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We review the use of parasites as biological tags of marine fishes and cephalopods in host population
structure studies. The majority of the work published has focused on marine fish and either single par-
asite species or more recently, whole parasite assemblages, as biological tags. There is representation
of host organisms and parasites from a diverse range of taxonomic groups, although focus has primarily
been on host species of commercial importance. In contrast, few studies have used parasites as tags to
assess cephalopod population structure, even though records of parasites infecting cephalopods are
well-documented. Squid species are the only cephalopod hosts for which parasites as biological tags have
been applied, with anisakid nematode larvae and metacestodes being the parasite taxa most frequently
used. Following a brief insight into the importance of accurate parasite identification, the population
studies that have used parasites as biological tags for marine fishes and cephalopods are reviewed,
including comments on the dicyemid mesozoans. The advancement of molecular genetic techniques is
discussed in regards to the new ways parasite genetic data can be incorporated into population structure
studies, alongside host population genetic analyses, followed by an update on the guidelines for selecting
a parasite species as a reliable tag candidate. As multiple techniques and methods can be used to assess
the population structure of marine organisms (e.g. artificial tags, phenotypic characters, biometrics, life
history, genetics, otolith microchemistry and parasitological data), we conclude by commenting on a
holistic approach to allow for a deeper insight into population structuring.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Determination of the biological identity of a population of mar-
ine organisms (for this review, limited to fishes and cephalopods),
in relation to neighbouring populations of the same species, is a vi-
tal prerequisite in studying the biology, dynamics, interactions and
ecological consequences of exploitation on that population
(MacKenzie and Abaunza, 1998). This is particularly important
given the rise in global fisheries as more species are being targeted
and commercially exploited to keep up with increases in demand
(Pierce and Guerra, 1994; Evans and Grainger, 2002). Marine spe-
cies considered at risk as a result of overfishing, evident from
declines in biomass and abundance, emphasise the importance of
understanding the structure of populations across geographical
distributions (Melendy et al., 2005; McClelland and Melendy,
2007). As alluded to already, before a stock can be efficiently man-
aged and policies implemented for future sustainability, the stock
needs to be correctly identified (Oliva and Sanchez, 2005).

Many techniques have been used to identify and discriminate
stocks, including the application of artificial tags, such as acoustic
tags, coded wire tags, passive integrated transponder tags and
archival tags. Artificial tags are generally suitable for many species
and sizes of organisms, with an added advantage of enabling dis-
crete recognition of each tagged individual (Gillanders, 2009).
However, they can be limited in signal detection range and reten-
tion over long term studies, with further uncertainties about the
influence of the tag on the organism’s behaviour and survivorship
(Moser, 1991; Mosquera et al., 2003; Gillanders, 2009). Natural
tags, including phenotypic characters (meristic, morphometric
and life history traits), otolith chemistry, molecular genetic host
markers and parasites, have also been used in population structure
studies. In particular, parasites as biological tags have gained wide
acceptance in recent decades (MacKenzie, 2002; Poulin and
Kamiya, in press), as they can provide a reliable guide to under-
standing the biology of their host (Pascual and Hochberg, 1996).
This is not to say parasites as tags are superior to other methods,
but it is recognised that they have helped answer questions on host
diet and feeding behaviour, movements and ranges, connectivity of
stocks, recruitment patterns of juveniles and phylogenies (Sinder-
mann, 1961; Moser, 1991; Williams et al., 1992; Criscione et al.,
2006). Parasites have also been used as bio-indicators of pollution
(Poulin, 1992; MacKenzie et al., 1995; MacKenzie, 1999a), and in
population studies to discriminate stocks (MacKenzie, 1987,
2002; Lester, 1990; MacKenzie and Abaunza, 1998; Mosquera
et al., 2003). Research on parasites as biological tags for marine
organisms has increased at a steady rate, with nine papers on this
subject published from the 1950s, more than 30 from the 1960s,
more than 50 from the 1970s and more than 140 from the 1980s
(Williams et al., 1992). Here, we focus on the use of parasites as
biological tags for host population discrimination. We use the
words ‘stock’ and ‘population’ interchangeably in this review,
following the definition provided by Charters et al. (2010) of ‘a
spatially distinct group of marine organisms which exhibit no sig-
nificant mixing with neighbouring individuals’. In agreement with
Lester and MacKenzie (2009), we recognise the idea that this dis-
tinct group is essentially self-reproducing.

This review begins by briefly commenting on the importance
of accurate parasite identification, followed by a summary of
the use of parasites as biological tags in population structure
studies of fishes and cephalopods. Due to the advent of molecular
genetic technologies, the potential to incorporate genetic analyses
of parasite population structure alongside genetic analyses of
their host is discussed. An updated list of guidelines for selecting
a parasite species as an adequate tag candidate is presented, and
we conclude by highlighting the benefits of a multidisciplinary
approach when investigating the population structure of marine
organisms.
2. Parasite identification

Along with the need to correctly identify a stock before it can be
appropriately managed, parasites also need to be correctly identi-
fied before they can be applied as biological tags. We add the ca-
veat that in some cases the minimum necessary identification
would be to discriminate each of the parasite species present with-
out the further and potentially time consuming requirement of
assigning scientific names. Classical methods commonly used for
parasite taxonomic identification involve examining and measur-
ing morphological character traits and using taxonomic keys to de-
fine a particular family, genus or species (Baldwin et al., 2012).
Although widely used and relatively inexpensive, this form of iden-
tification can be difficult for larval stages and further hindered by
poor specimen quality and taxonomic uncertainty in the literature.
‘‘Species’’ that exhibit a high level of morphological plasticity also
pose a problem (Poulin and Morand, 2000). On one hand, several
distinct species may be mistakenly identified as one, or a single
morphologically plastic taxon may be interpreted as a species com-
plex inferring significant host population structure.

Another approach to identify parasite species is to use molecu-
lar genetic methods (McManus and Bowles, 1996). Indeed, once a
sound molecular genetic framework has been established for the
species concerned, then higher throughput bar-coding can be
applied to much larger sample sets. Another advantage of this ap-
proach would be that all stages of the parasite life cycle that could
be sampled can be included, potentially increasing the matching
parasite data for a larger number of host individuals collected over
a longer period of the year. A combination of morphological and
molecular genetic methods may therefore be more robust for iden-
tifying and discriminating parasite taxa, and should be considered
in future studies using parasites as biological tags.
3. Parasites as biological tags in population studies of fishes

The two earliest records describing the application of parasites
as biological tags in population studies of fishes are that of Dogiel
and Bychovsky (1939), who distinguished between groups of stur-
geon (Acipenser spp.) in the Caspian Sea using the monogenean
parasites Diclybothrium circularis and Nitzschia sturionis, and
Herrington et al. (1939), who examined redfish (Sebastes marinus)
in the Gulf of Maine and suggested the existence of separate
populations based on variations in infection levels of the parasitic
copepod Sphyrion lumpi. Since these investigations over 70 years
ago, the use of parasites as biological tags in population structure
studies has flourished to include a wide range of fish species and
geographical localities. Investigations have primarily focused on,
although not limited to, fish species of economic importance, such
as herring (e.g. Sindermann, 1961; Parsons and Hodder, 1971; Arthur
and Arai, 1980; Moser and Hsieh, 1992), hake (e.g. MacKenzie and
Longshaw, 1995; George-Nascimento, 1996; Mattiucci et al., 2004;
Sardella and Timi, 2004), cod (e.g. Hemmingsen and MacKenzie,
2001; McClelland and Melendy, 2011), rockfish (e.g. Stanley
et al., 1992; Moles et al., 1998; Oliva and Gonzalez, 2004) and hoki
(e.g. MacKenzie et al., 2013). A diverse range of taxonomic groups
of parasites have also been applied as biological tags (see Table 1 in
Williams et al., 1992). In particular, parasites have been used for
discovering multiple species in supposedly single species fisheries
(e.g. Smith et al., 1981; George-Nascimento, 1996), for discriminat-
ing stocks within single species fisheries (e.g. Hemmingsen et al.,
1991; Braicovich and Timi, 2008; Henriquez et al., 2011) and for
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recognising single stocks from multiple breeding populations (e.g.
Moser and Hsieh, 1992). Recently, Poulin and Kamiya (in press)
performed a meta-analysis to examine the discriminatory power
of using parasites to discriminate fish stocks, and found that over-
all, the probability of correct classification of fish to their group of
origin based on parasite data was double that expected by chance
alone, supporting the use of parasites as biological tags.

The benefits and limitations of using parasites as biological tags
has been extensively reported by Sindermann (1961, 1983), Gibson
(1972), MacKenzie (1987, 1999b, 2002), Lester (1990), Moser
(1991), Williams et al. (1992), Pascual and Hochberg (1996) and
Mosquera et al. (2003), and thus will not be repeated here. The
use of parasites as biological tags in population structure studies
has also been reviewed by many authors (Sindermann, 1983; Mac-
Kenzie, 1987; Lester, 1990; Williams et al., 1992), with a guide to
the procedures and methods provided by MacKenzie and Abaunza
(1998). The most recent reviews of parasites as biological tags in
fish population studies are given by MacKenzie (1999b, 2002),
Mosquera et al. (2003) and MacKenzie and Abaunza (2005). In
the past 5 years, numerous studies have been published which
used parasites as biological tags as the sole approach to discriminate
fish stocks (for example Santos et al., 2009; Timi and Lanfranchi,
2009; Timi et al., 2009; Charters et al., 2010; Luque et al., 2010;
Mele et al., 2010; Sequeira et al., 2010; Chou et al., 2011; Garcia
et al., 2011; Henriquez et al., 2011; Hutson et al., 2011; Khan
et al., 2011; McClelland and Melendy, 2011; Moore et al., 2011;
Braicovich et al., 2012; Reed et al., 2012; Costa et al., 2013;
MacKenzie et al., 2013; Oliva, 2013).

With this increase in the number of studies using parasites as
biological tags to discriminate host stocks, Lester and MacKenzie
(2009) provide a word of caution. They highlight that although dif-
ferences in parasite fauna may be observed from fish collected at
different geographical localities, it does not necessarily mean that
there are multiple fish stocks, as many parasites are transient
and may only be present sometimes. Leading on from this, it is sug-
gested that a deeper insight or more robust conclusions may be
gained from using a multidisciplinary approach to determine stock
structure, a topic that will be discussed further in Section 7.
4. Parasites as biological tags in population studies of
cephalopods, including comments on the dicyemid mesozoans

Over the last 20 years, the value of cephalopods in international
commercial fisheries has increased rapidly (Pierce and Guerra,
1994; Pascual et al., 1996). However, cephalopods are highly sus-
ceptible to overfishing with little opportunity for recovery, owing
to their short life spans, variable growth rates and semelparous
breeding strategies (Pierce and Guerra, 1994; Boyle and Boletzky,
1996). Therefore, it is important to be able to recognise stock
boundaries to ensure management policies governing commercial
cephalopod fisheries are well-informed.

While numerous parasite species from a range of taxonomic
groups have been described from cephalopods (Hochberg, 1983,
1990), their application as biological tags in population studies is
rare (Pascual and Hochberg, 1996). The first study where parasites
were used to examine cephalopod stock structure was performed
by Smith et al. (1981). The authors used a multidisciplinary
approach of allozyme electrophoresis, host morphology and
prevalence of parasites in arrow squid Nototodarus sloani from
New Zealand waters to assess stock structure, with the combined
results supporting the occurrence of two species of arrow squid
in these waters. It is doubtful whether the same result would have
been concluded if parasites alone were used, as one parasite
species did not support stock separation whereas the other did. A
few years later, Dawe et al. (1984) addressed the issue of stock dis-
crimination in the short-finned squid Illex illecebrosus, also employ-
ing a multidisciplinary approach by comparing data on host size,
maturity, distribution of early life history stages and incidence of
certain parasites. However the parasites examined were of little
use as biological tags, as they had a broad geographic distribution,
were generalist rather than specialist parasites, and could not be
identified to species. Later, Bower and Margolis (1991) and Nagas-
awa et al. (1998) examined the helminth parasites of the flying
squid, Ommastrephes bartrami, in the North Pacific Ocean. Bower
and Margolis (1991) suggested that parasites may be useful tools
in determining the stock structure of the flying squid, and Nagasa-
wa et al. (1998) statistically tested parasite intensity of infection
among collection localities to lend support to the occurrence of
four flying squid stocks in these waters. The most recent study that
has used parasites of cephalopods as biological tags is by González
and Kroeck (2000). They studied the parasite fauna composition of
shortfin squid Illex argentinus in San Matías Gulf, southwest Atlan-
tic, with differences in composition, prevalence and mean intensity
of enteric parasites between localities lending support to stock
structuring.

An additional group of parasites, dicyemid mesozoans, have
been suggested as potential tag candidates to help discriminate
cephalopod stock structure (Hochberg, 1990; Catalano, 2013).
These parasites are simple in morphology, highly host-species
specific and found with high intensity in the renal appendages of
almost all benthic cephalopod species examined to date (Furuya,
1999; Furuya et al., 2004). The use of dicyemid parasites as biolog-
ical tags for cephalopod stock discrimination has been tested, with
significant difference in dicyemid fauna composition between
cephalopod species, and among cephalopod individuals of the
same species collected from different geographical localities (Cata-
lano et al., unpublished). However it must be highlighted that con-
fusion exists in the literature on the validity of certain taxa within
this phylum along with the morphological traits used to delineate
species boundaries (Catalano, 2012). Nonetheless, by incorporating
a molecular genetic framework, and comparing results between
dicyemid parasite and host genetic analyses, this approach may
still prove valuable in assessing cephalopod population structure
beyond any single approach.
5. Recent genetic advances

Beverley-Burton (1978) was the first to use genetic analyses of
parasite populations as a tool for host stock identification. The
frequencies of different acid phosphatase allozymes in the larval
nematode Anisakis simplex suggested that there may be two dis-
tinct groups of Atlantic salmon in the Atlantic Ocean. Other authors
have used genetic methods (multilocus allozyme electrophoresis)
to identify Anisakis larvae to species level, then by evaluating the
relative proportions of these nematodes across sampling localities,
recognised multiple discrete host stocks (Mattiucci et al., 2004,
2008).

In recent years there have been major technological advances in
the field of molecular genetics, providing the ability to sequence
multiple markers or whole genomes in a short time span with
low costs, e.g. next generation sequencing (Schuster, 2007; Mardis,
2008; Quail et al., 2012). In fisheries science, multiple molecular
markers such as allozymes, mitochondrial DNA, microsatellite
and minisatellite loci, random amplified polymorphic DNA (RAPD)
and single nucleotide polymorphisms (SNPs), have all been used to
analyse stock structure of marine organisms directly (Carvalho and
Hauser, 1994; Thorpe et al., 2000; Baldwin et al., 2012; Ovenden
et al., 2013). This has proven useful for deep-sea species where
tag-recapture techniques are difficult to apply (e.g. Roques et al.,
2002; Friess and Sedberry, 2011; Varela et al., 2013). As candidate
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molecular markers that are under selection can now be identified
and genotyped readily, the capability also exists to assess genetic
differences between recently diverged groups or between incom-
pletely isolated groups, which was otherwise problematic with
neutral molecular markers (Swain et al., 2005; Lamichhaney
et al., 2012). These advances have subsequently helped to unveil
previously unrecognised patterns of geographic genetic structure
in marine organism (Sala-Bozano et al., 2009).

What is yet to be realised in any substantive way is the applica-
tion of these new molecular genetic technologies, with high
throughput and increased resolution, to parasitological studies of
host population structure. Additional layers of information may
be gained by contrasting the genetic population structure of
parasite and host not just for determining host population struc-
ture but details of the hosts population biology (e.g. Pacific sar-
dines – Baldwin et al. 2012). In the one example that we can find
where the same class of high resolution population markers
(microsatellites) were used in both parasite and host, Criscione
et al. (2006) found that trematode parasite genetic structure iden-
tified source populations of host steelhead trout (Oncorhynchus
mykiss) with four times more accuracy than the host’s own geno-
type. This finding highlights how differences in host and parasite
environmental tolerances, population size and connectivity influ-
ence their rates of population differentiation. We are not suggest-
ing skipping over host genetics to assess population structure, but
instead advocating the inclusion of parasite genetics into these
studies for what may provide an additional line of confirmatory
evidence or new insights into host structuring. As with any molec-
ular genetic study, it is important to recognise that the results will
depend on, and may differ, with the type of molecular genetic
markers used, the number of loci examined, the geographical scope
of the study, the number of fish sampled and the population biol-
ogy of the parasite taxa examined (Baldwin et al., 2012). To boost
the analytical power of these genetic analyses, it is recommended
to increase the sample size, the number of molecular markers and
loci used, and the number of parasite taxa included (Ovenden et al.,
2013).
6. Guidelines for selecting an ideal parasite species as a tag
candidate

According to Thorrold et al. (2002), the properties of a general
tag, including artificial and environmental tags, genetic markers
and parasites, should have the following characteristics:

1) Retention of the tag over an appropriate length of time.
2) No effect of the tag on the marked organism (invisible to

predators, non-toxic, no effect on growth or survival).
3) Ability to mark a large number of individuals in a cost-effec-

tive manner.
4) Be relatively quick and inexpensive to detect.

In addition to these characteristics for tags in general, there are
also a number of specific guidelines presented in the literature
which highlight the desirable requirements a parasite species
should have in being considered as a biological tag candidate. For
example, the following are taken from Sindermann (1961, 1983),
MacKenzie (1987, 1999b), Lester (1990), Moser (1991), Williams
et al. (1992) and MacKenzie and Abaunza (1998):

1) The parasite species should have different levels of infection
in the host at different geographical locations.

2) The life cycle of the parasite species should preferably
involve only a single host as more information is needed
on the biotic and abiotic factors influencing transmission
between hosts for those parasite species with multi-host life
cycles.

3) The life span of the parasite species in the host needs to
cover the duration of the investigation as a minimum.

4) The prevalence of the parasite species should remain rela-
tively stable between seasons and years.

5) The parasite species should be easily detected, preferably by
gross examination.

6) The parasite species should have no effects on the behaviour
or survival of the host.

It is wise to acknowledge that these guidelines are just that, rec-
ommendations rather than set rules. A single parasite species
would rarely have all of these attributes, so compromises usually
have to be made (Sindermann, 1983; MacKenzie and Abaunza,
1998). For instance, in some cases, anisakids and trypanorhynchs,
parasites that require at least three host species to complete their
life cycle (contravening guideline 2 above), have been found to be
the best tag candidates (Boje et al., 1997; MacKenzie and Abaunza,
1998; Timi, 2007; Chou et al., 2011). Additionally, the use of sev-
eral different parasites and even whole parasite assemblages as
tags may be more reliable than using a single species, as a greater
number of the guidelines may be met to yield a more complete
assessment of host population structure (Timi, 2003, 2007; Sardel-
la and Timi, 2004; MacKenzie and Abaunza, 2005). Note that if this
approach is selected, only parasite species highlighted as perma-
nent (recognisable for most of the life of the host) should be con-
sidered (Lester and MacKenzie, 2009).
7. Holistic approach to discriminate population structure of
marine organisms

Rather than focusing on only a single approach to discriminate
fish stocks, it may be of greater benefit to consider incorporating
data across disciplines, as different stock identification approaches
have different levels of sensitivities (Waldman, 2005). Meristics,
parasite data and microsatellite markers can be used to detect
differences that have arisen in the recent past, whereas other tech-
niques which are more conservative, such as allozymes and coding
DNA, require longer periods of isolation for differences to become
recognisable (Cadrin, 2011). Therefore by combining approaches
across disciplines, a more robust baseline is created and greater
confidence in the observed result is gained (Cadrin, 2010). For
example, Zischke et al. (2013) used morphometric measurements
of 12 fixed anatomical characters and variation in parasite abun-
dance of seven species to examine the stock structure of wahoo
Acanthocybium solandri collected in three regions, with the results
from both analyses complementing one another in stock boundary
estimates. For future studies examining the global stock structure
of wahoo, they suggest incorporating additional techniques such
as otolith microchemistry and genetic microsatellites. In another
study, life history data (age at first maturity, size structure and
growth patterns), otolith microchemistry and parasite fauna com-
position were used to distinguish stocks of southern blue whiting
Micromesistius australis between two main spawning grounds in
the southwest Atlantic Ocean and southeast Pacific Ocean (Arkhip-
kin et al., 2009; Niklitschek et al., 2010). This contrasted with the
results of earlier genetic studies based on mitochondrial DNA hap-
lotype frequencies, which did not detect any significant differences
between these areas (Shaw, 2003, 2005). More recently, Baldwin
et al. (2012) reviewed the use of fish morphometrics, artificial tags,
fish genetics, parasite genetics and parasites as biological tags to
identify subpopulations of marine fishes and affirmed the merits
of a holistic approach, integrating data from fish and parasite based
techniques (both community and genetic), to resolve stock struc-
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turing. Other authors also express support for using complemen-
tary methods from a broad spectrum, with different ecological
and evolutionary characteristics, to provide a comprehensive pic-
ture of the population structure of marine organisms (Begg and
Waldman, 1999; Cadrin et al., 2005; Sala-Bozano et al., 2009).

A multidisciplinary approach also provides additional tech-
niques available for use in subsequent stock analysis studies
(Cadrin, 2011). For example, Roques et al. (2002) used eight micro-
satellite loci initially to identify fish stocks of the western group of
deepwater redfish Sebastes marinum, with these stocks subdivided
into four smaller groups in a subsequent study that used parasite
species prevalence data (Marcogliese et al., 2003). Early research
on the winter flounder stock structure primarily focused on migra-
tion, life history rates and analysis of meristic characters, however
over time, genetic analyses, parasite fauna composition, modelling
analyses, otolith chemistry and telemetry tagging were incorpo-
rated, building on from this initial framework for a more robust
and supported insight (Cadrin, 2011). Stock delineation of the
Pacific hake Merluccius productus has also been assessed with a
variety of techniques in different studies, including parasite analy-
ses (Kabata and Whitaker, 1981), otolith morphology (McFarlane
and Beamish, 1985), biological parameter estimates (Beamish
and McFarlane, 1985; King and McFarlane, 2006) and mitochon-
drial sequence data (King et al., 2012). In summary, it seems viable
that a multidisciplinary approach which integrates data across
fields, such as molecular genetics, biometrics, life histories, model-
ling, otolith microchemistry analyses, artificial tagging studies and
parasitological surveys, may provide a deeper and more robust
insight into the population structuring of marine organisms in con-
trast to studies using a sole approach. There is also a need to utilise
the recent advancements in these fields as tools to improve our
understanding of stock boundaries.
8. Closing remarks

Our review highlights the usefulness of parasites as biological
tags in population structure studies of marine organisms. However
caution must be taken in selecting the most appropriate tag candi-
date species, as well as considerations on the number of taxa to in-
clude, the method of parasite identification and the way the data
are analysed. With the recent advancement of molecular genetic
techniques, we highlight the potential to include parasite genetic
data alongside host intra-specific molecular genetic data, an area
that is currently under-exploited. In particular the use of high
resolution neutral markers or loci under selection in both the par-
asite and host to detect recent demographic driven host population
structure is unexplored. As multiple approaches can be used to
assess population structure of marine organisms, each with their
own benefits and limitations, we ultimately advocate the integration
of data from multiple disciplines for a deeper insight into
population structuring. Due to the different levels of sensitivity
of each method, additional layers of information may be gained or
weak inferences may be better assessed using a holistic approach.
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