expensive one- in case either the human host, or the vector does
not move. However, we also show that when both humans and vectors move,
this strategy may fail, depending on the specific movement patterns exhibited
by hosts and vectors.
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1 Introduction

Malaria is a mosquito-borne disease caused by Plasmodium parasites, and is re-
sponsible for hundreds of thousands of deaths every year worldwide. The malaria
parasite is found in red blood cells of an infected person, and transmission to humans
occurs predominantly through mosquito bites, although according to the CDC [10]
“it can also be transmitted through blood transfusion, organ transplant, the shared
use of needles or syringes contaminated with blood, or from a mother to her unborn
infant before or during delivery (congenital malaria)”. Transmission depends on
complex interactions between moving mosquito [19], and moving human [28, 35, 36]
populations to facilitate parasite spread.

Human and mosquito populations are often spatially clustered [24], causing
malaria risk to be heterogeneous across spatial scales [16, 6]. Host mediated parasite
movement on these landscapes drives source-sink parasite dynamics which elimina-
tion programs must account for [9], as areas with enough transmission to sustain
parasite populations locally will export excess parasites through host movement,
known as transmission foci, supporting parasite populations in sink areas, or areas
where parasites would not persist otherwise [9]. As transmission foci enable para-
site persistence in sinks, they have been proposed as prime targets for control efforts
[9, 27]. Conceptually, regional malaria elimination can then be achieved by reducing
transmission within all transmission foci to below self-sustaining levels [25].

Simply targeting the areas with the highest apparent transmission neglects hu-
man and mosquito movement and their role in parasite persistence, however, caus-
ing movement processes to potentially undermine elimination efforts [36]. Using a
patched Ross-Macdonald model, we identify transmission foci in the context of both
human and mosquito movement, and determine whether a strategy that targets
foci exclusively is sufficient for parasite elimination, finding that while this strategy
works when either humans or mosquitoes do not move between patches, there are
network topologies where parasites persist even if transmission in all focal areas are
brought to below sustainable levels.

The celebrated Ross-Macdonald model goes back to the groundbreaking work of
Ronald Ross who received the Nobel Prize in Physiology or Medicine in 1902 for
elucidating the complex infection cycle of malaria. Ross’ model has since then been
applied and refined by many authors including Macdonald, see [33, 34] for recent
reviews. Classical Ross-Macdonald models consider infection dynamics in a single
patch, but for all the reasons mentioned above, we extend this here to a patched
model, a variant of which was first proposed and analyzed in [17]. Another variant
of this model, considered in [30] and reviewed in [3, 37, 15], includes host movement,
but excludes vector movement. More spatial models for malaria transmission have
been reviewed in [11, 15] where space is treated discretely in the form of distinct
patches, and in [15, 12] where space is either treated as discrete or as continuous, in
the latter case leading to models that take the form of reaction-diffusion equations.

Models that include mobility need to specify how exactly vectors and humans
move, and here we have adopted the so-called Lagrangian approach, see [11] and
references therein. A salient feature of the Lagrangian model is that all individuals
are declared to be residents of a specific patch, but that they can spend parts of
their time in other patches, where they might infect others, or pick up the infection.
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This is in contrast to the more popular Eulerian approach, where individuals are
not assigned to a particular patch, but instead simply move around between the
various patches at certain prescribed rates. Examples of the Eulerian approach
can be found in various contexts related to the spread of infectious diseases such
as in [1, 2, 5, 11], and are not restricted to malaria. Our methods can be used
to study similar patched Ross-Macdonald models based on the Eulerian approach,
but to keep our analysis concise, we restrict ourselves to models based on the less
frequently used Lagrangian approach. More sophisticated patch models have been
proposed more recently. These models have been coupled to agent-based models
to incorporate movement of the individual agents (both vectors and humans) in
response to other environmental triggers such as temperature or rainfall, revealing
fascinating patterns in the numerical simulations of these hybrid systems, see [23].
The main contributions of this paper are:

1. Establish the global dynamics of a patched Ross-Macdonald model,
a variant of which was first investigated in [17] and reviewed in [11]. This
model assumes an arbitrary number of patches between which both humans
and mosquitoes are allowed to move. These movement patterns are quantified
by matrices which express the fractions of time spent by residents of each
patch in all other patches. A single real and positive quantity -the spectral
radius of a matrix defined in terms of model parameters of all patches, as well
as the movement matrices- determines the fate of the infection in the network:
When this spectral radius is less than one, the infection is cleared. When it
is larger than one, all solutions converge to a unique positive steady state and
the infection globally persists in all the patches.

Although our proof is based on techniques that are similar to those used in
[11] for a closely related model, we have decided to include a concise and
self-contained proof in an Appendix here, for two main reasons. First, there
are important differences between the modeling assumptions made in [17],
and those considered here. Secondly, our proof relies on specific irreducibility
properties of the matrices that encode vector and host mobility, and these
conditions are different from those stated in [11], in a rather subtle way.

2. Identify local sinks and sources from steady state measurements
of infected humans in the network. Each patch in the patched Ross-
Macdonald model has its own transmission characteristics. In fact, to each
patch we can associate a basic reproduction number, which would predict
infection persistence or clearance in this patch if the patch were isolated. Since
control measures are often aimed at lowering the reproduction numbers of
those patches with the highest reproduction number values, an obvious first
step is to determine, or at least estimate, the basic reproduction numbers of
every patch with as little knowledge of model parameter values as possible.
We show how to do this, based on the steady state measurements of infected
humans in all the patches of the network. It turns out that only a limited
number of model parameters is needed to achieve this, and we precisely state
which ones these are.

3. Investigate how the patch reproduction numbers, in conjunction
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with host and vector mobility patterns, affect disease persistence
or clearance in the network. We first consider the special cases where
either only humans, or only mosquitoes move. If all patches are hotspots (re-
spectively, sinks), then no matter what the mobility pattern of the moving host
is, the disease persists in (respectively, is cleared from) the network. Thus, the
control strategy that makes the reproduction number of every patch less than
one, is guaranteed to clear the infection from the network, no matter what
the mobility pattern of the moving host is. However, when there is a mix of
hotspots and sinks in the network, this control strategy might be too conser-
vative: For some mobility patterns the infection might be cleared without any
intervention, although it may persist for others. This also indicates that in
this case, an alternative control strategy -namely to intervene in the mobility
patterns of the hosts- might be sufficient to clear the infection; and it may
even be a cheaper one in certain cases, in particular when imposing travel
restrictions is more cost-effective. We end by considering the general scenario
in which both humans and mosquitoes move. A striking difference, compared
to the cases where only one population moves, is that now the control strategy
that makes the basic reproduction numbers less than one in all patches, may
fail to clear the infection from the network. Failure or success depends on the
mobility patterns of both humans and mosquitoes. Similarly, it may happen
that in a network consisting of only sources, the infection is cleared by itself,
without any control intervention at all. These results indicate that controlling
a malaria infection in a network depends in a subtle way on the interplay be-
tween local transmission characteristics in the patches on the one hand, and
the movement patterns of both hosts on the other.

The rest of this paper is organized as follows. In Section 2 we introduce the patched
Ross-Macdonald model and discuss its global behavior. Two Appendices contain
the proof of this result. In Section 2 we also propose a solution to the problem of
determining the local reproduction numbers of all the patches based on steady state
measurements. In Section 3 we investigate how patch characteristics, together with
mobility patterns of vectors and human hosts, affect disease clearance or persistence
in the network. Implications for control strategies aimed at clearing the infection
from the network are considered here as well. Finally, we conclude this paper with
some remarks in Section 4.

2 Malaria models

2.1 Single patch

The core model on which we later base our patched model, is a (rescaling of a) single
patch Ross-Macdonald model proposed in [33], see also [11, 34] :

Ẋ = ab e−µτ Y

(
H −X
H

)
− rX (1)

Ẏ = ac
X

H
(V − Y )− µY (2)
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This model represents the dynamics for the number of infected humans X, and the
number of infected mosquitoes Y in a total human population of H, and a total
mosquito population of V individuals. Individuals in both populations are assumed
to be either susceptible, or infected. Hence, the number of susceptible humans is
H −X, and the number of susceptible mosquitoes is V − Y . The other parameters
in this model are:

1. r is the recovery rate of infected humans, and µ is the death rate of mosquitoes,
both having units of 1/time.

2. a is the biting rate of mosquitoes with units of number of humans bitten per
mosquito and per unit of time.

3. τ is the incubation period (in units of time), i.e. the expected time that elapses
between the moment a mosquito picks up the infection, and the moment it
becomes infectious. When τ is non-negligible compared to the expected life-
time of a mosquito 1/µ, it may happen that an infected mosquito dies before
it becomes infectious. Thus, whereas Y is the number of infected mosquitoes,
e−µτ Y represents the number of infectious mosquitoes which are capable of
infecting susceptible humans. This explains the appearance of the exponential
factor in equation (1).

4. b and c represent the probability that a bite by an infectious mosquito infects
a susceptible human, and the probability that a bite by a susceptible mosquito
of an infected human is successful, respectively.

Clearly, the first term in (1) and in (2) represents the infection rate of susceptible
humans, and of susceptible mosquitoes, and the remaining terms in these equations
are the (human) recovery rate, and the (mosquito) death rate.

We scale X and Y :

x =
X

H
, y =

Y

V
, (3)

and obtain the proportions of infected humans x and of infected mosquitoes y. We
also introduce the ratio of the total number of mosquitoes over the total number of
humans:

m =
V

H
, (4)

and then the dynamics for the proportions x and y is given by:

ẋ = mab e−µτ y (1− x)− rx (5)

ẏ = acx(1− y)− µy (6)

Defining the basic reproduction number1 following [33]:

R0 =
ma2bc e−µτ

rµ
(7)

=
mabα e−µτ

r
(8)

1Note that if one applies the procedure in [13] to calculate the basic reproduction number, one
obtains the square root of the expression on the right-hand side of (7). Note also that no matter
which definition one uses, the statement of Theorem 1 describing the global behavior of the system,
remains the same.
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where
α =

ac

µ
(9)

is the probability that a susceptible mosquito is infected during its life time. We see
that (5)− (6) has a unique steady state (x̄, ȳ):

x̄ =
R0 − 1

R0 + α
, ȳ =

α(R0 − 1)

(α + 1)R0

(10)

in (0, 1)2 if and only if R0 > 1. Note also that (0, 0) is always a steady state of
(1)− (2).

The following global result can be proved using standard phase plane techniques,
see [20] for instance. Alternatively, one could exploit the monotonicity of the system,
see [32], as well as the Appendix, for more on monotone systems:

Theorem 1. If R0 < 1, then all solutions of (5)− (6) converge to (0, 0). If R0 > 1,
then all positive solutions of (5)− (6) converge to (x̄, ȳ).

Estimating R0. We now turn to the question of how to estimate the value of R0,
using steady state measurements of the fraction of infected humans only. It turns
out that additional information is needed, but that Theorem 1 readily provides the
answer:

1. If R0 > 1, then estimating R0 based on observing the steady state value x̄,
and the knowledge of α, is possible by simply inverting (10):

R0 =
1 + αx̄

1− x̄
, (11)

2. But if R0 < 1, then the observed steady state is (0, 0). In this case, the value
of R0 cannot be estimated by observing the (0, 0) steady state, even if α is
known.

Control measures. To clear the infection, one must make R0 less than 1, and
in view of formula (7) this may be achieved by lowering m, a, b and c (or α), or
increasing r, µ and τ . Practical control strategies could include the use of screens,
bednets and repellents (decreases a), drug treatment (increases r), use insecticides
(increases µ and decreases m), vaccination (decreases b), larval source management
(decreases m), and relocation of humans (decreases m).

2.2 Multi-patch

Suppose that there are n patches and that in each patch the disease dynamics obeys
the Ross-Macdonald model (1) − (2). To distinguish the heterogeneity among the
patches we shall use subscripts i for the state variable and the model parameters
associated to patch i.

Assuming that both humans and mosquitoes move, possibly with different move-
ment patterns, we investigate the following coupled model, a variant of which was
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proposed and analyzed in [17] and reviewed in [11], and which is called a Lagrangian
model in contrast to the Eulerian models in for example [1, 2]:

Ẋi =

(
n∑
j=1

pijajbj e−µjτj Yj

)(
Hi −Xi

Hi

)
− riXi (12)

Ẏi =

(
n∑
j=1

qijajcj
Xj

Hj

)
(Vi − Yi)− µiYi, (13)

for all i = 1, . . . , n. The parameter pij (qij) represents the fraction of time a human
(mosquito) of patch i spends in patch j. Thus, for all i, j = 1, . . . , n,

pij ≥ 0, qij ≥ 0, and
n∑
k=1

pik = 1,
n∑
k=1

qik = 1, (14)

Note that the non-negative matrix P (Q) whose (i, j)th entry is pij (qij) is row-
stochastic, that is, the row sums of P (Q) are all equal to 1.

The model conveys the following idea: All individuals, whether they are human
or mosquitoes, are assigned a resident patch, but spend some proportion of their
time in other patches. Susceptible individuals -again, both human and mosquitoes-
can be infected at a rate which is an average of the infection rates across patches,
weighted by the proportion of the time they spend there. For example, human
residents of patch i, spend a proportion of their time in patch j. Of these human
residents of patch i, a fraction (Hi − Xi)/Hi is susceptible, and if they end up
spending time in patch j, they may be infected by infectious mosquitoes there at
a rate that is proportional to the number of infectious mosquitoes in that patch,
which is e−µjτj Yj. This infection rate is also proportional to the biting rate aj in
that patch, and to the probability that transmission is successful, i.e to bj. A similar
explanation can be given for the infection of susceptible mosquitoes that reside in
patch i.

We scale each Xi and Yi by the corresponding total number of humans and
mosquitoes in that patch:

xi =
Xi

Hi

, yi =
Yi
Vi
,

and defining the ratios:

mij =
Vj
Hi

,

yields the dynamics of the proportions xi and yi in each patch:

ẋi =

(
n∑
j=1

pijmijajbj e−µjτj yj

)
(1− xi)− rixi (15)

ẏi =

(
n∑
j=1

qijajcjxj

)
(1− yi)− µiyi, (16)

For patch i, we define two patch characteristics:

Ri
0 =

miia
2
i bici e

−µiτi

riµi
=
miiaibiαi e

−µiτi

ri
and αi =

aici
µi

. (17)
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and we say that patch i is a sink if Ri
0 < 1, and a focal area of transmission (or

source) if Ri
0 > 1.

We also introduce the parameter vector ρ whose components ρi are the ratios of
the total human population in patch i and the total human population in the first
patch:

ρi =
Hi

H1

(18)

Then system (15)− (16) can be re-written as

ẋi =

(
n∑
j=1

ρ−1i pijρjR
j
0α
−1
j rjyj

)
(1− xi)− rixi (19)

ẏi =

(
n∑
j=1

qijαjµjxj

)
(1− yi)− µiyi, (20)

We note that [0, 1]2n is a forward invariant set for system (19)− (20), and that
(x, y) = (0, 0) is always a steady state. In what follows we denote the spectral radius
of any matrix A by R(A), defined as:

R(A) := sup{|λ| | λ is an eigenvalue of A}
= lim

n→∞
||An||1/n,

where in the latter, well-known formula by Gelfand, ||A|| denotes any matrix norm.
We use the notation diag(x) for any vector x in Rn to denote the diagonal matrix
having the components of the vector x on its diagonal. By slightly abusing notation,
we denote for given vectors x and y in Rn, the vectors xy and x/y obtained by
component-wise multiplication and division respectively, assuming that the latter
are well-defined. Before stating our main result we introduce one more matrix:

S = P diag(R0)D
−1QD, where D = diag ((ac)/(rρ)) (21)

The following dichotomy states that the global dynamics of system (19) − (20)
is entirely determined by the value of the spectral radius of the matrix S:

Theorem 2. Assume that PQ and QP are irreducible matrices.
If R(S) < 1, then (x, y) = (0, 0) is the only steady state of (19)− (20), and it is

globally asymptotically stable.
If R(S) > 1, then system (19) − (20) has exactly two steady states, namely

(x, y) = (0, 0) and a positive (x̄, ȳ) in (0, 1)2n. In this case, all nonzero solutions
converge to (x̄, ȳ).

The proof is included it in the Appendix.

Comments on the irreducibility of PQ and QP .
Theorem 2 is proved under an irreducibility condition for the two matrix products

of the row-stochastic mobility matrices of humans and vectors.
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1. First, what does irreducibility of PQ and QP mean?

A particularly convenient definition of irreducibility of a non-negative matrix
is in graphical terms, as it relates to a specific connectedness property of
an associated graph [7]. Suppose that Z is an n × n non-negative matrix.
Construct a directed graph with n nodes by drawing a directed edge from
node i to node j if and only if Zij > 0. The irreducibility of the matrix Z
is equivalent to the strong connectedness of the directed graph. The latter
property means that for any pair of nodes (i, j) of the graph, there must exist
a directed path from node i to node j, obtained by following directed edges;
equivalently, there must exist a finite sequence k1, . . . , km with k1 = i and
km = j, such that Zk1k2Zk2k3 . . . Zkm−1km > 0.

We shall now use this graphical condition to understand what the irreducibility
of the matrix QP means. Suppose that there is a single infected mosquito
in patch i, in an otherwise entirely susceptible population of humans and
mosquitoes in all patches. We ask

whether or not this single infected mosquito in patch i has the potential to
cause a secondary mosquito infection in patch j,

and claim that this is possible if and only if the non-negative (j, i)th entry of
the matrix QP , is in fact positive:

0 < [QP ]ji =
n∑
k=1

QjkPki. (22)

Indeed, the single infected mosquito in patch i can infect a susceptible human
resident in any patch k, while that human is visiting patch i. Susceptible
humans in patch k spend a proportion Pki of their time in patch i. Once
the human resident of patch k is infected by the mosquito, it can in turn
infect a susceptible mosquito that is visiting patch k, but resides in patch
j. Mosquito residents of patch j, spend a proportion Qjk of their time in
patch k. Now summing over all possible patches k, shows that the original
infected mosquito in patch i can cause a secondary mosquito infection in patch
j, provided that the expression in (22), which represents the (j, i)th entry of
the product QP , is positive, as claimed. Irreducibility of the matrix QP
therefore means that a single infected mosquito resident in any patch, has the
potential to cause a mosquito infection in any other patch later on, although
the latter infection is no longer necessarily a secondary infection, but may occur
through a finite number of consecutive mosquito-human-mosquito infections
as described above.

A convenient way of checking irreducibility of PQ and QP goes as follows.
First, we construct a bipartite graph. Recall that a bipartite graph is a spe-
cific kind of graph having the property that the set of nodes can be partitioned
in two disjoint sets of nodes, such that directed edges only go from a node in
one set, to a node in the other set. Here we construct a bipartite graph with
2n nodes, whose node set is partitioned as N1UN2, such that both N1 and N2
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each have exactly n nodes. When Pij > 0 we draw a directed edge from the
ith node of N1, to the jth node of N2. Similarly, when Qkl > 0 we draw a
directed edge from the kth node of N2, to the lth node of N1. This bipartite
graphs captures very well that the disease cannot be transmitted directly from
host to host, or from vector to vector, but must go from vector to host, or from
host to vector. One can think of the N1 as a representation of the n patches,
from which weighted edges emanate that indicate the proportion of time, hu-
mans spend among the patches (the entries of the matrix P ). Similarly, N2

represents the n patches, but now the weighted edges indicate the proportion
of time mosquitoes spend among the patches (the entries of the matrix Q).
We will “collapse” this bipartite graph in two distinct ways, ending up with
two new directed graphs. These resulting graphs each have exactly n nodes,
and irreducibility of QP and PQ will be equivalent to strong connectedness of
these two graphs. Specifically, N1 is the node set of the first directed graph,
and has a directed edge from node i to node j if [PQ]ij > 0, or equivalently if
the bipartite graph has a directed path with exactly 2 edges, emanating from
the ith node of N1, and ending in the jth node of N1. Of course, by the very
nature of the bipartite graph, such a path must necessarily pass through some
node k belonging to N2. In a similar fashion, a second directed graph can be
constructed, but the node set of this second graph consists of the n nodes that
belong to N2. Finally, irreducibility of PQ and QP is equivalent to the strong
connectedness of the two directed graphs we have just obtained.

This discussion concerning the irreducibility of PQ and QP also sheds light on
the reason why Theorem 2 establishes that if R(S) > 1, then the model has a
unique, globally stable steady state with respect to which all non-zero solutions
converge; this steady state represents a disease which is endemic in all patches,
both for humans, as well as for mosquitoes. Indeed, for this to happen, the
result should hold if the initial condition corresponds to the presence of a
single infected mosquito, or a single infected human. In fact, these are typical
initial conditions one encounters in practice. The discussion presented here, in
conjunction with Theorem 2, shows that thanks to the irreducibility of both
PQ and QP , this single infected individual can indeed cause the disease to
spread to the entire network for both populations, provided that R(S) > 1.

2. Note that irreducibility of P and Q does not imply irreducibility of their prod-
ucts, as can be seen by the following simple example:

P =

(
0 1
1 0

)
= Q is irreducible, but PQ =

(
1 0
0 1

)
= QP is not.

Note also that (entry-wise) positivity of one of the matrices, is sufficient for
irreducibility of the two products, because the product of a positive matrix,
with a stochastic matrix is always positive.

On the other hand, irreducibility of both P and Q is not necessary for the
irreducibility of PQ and QP . This is illustrated by two important special cases
that we consider in more detail later, namely when only humans move, but
mosquitoes don’t, and vice versa. In this case, irreducibility of the mobility
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matrix associated to the moving species, humans or mosquitoes, suffice to
conclude irreducibility of the matrices PQ and QP . For example, if humans
move according to a pattern described by an irreducible mobility matrix P ,
and mosquitoes don’t move (hence Q = I), then PQ = P = QP , and the
irreducibility of both products is clearly satisfied.

3. Irreducibility of PQ does not necessarily imply irreducibility of QP , as seen by
the following example:

For P =

(
1 0
1 0

)
, and Q =

(
1/2 1/2
1 0

)
,

PQ =

(
1/2 1/2
1/2 1/2

)
is irreducible, but QP =

(
1 0
1 0

)
is not.

This shows that one cannot drop the irreducibility condition of one of the
products.

4. It is claimed in [11] (p.554 in Theorem 1), that [17] proved that the conclusions
of Theorem 2 in this paper hold when both P and Q are irreducible (rather
than PQ and QP ). As we have seen above, irreducibility of P and Q does not
imply irreducibility of PQ and QP ; and conversely, irreducibility of PQ and
QP does not imply irreducibility of P and Q. Moreover, a closer inspection
of the model in [17] reveals that the setup of patch connectivity considered
there, is different from the one considered here. Indeed, in [17], humans are
not mobile, and reside on a set of n patches; mosquitoes reside in a disjoint
set of m patches from which they can visit the patches where humans live to
cause or pick up the infection. Therefore, there is only one mobility matrix
(denoted as Γ), associated to mosquito movement. Furthermore, the crucial
part in the proof in [17] (Theorem 7 on p. 47), where the global stability
result of the equilibria is established, is not shown there explicitly, but instead
attributed to a theorem in [21]. We note that [21] precedes the theory of
monotone dynamical systems [32] which was pioneered by Morris Hirsch in
the 1980-ies by almost a decade, and that [17] was published around the time
monotone systems theory was being developed, but, perhaps not surprisingly,
without using that theory.

Because we were unable to verify the above mentioned claim in [11] -caused by
the subtleties related to the irreducibility properties of the matrices P,Q, PQ
and QP - and because the proof methods of [17] and [21] pre-date the by now
well-established theory of monotone systems, we decided to include a self-
contained, yet concise proof of Theorem 2 in the Appendix to this paper. We
do not claim any originality about the proof itself. Indeed, once the correct
irreducibility condition is established, the proof of global stability is based on
arguments that are quite standard nowadays thanks to the development of the
theory of monotone systems. Our main purpose, however, is to clarify some
of the confusion surrounding the role of the irreducibility conditions of the
mobility matrices.
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Estimating R0. Theorem 2 provides a dichotomy for the global behavior of the
coupled system (19)− (20), depending on whether R(S) is less than or larger than
one. We now turn to the question of estimating the vector R0, based on steady state
measurements of the infected human populations in the various patches.

We assume throughout that the products of both mobility matrices, namely PQ
and QP , are irreducible, and then Theorem 2 suggests the following:

1. If R(S) < 1, then system (19) − (20) has only one globally stable steady
state at (x, y) = (0, 0). Hence, we cannot estimate the vector R0, based on
the observation of this steady state. This is similar to what happened in the
single patch case.

2. If R(S) > 1, then the irreducibility of PQ and QP guarantees that system
(19)−(20) has a unique steady state (x̄, ȳ) in (0, 1)2n which attracts all nonzero
solutions. In order to locate which patches are foci, and which are sinks, we
ask the following question:

Given (an estimate of) x̄, can we find (a corresponding estimate of) R0?

It is reasonable to assume that at the very least, some estimate of x̄, the vector
consisting of the fraction of infected humans in all patches, is available. This
data can be collected from counts of malaria cases in the local hospitals of each
patch, and dividing this number by the total human population per patch. To
tackle this question, we first express the steady state equations, where we let
1 be the n-vector consisting of ones:

diag ((1− x̄)/ρ)P diag(ρrȳ/α)R0 = diag(r)x̄ (23)

diag(1− ȳ)Q diag(µα)x̄ = diag(µ)ȳ (24)

We proceed in two steps:

Step 1: Express ȳ in terms of x̄. This can be achieved by solving the
second equation for ȳ:

ȳ = diag−1(1 + z̄)z̄, where z̄ := diag−1(µ)Q diag(µα)x̄ (25)

Indeed, the second steady state equation (24) is equivalent to diag−1(1− ȳ)ȳ =
z̄. Since the scalar function y → y/(1− y) with y in (0, 1) is increasing, hence
invertible with inverse z → z/(1 + z), the above relation (25) follows.

Note that the practical relevance of formula (25) is that it allows us to find
the vector of fractions of infected mosquitoes in all patches -a vector which is
probably difficult to measure directly- in terms of x̄ whose estimate is more
feasible. But it also requires additional knowledge of certain system param-
eters, namely the vectors µ and α, and the matrix Q associated to mosquito
movement. The latter matrix in particular, may be difficult to estimate.

Step 2: Solve for R0 in terms of x̄. Note that (23) is a linear system in
the unknown vector R0. Its solution is:

R0 = A−1 diag(r)x̄, (26)
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provided that the matrix:

A := diag ((1− x̄)/ρ)P diag(ρrȳ/α), ȳ given by (25),

is invertible.

Since (x̄, ȳ) belongs to (0, 1)2n, invertibility of A is clearly equivalent to in-
vertibility of P . Thus, if P is invertible, then (26) yields the vector of the
basic reproduction numbers of all the patches. In particular, we can then im-
mediately read off which of the patches are sources, and which are sinks. An
interesting situation arises when some of the patches in the network are sinks.
Indeed, in this case, our method, allows us to estimate their basic reproduction
number (assuming that the disease persists in the network), something which
would have been impossible if these sinks were isolated patches as shown be-
fore. One limitation of our method is that the matrix P should be invertible,
and this may not always be the case, as

P =
1

n

1 1 . . . 1
...

... . . .
...

1 1 . . . 1


shows. The structure of this matrix implies that humans of every patch divide
their time equally among all patches.

Comments on estimating R0. Let us examine which model parameters, or
parameter combinations, should be known in order to evaluate the right hand side
of (26), assuming that we have at least an estimate of x̄. From Step 1, we need the
vectors µ and α, and the matrix Q, associated to mosquito movement. From Step
2, we see that we also need the vector r, the vector ρ, and the matrix P , associated
to human mobility, and this matrix should be invertible.

In summary, we need the:

1. recovery rate vector r, and the death rate vector µ. 2

2. vector α, which consists of the probabilities that a susceptible mosquito be-
comes infected over its entire lifetime, in all the patches.

3. the matrix P , which quantifies human movement.

4. the matrix Q, which quantifies mosquito movement.

5. vector ρ, consisting of the ratios of the total human populations in the various
patches compared to the first patch.

6. the vector x̄, consisting of the proportions of human infected individuals in
the various patches.

2Actually, slightly less information is required. Indeed, it suffices that we know the ratios of
the recovery rates, and the ratios of the death rates in the different patches. This follows from the
fact that in (25) and in (26), there are factors diag(µ) and diag−1(µ), and diag(r) and diag−1(r)
pre-and post-multiplying the matrix Q and P respectively.
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Let us compare this to the traditional estimation method of R0, based on the
original definition (17), which provides formulas for its entries in terms of various
model parameters. This method requires for each patch i, the following information:

1. the recovery rate ri, the death rate µi.

2. the probability αi.

3. the biting rate ai.

4. the probability bi that an infectious mosquito bite successfully infects a sus-
ceptible human.

5. the ratio of total number of mosquitoes and total number of humans mii =
Vi/Hi.

6. the incubation period τi.

From both lists above, we see that the first two items of each method are the
same, but the next four are different.

The parameter which is perhaps the most difficult one to determine for our
estimation method (26) is Q, the mobility matrix associated to mosquito movement.
This requires estimates of time spent by the mosquitoes among the various patches.
On the other hand, in cases where the geographic scale of the patches is large,
compared to typical distances traveled by mosquitoes, one may argue that Q = I.
This expresses that mosquitoes are confined to their patch of residence. To a lesser
extent, the mobility matrix P associated to human movement, may sometimes be
difficult to estimate, although mobile telephony data could be used for this purpose
by tracking the movements of cell phone users.

The parameters which are the hardest to determine for the traditional method
(17) are the ratios mii of the total number of mosquitoes over the total number of
humans in each patch. Although the total number of humans in each patch is likely
to be well-known in many cases, this is far less likely in case of mosquitoes.

Finally, an important limitation of our method, compared to the traditional one,
is that we require that R(S) > 1, so that the model has a positive steady state (x̄, ȳ)
in (0, 1)2n. In other words, our method requires the disease to be endemic, whereas
the traditional method also works when the disease is not endemic.

3 Bounds for R(S) and implications for control

In this Section we perform a closer examination of the spectral radius of the matrix
S defined in (21), because the value of this spectral radius determines whether or not
the malaria infection persists in the patched network. We shall derive sharp upper
and sharp lower bounds for this spectral radius in terms of the basic reproduction
numbers of all the patches, and the mobility matrices of vectors and hosts. Similar
bounds have been obtained for various epidemic models of non-vector borne diseases
and using the Eulerian approach to model movement of individuals, see [18] for an
SEIRP-model (P represents the class of partially immune individuals), [14] for an
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SIS-model, and [4] for an SIR-model of a large metropolitan city and several satellite
cities representing a suburban area.

Our analysis shall start with some special cases where either only humans move,
or only mosquitoes. Later we turn to the general case where both move. We will
see that there are profound differences between the first two scenarios on the one
hand, and the third one on the other.

A key technical property that we shall use repeatedly in this context, is that the
spectral radius is a non-decreasing function over the set of non-negative matrices,
i.e.:

0 ≤ A ≤ B ⇒ R(A) ≤ R(B). (27)

Here, the notation A ≤ B means that the entries of B are not smaller than the
corresponding entries of A. For a proof of this fact, see [7].

Below we use the notation xmin = mini(xi) and xmax = maxi(xi) for a given
vector x in Rn.

3.1 Only humans move

When only humans move it follows that the matrix associated to the mobility of
mosquitoes, is the identity matrix:

Q = I. (28)

In this case, the matrix S simplifies to the matrix Sh, which is defined as:

Sh = P diag(R0), (29)

and then we have the following bounds on the spectral radius of Sh:

Theorem 3. Assume that (28) and (29) hold. Then:

(R0)min ≤ R(Sh) ≤ (R0)max (30)

Moreover, these bounds are sharp in the sense that there exist row-stochastic matrices
Pmin and Pmax such that:

ρ (Pmin diag(R0)) = (R0)min and ρ (Pmax diag(R0)) = (R0)max (31)

Proof. Note that 0 ≤ Sh = P diag(R0) implies that:

0 ≤ (R0)minP ≤ Sh ≤ (R0)maxP,

and hence (30) follows from (27) and the fact that R(P ) = 1 (since P is row-
stochastic). To prove that the lower bound is achieved, take Pmin as the matrix
having exactly one column consisting of ones, namely the ith column where i is
any index such that Ri

0 = (R0)min, and all other columns are zero vectors. A
straightforward calculation then shows that R(Pmin diag(R0)) = (R0)min. Similarly,
to prove that the upper bound is achieved, set Pmax as the matrix having exactly
one column consisting of ones corresponding to an index j for which Rj

0 = (R0)max,
and all other columns consisting of zero vectors. This proves (31).
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From the point of view of malaria eradication in case only humans move, Theo-
rem 3, in combination with Theorem 2, has several implications:

1. If all patches are foci, then the malaria infection will persist in the network,
independently of network topology as encoded by the (human) mobility matrix
P . Indeed, when all patches are transmission foci, then (R0)min > 1, and
therefore R(Sh) > 1 by (30). Theorem 2 then implies that the infection
persists.

2. If all patches are sinks, then the malaria infection will be cleared from the
network, independently of network topology as encoded by the (human) mobility
matrix P . Indeed, when all patches are sinks, then (R0)max < 1, and therefore
R(Sh) < 1 by (30). Theorem 2 then implies that the infection is cleared.

3. One control strategy is to identify all the foci (this can be achieved using the
procedure outlined in the previous Section), and make their corresponding basic
reproduction number less than one by suitable local control measures, described
in the Section devoted to a single patch. This strategy is guaranteed to clear
the infection, independently of the network topology as encoded by the matrix
P .

4. The latter control strategy is probably rather conservative because it is aimed
at disease clearance for all network topologies. In practice, one is confronted
with a specific topology, and it is conceivable that to clear the infection, not
all foci should necessarily be made into sinks by appropriate local control
measures. To see that this can indeed happen, we consider a scenario with two
patches in which one patch is a source, and the other is a sink. Depending on
the network topology the infection may be cleared or may persist, highlighting
the crucial role played by the matrix P. Assume 2 patches such that

R0 =

(
3/2
1/2

)
In other words, patch 1 is a transmission focus, and patch 2 is a sink. Let

P1 =

(
1/2 1/2
1/4 3/4

)
and P2 =

(
3/4 1/4
1/2 1/2

)
.

Then setting S1 = P1 diag(R0) and S2 = P2 diag(R0), we have that:

R(S1) ≈ 0.92 < 1, but R(S2) ≈ 1.22 > 1.

Thus, when human mobility is encoded by the matrix P1, the infection is
cleared. But if it is encoded by P2, the infection persists.

5. Theorem 3 also suggests an alternative control strategy, namely to control
the people’s mobility pattern by modifying the matrix P , for instance by
prohibiting travel between certain patches. Indeed, the proof of Theorem 3
shows that by making P equal to (or at least approximately equal to) the
matrix Pmin, we can minimize R(Sh). The biological interpretation of Pmin is
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that all humans should spend 100% of their time in the patch having lowest
reproduction number, a result which makes sense intuitively.

Yet another control strategy can be gleaned from (30) in Theorem 3: The
strategy which relocates people between patches in an appropriate way. To
sketch the main idea behind this strategy, consider for simplicity a scenario
with 2 patches where

R1
0 =

V1
H1

a1b1α1 e−µ1τ1

r1
and R2

0 =
V2
H2

a2b2α2 e−µ2τ1

r2

and such that
R1

0 < 1 < R2
0.

Consequently, (R0)max = R2
0 > 1, and therefore the infection will persist in

the two-patch system, at least for some human mobility matrices P . Con-
trol strategies based on relocation only, amount to keeping all parameters
Vi, ai, bi, αi, µi, τi and ri fixed for i = 1, 2, but allowing H1 and H2 to vary,
as long as their sum remains constant. In this particular case, to clear the
infection, we would seek to decrease R2

0 below 1, while maintaining R1
0 below

1 as well. This may be achieved by increasing H2 and decreasing H1 by an
equal amount. In practice, this means that human individuals would be relo-
cated from patch 1 to patch 2. The difficulty lies in the fact that although we
can obviously always make R2

0 less than 1 by an appropriate decrease in H2,
the corresponding increase in H1 might push R1

0 above 1, in which case the
relocation strategy will fail to clear the infection.

3.2 Only mosquitoes move

In this case, the matrix P associated to human movement, is the identity matrix:

P = I. (32)

The matrix S simplifies to the matrix Sm which is defined as:

Sm = diag(R0)D
−1QD, (33)

and then spectral radius of Sm is bounded as follows:

Theorem 4. Assume that (32) and (33) hold. Then:

(R0)min ≤ R(Sm) ≤ (R0)max (34)

Moreover, these bounds are sharp in the sense that there exist row-stochastic matrices
Qmin and Qmax such that:

ρ
(
diag(R0)D

−1QminD
)

= (R0)min and ρ
(
diag(R0)D

−1QmaxD
)

= (R0)max (35)

Proof. Since R(AB) = R(BA) for any square matrices A and D, it follows that
R(Sm) = R (diag(R0)DD

−1Q) = R (Q diag(R0)), and then the rest of the proof is
similar to that of Theorem 3.
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All the remarks we made concerning disease control in case only humans move,
remain valid here as well: simply replace the matrix P by the matrix Q in the
discussion following Theorem 3. In particular, when all patches are focal areas, the
disease persists, and when all patches are sinks, the disease is cleared, independent
of the network topology associated to the mosquito movement matrix Q. Hence, a
conservative control strategy is to make the reproduction numbers of all patches less
then one, using local control measures described in the Section devoted to a single
patch. When some patches are transmission foci but others are sinks, there exist
mosquito mobility matricesQ which give rise to disease persistence, but also matrices
Q giving rise to disease clearance. Finally, another possible control strategy, is to
redistribute mosquitoes between various patches, similarly to the relocation strategy
of humans described in the previous subsection. In practice this can be achieved by
placing repellants in patches with high basic reproduction values, effectively reducing
the total number of mosquitoes V in those patches. However, these mosquitoes will
move to other patches, where they in turn will increase the basic reproduction
number. The failure or success of this strategy depends on whether or not the
replaced mosquitoes push the basic reproduction values in their new home patches
above 1.

3.3 Both humans and mosquitoes move

This is the general case, where both P and Q are assumed to differ from the identity
matrix. First, we define the positive vector d as:

d = (ac)/(rρ).

Note that this implies that the diagonal matrix D in (21) contains the components
of d on its diagonal: D = diag(d), and hence (21) can be re-written as:

S = P diag(R0/d)Q diag(d) (36)

Then we have:

Theorem 5. The spectral radius of S is bounded as follows:

dmin(R0/d)min ≤ R(S) ≤ dmax(R0/d)max (37)

Moreover, these bounds are sharp in the sense that there exist pairs of row-stochastic
matrices (Pmin, Qmin) and (Pmax, Qmax) such that:

ρ (Pmin diag(R0/d)Qmin diag(d)) = dmin(R0/d)min, and (38)

ρ (Pmax diag(R0/d)Qmax diag(d)) = dmax(R0/d)max. (39)

Proof. From (36) follows that:

dmin(R0/d)minPQ ≤ S ≤ dmax(R0/d)maxPQ,

and therefore, upon taking the spectral radius of the matrices above, the fact that
R(PQ) = 1 (because the product of two row-stochastic matrices is row-stochastic,
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hence has spectral radius 1), (27) implies (37). To prove (38) and (39) we use a
similar argument as in the proof of Theorem 3. For instance, to prove (38) we
can take Pmin to be a matrix having exactly one column consisting of ones, namely
the ith column corresponding to the minimal component of the vector R0/d, and
all other columns are zero vectors. Similarly for Qmin we take a matrix having
exactly one column consisting of ones, namely the jth column corresponding to the
minimal component of the vector d, and all other columns are zero vectors. Then a
straightforward calculation shows that (38) holds.

Although many of the remarks we made concerning disease control following The-
orem 3 and Theorem 4, remain valid in the case that both humans and mosquitoes
move, we point out some striking differences:

1. The conservative control strategy that made the basic reproduction numbers in
all patches less than one using local control measures, no longer guarantees that
the disease will be cleared from the network, independently of the movement
matrices P and Q. Indeed, although this strategy ensures that (R0)max < 1,
it does not necessarily make dmax(R0/d)max < 1. For example, in a 2 patch
system with:

R0 =

(
1/2
1/4

)
and d =

(
1/4
1

)
there holds that:

1/2 = (R0)max < 1 < dmax(R0/d)max = max ((1/2)/(1/4), 1/4) = 2.

Consequently, Theorem 5 also says that there are in fact network topologies
for human (P ) and mosquito (Q) movement , such that the disease persists
(because the upper bound for R(S), which is 2, can be achieved), despite the
fact that (R0)max < 1. In other words, contrary to what happened in the
cases where only humans or only mosquito move, the disease may persist in a
network of sinks.

2. Similar arguments show that when both humans and mosquitoes move, it is
possible that the disease is cleared from a network of sources. This contrasts
the cases where either only humans, or only mosquitoes move. For instance,
when

R0 =

(
2
4

)
and d =

(
1

1/4

)
then

1/2 = (1/4) min(2, 16) = dmin(R0/d)min < 1 < (R0)min = 2.

The two examples above, indicate that knowledge of the maximal and minimal
component of the vector R0, i.e. the maximal and minimal basic reproduction
number of all the patches in isolation, is no longer sufficient to predict disease
clearance or persistence from the network. Instead, according to the bounds (37) in
Theorem 5, the product of the maximal and minimal components of the vectors d
and R0/d are the relevant quantities. Therefore, control strategies focused on the
basic reproduction numbers of isolated patches, are no longer adequate when both
hosts and vectors move. From a practical control perspective, this may be the most
important conclusion of the mathematical analysis presented here.

19



4 Conclusion

Robust strategies for malaria elimination that account for parasite movement are
critical for malaria control programs [25], and strategies that spatially target vector
control and treatment will improve the efficiency of the use of limited resources.
Being able to predict how control will affect parasite populations across networks of
patches has been characterized statistically, but it also requires a mechanistic un-
derstanding of transmission and parasite mobility, as mediated by both mosquitoes
and humans. However, most algorithms for quantifying transmission intensity across
heterogeneous landscape either do not incorporate mobility in both hosts [29, 38] or
are purely statistical identification methods [8]. In the multi-patch Ross-Macdonald
model we analyzed to identify patches that are transmission foci, which incorporates
both human and mosquito movement, we test whether targeting foci based on local
estimates of transmission is a viable strategy for eliminating parasite populations
regionally. We find that while this strategy is sufficient to eliminate all parasites if
only humans or mosquitoes move, when both hosts move, there are network topolo-
gies that can cause a strategy that only targets foci to fail. This result highlights
the complex interactions between malaria parasite, human, and mosquito popula-
tions caused by host mobility, and the need for understanding the specific movement
patterns of humans and mosquitoes when developing malaria elimination strategies.
More generally, it is well-known that the basic reproduction number R0 plays an
important role in various models of the spread of many infectious diseases, yet con-
trol measures aimed at simply reducing R0 below 1 may be insufficient to clear the
infection. Our results are in accordance with that observation.

We conclude with some comments related to the practical use of our results. A
nontrivial problem when using the proposed patched Ross-Macdonald model, is to
define the various patches in the system. Policy makers who would use this model in
their decision process, will have to identify the various patches first, before they can
implement specific control strategies. Obviously, there is no unique way to do this.
For example, a lot depends on the geographic scale of the infection dynamics: this
could range from systems of nearby towns that are connected via small trails or paved
roads for humans, and rivers or lakes for mosquitoes, over counties to provinces and
countries, or even on a global scale by transport via boats and air. This variability in
geographic scale also affects judicious choices of the mobility matrices needed in our
model: people travel far less frequently via air to other countries, than they do to
the local fitness club two towns over. There is nothing singular about the problem of
choosing patches in the context of the patched Ross-Macdonald model investigated
here. In fact, users of any patch model face this issue as well. Nevertheless, we
believe that they constitute a good first step towards a better understanding of
more complicated models that incorporate spatial features more explicitly, such as
partial differential equations models.
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Appendices

A Quasi-monotone matrices and monotone sys-

tems

An interesting class of matrices are so-called quasi-monotone matrices3. They are
real, n× n matrices A such that:

Aij ≥ 0 if i 6= j.

In other words, they have non-negative off-diagonal entries. For vectors and matrices
alike, we use the order symbols ≤, < and << to denote non-negativity, non-zero
and non-negative, and positivity respectively. For instance 0 < x means that x is a
nonzero, non-negative vector.

We collect some relevant properties of quasi-monotone matrices, which are con-
sequences of the celebrated Perron-Frobenius Theorem, see for example [7]:

Theorem 6. Let A be a quasi-monotone and irreducible matrix. Then there is a real
and simple eigenvalue s (called the stability modulus) with corresponding eigenvector
x >> 0:

Ax = sx,

and Re(λ) < s for every eigenvalue λ of A, other than s. Moreover, every eigenvector
z > 0 of A must be a scalar multiple of x.

Suppose that A1 and A2 are quasi-monotone, irreducible matrices with stability
moduli s1 and s2. If A1 < A2, then s1 < s2. If A1 and A2 are only quasi-montone,
and A1 ≤ A2, then s1 ≤ s2.

We will also need the following result concerning a specific non-negative matrix
featured later:

Proposition 1. Let A ≥ 0 and B ≥ 0 be n× n matrices and let

C =

(
0 A
B 0

)
.

Then C is irreducible if and only if both AB and BA are irreducible. If C is irre-
ducible, then (R(C))2 = R(AB) = R(BA).

Proof. It is well-known that a non-negative matrix X is irreducible if and only if
there exists an integer k > 0 such that X +X2 + · · ·+Xk >> 0, see [7]. Note that
if m is a positive integer, then

C + C2 + · · ·+ Cm =



( ∑m−1
2

i=1 (AB)i A
∑m−1

2
i=0 (BA)i

B
∑m−1

2
i=0 (AB)i

∑m−1
2

i=1 (BA)i

)
, if m is odd( ∑m

2
i=1(AB)i A

∑m
2
−1

i=0 (BA)i

B
∑m

2
−1

i=0 (AB)i
∑m

2
i=1(BA)i

)
, if m is even

3In the literature these are also known as Metzler matrices.
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If C is irreducible, then there is some positive integer k, with necessarily k > 1, such
that the matrix C+· · ·+Ck >> 0. Then the diagonal blocks in the expression above
with m = k are positive matrices, and this implies that AB and BA are irreducible.

Conversely, if AB and BA are irreducible, let k = max(k1, k2), where k1 and
k2 are positive integers such that

∑k1
i=1(AB)i >> 0 and

∑k2
i=1(BA)i >> 0. Since

AB and BA are irreducible, no row of A or B can consist of zeros only, and hence
A
∑k

i=1(BA)i >> 0 and B
∑k

i=1(AB)i >> 0 as well. Setting m = 2(k + 1) yields
that C + · · ·+ Cm >> 0, and then C is irreducible.

If C is irreducible, then the Perron-Frobenius Theorem [7] implies that R(C) is
a positive eigenvalue of C, and it has a corresponding positive eigenvector. Hence,
there exist vectors x >> 0 and y >> 0, not both zero, such that:

C

(
x
y

)
= R(C)

(
x
y

)
,

or equivalently, that

Ay = R(C)x

Bx = R(C)y

Then
ABx = (R(C))2 x and BAy = (R(C))2 y.

But AB and BA are irreducible (because C is irreducible), and since x >> 0 and
y >> 0, the Perron-Frobenius Theorem implies that

R(AB) = (R(C))2 = R(BA),

concluding the proof.

Finally, we consider systems for which the linearization of the vector field in
any point is a quasi-monotone and possibly irreducible matrix. Such system are
examples of what are known as (strongly) monotone systems [32] and they have the
remarkable property that their solutions satisfy a particular comparison principle
stated below.

More precisely, we consider

ẋ = f(x), x ∈ U ⊂ Rn, (40)

where U is a convex region in Rn and f is a C1 vector field. Then the following
comparison principle holds, see [32] for a proof:

Proposition 2. Assume that the Jacobian matrix J(x) := Df(x) is quasi-monotone
in U . Then system (40) is monotone, i.e. if x0 and y0 are initial conditions in U
with corresponding solutions x(t), y(t) both defined on some positive interval I, we
have that:

x0 ≤ y0 ⇒ x(t) ≤ y(t), t ∈ I.
If J(x) is quasi-monotone and irreducible in U , then the system is strongly mono-

tone, i.e. it is monotone, and for initial conditions x0 ≤ y0, we have the following
stronger property:

x0 < y0 ⇒ x(t) << y(t), t ∈ I.
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B Proof of the dychotomy

Proof of Theorem 2. System (19) − (20) is strongly monotone on [0, 1)2n by
Proposition 2. Indeed, the Jacobian matrix is:

J(x, y) =

(
−D1(y) diag(1− x) diag−1(ρ)P diag(ρR0r/α)

diag(1− y)Q diag(µα) −D2(x)

)
,

where D1(y) and D2(x) are positive diagonal matrices whose diagonal entries depend
only on the indicated arguments y and x respectively. As long as all xi and all yi are
not equal to 1, J(x, y) is a quasi-monotone and irreducible matrix. (irreducibility
follows from Proposition 1 because PQ and QP are irreducible, and because no
component of x or y equals 1) Consequently, the system is strongly monotone in
this region of the state space.

Nonzero solutions starting on the boundary of [0, 1]2n enter (0, 1)2n instanta-
neously (when xi = 1 or yi = 1 this is immediate; and when xi = 0 or yi = 0, this
follows because the flow is strongly monotone on [0, 1)2n and because (x, y) = (0, 0)
is a steady state). In particular, the only steady state on the boundary of [0, 1]2n is
the zero steady state (x, y) = (0, 0).

Next we consider the local stability properties of the zero steady state (0, 0).
These are determined by the location of eigenvalues of J(0, 0) in the complex plane.
Since D1(0) = diag(r) and D2(0) = diag(µ), we have that:

J(0, 0) =

(
− diag(r) diag−1(ρ)P diag(ρR0r/α)
Q diag(µα) − diag(µ)

)
Following [13] we rewrite this matrix as the difference of a non-negative matrix F
and a nonsingular M-matrix V as follows:

J(0, 0) = F − V,

where

F =

(
0 diag−1(ρ)P diag(ρR0r/α)

Q diag(µα) 0

)
, and V =

(
diag(r) 0

0 diag(µ)

)
.

Let s denote the stability modulus of J(0, 0). The proof of the Theorem 2 in [13]
shows that:

s


< 0

= 0

> 0

if and only if R(FV −1)


< 1

= 1

> 1

(41)

Consequently, the local stability properties of the steady state (0, 0) which are de-
termined by the sign of s, can be equivalently derived from the spectral radius of
the matrix FV −1:

FV −1 =

(
0 diag−1(ρ)P diag ((ρR0r)/(αµ))

Q diag(αµ/r) 0

)
.
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It follows from Proposition 1 (note that the irreducibility condition in that Propo-
sition is satisfied because both PQ and QP are irreducible), and from the fact that
R(RS) = R(SR) for any two square matrices R and S, that:(

R(FV −1)
)2

= R(S),

where the matrix S is defined in (21). Thus it follows from (41) that the stability
modulus of J(0, 0) is negative, zero or positive if and only if R(S) is less than
1, equal to 1 or larger than 1 respectively. Consequently, the zero steady state
(x, y) = (0, 0) is locally asymptotically stable, respectively unstable if R(S) is less
than 1, respectively larger than 1.

We now distinguish two cases:

1. R(S) ≤ 1. In this case we shall prove that the zero steady state (x, y) = (0, 0)
is globally attractive, i.e. all solutions of (19)− (20) converge to it.

First we show that there is no other steady state in [0, 1]2n. To see this, assume
that there is a nonzero steady state (x̄, ȳ), which must necessarily belong to
(0, 1)2n (since we have shown that the only steady state on the boundary of
[0, 1]2n is the zero steady state). Then the following steady state expression
must hold:

A(x̄, ȳ)

(
x̄
ȳ

)
=

(
0
0

)
, (42)

where

A(x̄, ȳ) :=

(
− diag(r) diag(1− x̄) diag−1(ρ)P diag (ρR0r/α)

diag(1− ȳ)Q diag(µα) − diag(µ)

)
(43)

Note thatA(x̄, ȳ) is a quasi-monotone, irreducible matrix (irreducibility follows
from Proposition 1 because PQ and QP are irreducible, and because (x̄, ȳ)
belongs to (0, 1)2n), and that

A(x̄, ȳ) < J(0, 0).

Then Theorem 6 implies that
s1 < s2,

where s1 is the stability modulus of A(x̄, ȳ), and s2 is the stability modulus of
J(0, 0). But since R(S) ≤ 1, it follows from what was said above that s2 ≤ 0,
and hence

s1 < 0.

But in view of (42), Theorem 6 implies that the stability modulus of A(x̄, ȳ)
is equal to 0. Hence we have reached a contradiction, and we conclude that
(0, 0) is the only steady state of system (19)− (20) in [0, 1]2n.

To finish the proof in this case we show next that all solutions converge to the
zero steady state. Consider the initial condition (1,1), the North East corner
of the state space [0, 1]2n. Note that the vector field in this point is pointing
to the South West: (

F(1,1)
G(1,1)

)
=

(
−r
−µ

)
<<

(
0
0

)
(44)
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Here,

(
F(x, y)
G(x, y)

)
denotes the vector field of system (19)−(20). Then it follows

that the solution starting in (1,1) is strictly decreasing with respect to the
componentwise partial order on [0, 1]2n. Since this solution is also bounded
below by the zero steady state, it follows that this solution must converge to
a steady state of the system. Since there is only one steady state, namely
(x, y) = (0, 0), this solution converges to (0, 0). Finally, since the system is
monotone, every solution starting in [0, 1]2n is bounded above by the solution
starting in (1,1) by Proposition 2, and hence all solutions converge to (0, 0)
as well.

2. R(S) > 1. In this case, the stability modulus of J(0, 0) is positive, and then
a Taylor approximation of the vector field near the zero steady state (x, y) =
(0, 0), shows that (

F(εv1, εv2)
G(εv1, εv2)

)
>>

(
0
0

)
for all sufficiently small and positive ε where (v1, v2) >> 0 is the eigenvec-
tor corresponding to the positive stability modulus of J(0, 0) (see Theorem
6). Then by the theory of monotone systems there exists a steady state
(x̄m, ȳm) >> 0 in (0, 1)2n, and a connecting orbit between (0, 0) and (x̄m, ȳm),
converging to 0 in backward time and to (x̄m, ȳm) in forward time, see The-
orem 4.3.3 in [32]. Similarly, since (44) continues to hold in this case, there
exists a steady state (x̄M , ȳM) > 0 and a connecting orbit starting at (1,1)
and converging to (x̄M , ȳM) in forward time. We know that both (x̄m, ȳm)
and (x̄M , ȳM) belong to (0, 1)n. Moreover, it can be shown that (x̄m, ȳm) ≤
(x̄M , ȳM) (for otherwise, a comparison argument would violate the monotonic-
ity of the system). The key step is to show that (x̄m, ȳm) = (x̄M , ȳM). We
argue by contradiction, and assume that they are different.Then in particular,
there holds:

(x̄m, ȳm) < (x̄M , ȳM).

Let (x̄, ȳ) be an arbitrary steady state in (0, 1)2n. The steady state equations
can be written as in (42)− (43), and then Theorem 6 implies that the stability
modulus of A(x̄, ȳ) is zero. Thus, both A(x̄m, ȳm) and A(x̄M , ȳM) have the
same stability modulus, namely zero. However, if (x̄m, ȳm) < (x̄M , ȳm), then
the structure of the matrix A(x, y) implies that A(x̄m, ȳm) < A(x̄M , ȳm), and
then Theorem 6 implies that the stability moduli of these matrices are different.
We have reached a contradiction, and consequently, there is only one nonzero
steady state in [0, 1]2n. Finally, exploiting the strong monotonicity of the
system, it follows that all nonzero solutions converge to this nonzero steady
state by the comparison argument in Proposition 2.
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