Parasites of the relict fauna of Ceylon III. Nematodes from a Rhacophorid frog and reptiles of the hill country

by H. CRUSZ and V. SANMUGASUNDERAM

Department of Zoology, University of Ceylon, Peradeniya, Sri Lanka

Summary

Eight nematode species, all of which have been named before, are reported from 6 host species which are endemic to Ceylon and nearly all confined to the upper montane zone (above 5000 ft .). A Rhabdias sp. and Entomelas sp. are reported from the lizard Calotes nigrilabris; Kalicephalus brachycephalus from the colubrid snake Aspidura trachyprocta; Cosmocercoides rickae from Calotes nigrilabris, from the horn-nosed lizard Ceratophora stoddarti and from the frog Rhacophorus microtympanum; Strongyluris chamaeleonis from Cophotis ceylanica and Ceratophora stoddarti; Strongyluris calotis from Calotes nigrilabris; Meteterakis longispiculata from the hump-nosed lizard Lyriocephalus scutatus collected in Kandy (elevation 1674 ft .) ; and Meteterakis baylisi from Ceratophora stoddarti.

Cosmocercoides rickae, Strongyluris calotis and Meteterakis baylisi are confined to Ceylon. The fact that the nematode Cosmocercoides rickae is found in Ceylon in an endemic frog and relict lizards, appears to throw light on the discovery of the acanthocephalan Acanthocephalus serendibensis in one of the relict lizards in Ceylon while a closely related species A. madagascariensis occurs in a Rhacophorus sp. in Madagascar.

Kalicephalus brachycephalus, which occurs in several snakes in the Oriental region, appears to be poorly adapted to the almost relic Aspidura trachyprocta in Ceylon.

There appears to be no evidence for regarding Meteterakis cophotis as being different from M. longispiculata. It is therefore regarded as a synonym of the latter species which was originally reported from a gecko in Java. The case for synonymising these two species is made more plausible when one considers the fact that one of the lyriocephaline host genera, namely Cophotis, is represented in Sumatra and Java as well by the species Cophotis sumatrana.

Résumé

Parasites de la faune relique de Ceylan. III. Nématodes d'une grenouille Rhacophoride et de reptiles de la zone montagneuse.

Huit espèces reconnues de nématodes ont été recueillies dans 6 espèces d'hôtes endémiques à Ceylan et presque toutes furent trouvées dans la zone montagneuse (plus de 1500 m). Une Rhabdias sp. et Entomelas sp. ont été observées chez le lézard Calotes nigrilabris ; Kalicephalus brachycephalus chez le serpent colubrine Aspidura trachyprocta; Cosmocercoides rickae chez Calotes nigrilabris, chez le lézard «horn-nosed» Ceratophora stoddarti et chez la grenouille Rhacophorus microtympanum; Strongyluris chamaleonis chez Cophotis ceylanica et Ceratophora stoddarti; Strongyluris calotis chez Calotes nigrilabris; Meteterakis longispiculata chez le lézard «hump-nosed» Lyriocephalus scutatus récolté à Kandy (altitude 510 m), et Meteterakis baylisi chez Ceratophora stoddarti.

Cosmocercoides rickae, Strongyluris calotis et Meteterakis baylisi ne se trouvent qu'à Ceylan. Le fait que le nématode Cosmocercoides rickae se trouve à Ceylan dans une grenouille endémique et des lézards reliques éclaire notre découverte de l'acanthocéphale Acanthocephalus serendibensis dans un lézard relique à Ceylan, tandis qu'une espèce proche, Acanthocephalus madagascariensis, apparaît dans une Rhacophorus sp. à Madagascar.

Kalicephalus brachycephalus, trouvé chez plusieurs serpents de la région orientale, semble peu adapté au serpent Aspidura trachyprocta, presque relique, à Ceylan.

Rien ne nous permet de considérer Meteterakis cophotis comme étant différent de Meteterakis longicaudata. Il est par conséquent un synonyme de la dernière espèce, qui a été trouvée dans des geckoes à Java. Il est vraisemblable que ces deux espèces soient synonymes lorsqu'on considère le fait qu'un des genres lyriocéphalines, à savoir Cophotis, est aussi représenté à Sumatra et à Java par l'espèce Cophotis sumatrana.

Introduction

«Speciation in nematode parasites is allopatric and, in general, independent of the speciation or transspecific evolution of the host.》

W. G. Inglis, 1965.

The 8 nematode species dealt with in this paper were collected from 6 host species, which are all endemic to Ceylon and confined mostly to the upper montane zone (above 5000 ft .). Two of the host genera, Lyriocephalus and Ceratophora are both endemic and relict genera belonging to the lacertilian subfamily Lyriocephalinae, while Cophotis, which belongs to the same subfamily, occurs in Sumatra and Java as well. Aspidura, a genus of colubrid snakes, is found elsewhere only on the nearby Maldive Islands and is therefore essentially a Ceylonese genus. The frog genus Rhacophorus enjoys a wider distribution in Africa, Madagascar and Asia. Details of the collections are set out in Table I.

Although none of the nematode species recorded here are new, the wealth of material obtained has helped clarify many points regarding the species already described. A certain amount of light is also thrown on possible connections with other
Table I

Table I（contd．）

Parasite				Male	Female	Hos		Male	Female	Habitat	Locality of host
		Strongyluris calotis 》＂		69		Calotes ni	grilabris	5	4	Rectum Stomach	Horton Plains Nuwara Eliya Park
					1 was found along with a solitary Cosmo－ cercoi－ des rickae						
	d）	＂	＂	9	7	》	＂	2	－	Rectum	Hakgala Gardens
		＂	＂	－	1	＊	》	1	－	Stomach	Horton Plains
					with nerous egg larvae						
7．a）	Meteterakis longispiculata			64	91	Lyrioceplialu	us scutatus	－	3	Small intestine	Udawattekele （Kandy） 510 m ．（1674 ft．）
b）		》	＂	－	$\begin{gathered} 52 \\ \text { imma- } \\ \text { ture } \end{gathered}$	»	＂	－	》	Small intestine and rectum	
c）	＂		》	120	190	》	＂	1	－	Rectum	＂
		＂	＂	－	$\begin{aligned} & 265 \\ & \text { immal- } \\ & \text { ture } \end{aligned}$	》	＂	»	－	Small intestine	》
8.	b） M	Meteterakis	baylisi	94	137	Ceratophora	stoddarti	10	7	Rectum	Horton Plains
		»	》	－	$\begin{gathered} 56 \\ \text { imma- } \\ \text { ture } \end{gathered}$	»	»	1	1	Small intestine	》
	c）	＂	》	16	17； 3 imma－ ture	》	》	－	3	Rectum	Hakgala Gardens
	d）	》	》	9	2	＂	＂	1	1	»	Nuwara Eliya Park

countries, and possible geographical pathways of infection, as reflected in the parasite distributions. Only 3 out of the 8 parasite species appear so far to be confined to Ceylon, namely Cosmocercoides rickae, Strongyluris calotis and Meteterakis baylisi. Three others are variously distributed in Asia, and two rhabdiasids need to be studied more intensively by experimental infestations before their specific status could be finally determined.

Rbabdias sp.

(fig. 1)
Out of 15 specimens of Calotes nigrilabris caught at Horton Plains, the lungs of 7 specimens were found to be infected with rhabdiasid nematodes, and yielded respectively $10,2,3,13,6,1$ and 1 , that is, a total of 36 such nematodes. All the worms proved to be females. A large number of eggs and actively moving larvae were also seen in the collecting medium $(0.9 \%$ saline $)$, but no males were found at all.

The parasites were first examined in the fresh condition and then preserved in warm 70% alcohol. They were then mounted in glycerine, after clearing in lactophenol. Staining the nematodes with acid fuschin and clearing in fresh lacto-phenol also gave very good results. A critical study of the parasites showed that they belonged to two distinct genera, namely Rhabdias and Entomelas.

Description :

Twenty-eight specimens of Rhabdias sp. were collected in all. They are long, slender and filiform, with bluntly rounded anterior ends and finely pointed posterior ends. The mouth is surrounded by 6 small insignificant lips and is followed by a small cupshaped buccal capsule. The oesophagus is short and is provided with two swellings separated by a constricted portion surrounded by the nerve ring. The anterior portion is spindle-shaped while the posterior portion is club-shaped. The intestine is simple, without any appendages.

The ovaries are reflexed. The vulva is situated near the middle of the body. The uteri are divergent and end in a receptaculum seminis, shortly after which the oviducts bend sharply back towards the middle of the body. The uteri are packed with eggs, which are thin-shelled and contain fully-formed larvae.

Discussion :

So far 23 species of Rhabdias have been described from amphibians and 12 species from reptiles. Out of the 12 reptilian species, 10 are reported from snakes and only 2 from chameleons. The species from chameleons, R. chamaeleonis and R. gemellipara, are extremely long worms and Travassos in 1930 shifted R. chamaeleonis to the genus Entomelas, in spite of the fact that it lacks the prominent buccal capsule and the 3 teeth at the base of the buccal capsule so characteristic of the genus. R.

Fig. 1. - Rhabdias sp.
Fig. 2-3. - Entomelas sp.
gemellipara, though classified under Rhabdias, shows very close affinities to Entomelas dujardini and Entomelas entomelas in its developmental cycle (Chabaud, Brygoo and Petter, 1961). So it is quite probable that R. gemellipara is also a species of Entomelas and not a species of Rhabdias, in spite of the differences it presents in the size of its buccal capsule and body length.

Thus, the form under discussion from Calotes nigrilabris is the only species reported from a lizard. The differences it presents in its body-length and oesophageal length may well be due to a difference of host.

Entomelas sp.

(fig. 2 and 3)
Eight specimens of Entomelas sp. were collected along with the Rhabdias sp. from the lungs of the same hosts. They were easily distinguished from the Rhabdias sp. by their larger size and more prominent buccal capsule. The various body measurements are set out in Table II.

Table II. - Measurements of Rhabdias sp. and Entomelas sp. (1)

	Rhabdias sp. (6)	Entomelas sp. (8)
Body length	7.052-10.332	14.862-16.520
Body width	0.217-0.299	0.348-0.369
Head diameter	0.049-0.057	0.143-0.147
Buccal capsule diameter	0.020-0.028	0.102-0.114
Oesophagus length	0.675-0.738	0.348-0.369
Eulb dimensions	0.073-0.082	$\begin{aligned} & 0.164-0.184 \text { by } \\ & 0.123-0.131 \end{aligned}$
Nerve ring from anterior end	0.184-0.287	0.246-0.266
Vulva from anterior end	4.059-4.120	8.823-10.045
Tail length	0.287-0.328	0.369-0.533
Egg dimensions	0.045-0.102 by	$0.102-0.123$ by
	0.028-0.041	0.045-0.057

(1) All measurements in this table and subsequent tables are in millimetres.

The mouth is surrounded by a cuticular ring. The free margins of the ring are shallowly lobed. Lips are absent. The buccal capsule is large and well developed and is provided at its base with 3 small chitinoid teeth. The teeth, which are bifid in E. entomelas and E. dujardini, appear to be simple in the present form. The buccal capsule leads to a claviform œsophagus which lacks the characteristic anterior swelling found in the Rhabdias sp. It is followed by a simple intestine which is identical in structure with that of the Rhabdias form.

The vulva is situated behind the middle of the body. The uteri are opposed. The tail is conical and pointed. The eggs are large, oval, thin-shelled and embryonated.

Discussion :

Only 3 species of Entomelas have been described so far from reptiles, namely E. entomelas (Dujardin, 1845) (Syn. Angiostoma macrostomum), E. dujardini (Maupas, 1916) (Syn. Angiostoma entomelas) and E. chamaeleonis (Skrjabin, 1916).

A close comparison of the measurements of E. entomelas and E. dujardini show that these two species, reported from the same host Anguis fragilis in Europe, are synonymous. The present form resembles these species in the structure of its buccal capsule and in the presence of teeth at the base of the buccal capsule, but differs from them in that it is thrice as long.

If R. gemellipara is also placed under the genus Entomelas, then our form resembles R. gemellipara and E. chamaeleonis in being a very long worm, but the prominent buccal capsule demarcates it clearly from these species. A conclusive determination of its specific status could be made only after experimentally working out its developmental cycle and life-cycle.

Kalicepbalus brachycephalus Maplestone, 1931

(fig. 4-11)
Three specimens of Kalicephalus (2 females and 1 male) were collected from the small intestine of a female colubrid snake, Aspidura trachyprocta, on July 24, 1969. Three more specimens (2 females and 1 headless male) of the same parasite, from the same habitat, were collected from a male Aspidura trachyprocta on November 13, 1969. The hosts on both occasions were caught on Horton Plains. The parasites were fixed in warm 70% alcohol and preserved in the same fluid.

Description :

The worms are of medium size with a slightly curved anterior end. The greatest width is generally at the level of the buccal capsule (Figs. 4 and 5). The cuticle of the face is inflated, specially at the corners. The head is strongly compressed laterally. The buccal capsule is large and relatively deep (Fig. 4). It could also appear to be foreshortened (Fig. 5) as a result of its two lateral halves bending in strongly. The ventral posterior chitinoid piece of the buccal capsule is crescentic and orientated longitudinally. The anterior chitinoid ridge is curved somewhat strongly. It is variable in thickness, from narrow to medium. The dorsal gutter is well developed with a beaded internal edge.

The œesophagus varies in length when compared with the depth of the buccal capsule. It is slightly bulbed when it is twice as long as the buccal capsule is deep, and is more stoutly bulbed when the œsophagus is considerably shorter in length.

The nerve ring encircles the œsophagus just anterior to the bulb. The excretory pore is situated posterior to the nerve ring, at the level of the middle of the œesophageal bulb.

Male :
The bursa is well developed (fig. 6). The terminal branching of the dorsal ray is of pattern III (fig. 6 and 7). The ventral rays are long and thin, and distinctly separate distally. They terminate considerably anteriorly, the distal ends being anterior to the end of the genital cone. The lateral rays are symmetrical, with their tips evenly

Fis. 4-5. - Kalicephalus brachycephalus.
spaced and the rays diverging uniformly. The externo-lateral ray is shorter than the other laterals.

The spicules are equal, simple, short and alate, with spatulate tips (fig. 8). A simple, well developed gubernaculum (fig. 8) and a telamon are present The genital cune is prominent.

Female :

The vulva varies from a slightly raised structure to a prominent structure. The worm is amphidelphic, with the uteri opposed from ovejectors. The ovejectors are shart and distinctly separated from the uteri by prominent muscular constrictions

(fig. 9). The tail of the female is elongate (fig. 10 and 11) and its tip is either bluntly pointed or has a small prominence, when viewed laterally. The eggs are large.

Discussion :

So far about 33 species and subspecies of Kalicephalus are recognised. They have been reported from the alimentary tract of various snakes and lizards, but none from the colubrid snake Aspidura trachyprocta. This is the first report of this parasite from this host, which is found in the hill country of Ceylon and also in the Maldive Islands.

Table III. - Measurements of Kalicephalus brachycephalus

	Male (1)	Female (4)
Body length	4.28	4.612-5.145
Body width	0.184	0.176-0.221
Head diameter	0.143	0.147-0.205
Buccal capsule depth	0.102	0.123-0.184
Esophagus length	0.229	0.213-0.246
Bulb diameter	0.090	0.082-0.094
Nerve ring from anterior end	0.184	0.205-0.266
Excretory pore from anterior end	-	0.300
Spicule length	0.319-0.320	-
Vulva from anterior end	-	2.99-3.15
Tail length	-	0.246-0.311
Egg dimensions	-	$\begin{aligned} & 0.0410-0.0697 \text { by } \\ & 0.0246-0.0328 \end{aligned}$

The worms from Aspidura trachyprocta show features that point to their belonging to one of four species, namely Kalicephalus colubri, K. truncatus, K. viperae and K. brachycephalus. K. colubri has however an anteriorly tapering body with a relatively narrow head, and a dorsal ray showing terminal branching of pattern IV, very occasionally pattern III (vide Schad, 1962). All subspecies of K. viperae have narrow heads. Their spicules have markedly shouldered spatulate tips and the terminal branching of the dorsal ray is of pattern IV. K. truncatus, like the present form, is a very small worm with almost the same measurements for most of the structures. It too has a relatively large head with a deep buccal capsule, and the terminal branching of the dorsal ray is of pattern III or IV. But it differs from the present species in having ventral rays which are fused except at the tips, and spicules with markedly shouldered spatulate tips.

The length of the œsophagus in all three species, namely K. colubri, K. truncatus and K. viperae, is double or more than double the depth of the buccal capsule, whereas in the present species the œesophagus is mostly less than double the depth of the buccal capsule.

The present species comes closest to K. brachycephalus, with which it agrees in the following features :

1. The greatest width of the worm is generally at the level of the buccal capsule ;
2. The face is tilted;
3. The facial cuticle is inflated especially at the corners ;
4. The anterior chitinoid ridge is curved, sometimes strongly ;
5. The ventral posterior chitinoid piece is crescentic and longitudinally orientated;
6. The buccal capsule is relatively deep. The body-length by buccal-capsuledepth index is closer to that of K. brachycephalus than to those of the other species (Table IV) ;
7. The œsophagus-length by buccal-capsule-depth index is very close to that of K. brachycephalus (Table IV);
8. The spicules are alate with narrow spatulate tips.

The present form, however, differs from K. brachycephalus in its much smaller size and in the pattern of the terminal branching of the dorsal ray. But these may both be host-determined variations, the small size of the worms being perhaps an indication of poor adaptation to Aspidura. The location in the host, namely the small intestine, may be another indication of poor adaptation, since worms of the Rectiphilous group, to which K. brachycephalus belongs, properly infest the rectum. According to Schad (1971, personal communication) these worms are quite habitat specific, for, whenever Schad did his own autopsies on freshly killed hosts, he never found kalicephs at ectopic sites. The worms in the present collection too were obtained directly from freshly killed hosts, whose alimentary canals were examined for their entire lengths. There is also no indication that these worms are particularly young adults, which could have later finally established themselves in the rectum. In spite of these differences and the fact that the host Aspidura trachyprocta is found in Ceylon only above an elevation of 5000 ft ., it would be best to regard the present worms as belonging to K. brachycephalus, a species which is of Oriental distribution and has probably already been found in Ceylon in Typhlops braminus (vide Schad, 1962).

Cosmocercoides rickae Ogden, 1966
Ninety-seven specimens of the above species were collected from the rectum of two male specimens of the horn-nosed lizard, Ceratophora stoddarti, in July 1969, at Horton Plains. Twenty-three immature worms were also recovered from the small intestine of one of them.
Table IV

All figures, except those for K, brachycephalus from Aspidura trachyprocta, were computed from data given by Schad (1962).
Table V．－Details of collections of Cosmocercoides rickae Ogden， 1966

Host	Sex of host	Locality and date of collection	Habitat of worms	No．and sex of worms	
				Male	Female
Ceratophora stoddarti Gray， 1835	Male	Hakgala Gardens July 19， 1969	Rectum	2	2
》 》	Male	Horton Plains July 21， 1969	Rectum	38	42
			Small intestine		23 immature
》 》	Male	Horton Plains July 21， 1969	Rectum	5	12
》 》	Female	Nuwara Eliya March 23， 1970	Small intestine		20 immature
Calotes nigrilabris Peters， 1860	Male	Nuwara Eliya July 22， 1969	Stomach	1	
Rhacophorus microtympanum Günther， 1858	Female	Horton Plains July 19， 1969	Rectum	2	7

Table VI. - Comparative chart of Cosmocercoides rickae Ogden, 1966

	From Ceratophora tennenti (vide Ogden 1966)		From Ceratophora stoddarti		From Calotes nigrilabris	From Rhacophorus microtympanum	
	Male (1)	Female (6)	Male (10)	Female (12)	Male (1)	Male (2)	Female (7)
Body length	3.07	3.56-4.94	2.13-4.77	3.28-4.79	2.808	4.07	4.14-5.08
Body width	0.41	0.36-0.47	0.205-0.451	0.266-0.350	0.192	0.389-0.430	0.274-0.533
Head diameter	0.035	0.037-0.043	0.028-0.041	0.028-0.041	0.036	0.041	0.047-0.057
Oesophagus length	0.65	0.68-0.84	0.574-0.779	0.697-0.922	0.533	0.779	0.656-0.820
Bulb diameter	-	-	0.102-0.143	0.123-0.151	0.123	0.123-0.164	0.131-0.188
Nerve ring from anterior end	0.34	0.24-0.30	0.246-0.348	0.282-0.287	0.246	-	-
Excretory pore from anterior end	0.42	0.28-0.35	0.31-0.492	0.369-0.492	0.348	-	-
Spicule length	0.168	-	0.143-0.225	-	0.246	0.246-0.278	-
Gubernaculum length	0.121	-	0.098-0.123	-	0.123	0.094-0.143	-
No. of caudal papillae (rosette-form type)	18	-	18	-	18	18	-
Vulva from anterior end	-	1.94-2.63	-	-	-	-	2.39-2.87
Tail length	0.161	0.158-0.243	0.123-0.237	0.217-0.240	0.155	0.143-0.155	0.164
Egg dimensions	-	0.076-0.090	-	0.041-0.082	-	-	0.051-0.082
		by		by			by
		0.044-0.055		0.028-0.102			0.028-0.041

Four specimens of the same nematode species were collected from a male Ceratophora stoddarti in the Hakgala Gardens in the same month, and twenty immature worms were obtained from the small intestine of a female horn-nosed lizard at Nuwara Eliya in March 1970. A solitary male nematode was recovered from the stomach of a male Calotes nigrilabris at Nuwara Eliya. This may well have been an accidental infection.

Nine specimens of Cosmocercoides were also collected in July 1969 at Horton Plains from the rectum of a female Rhacophorus microtympanum.

Relevant details regarding the above collections are set out in Table V.
The worms correspond in all their features to the species Cosmocercoides rickae Ogden, 1966. The various measurements are set out in Table VI.

This species was originally reported from the rectum of Ceratophora tennenti in Gammaduwa, Ceylon, by Ogden (1966). It was the first record of worms of the genus Cosmocercoides from a reptile. All other species of this genus have so far been reported only from the alimentary tract of amphibia.

It is very interesting to note the occurrence of this species in both an endemic amphibian and an endemic reptile in the same location and same locality in Ceylon. While rhacophorids have a wide distribution, in Africa, Madagascar and the Oriental region, agamid lizards of the subfamily Lyriocephalinae to which Ceratophora spp. belong are a group confined to Ceylon, with the exception of Cophotis, which is found also in Sumatra and Java. Very probably Ceratophora spp. obtained their Cosmocercoides from rhacophorid frogs. This co-existence of Cosmocercoides rickae in an endemic amphibian and a relict reptile would also throw light on the probable route of infection of the echinorhynchid acanthocephalan, Acanthocephalus serendibensis Crusz and Mills, 1970, from Ceratophora stoddarti in Ceylon. The closely allied spesies Acanthocephalus madagascariensis Golvan, 1965, came from a Rhacophorus sp. on Mt. d'Ambre in Madagascar. It will be interesting indeed if Acanthocephalus serendibensis is found to infest rhacophorids as well, in Ceylon.

Strongyluris chamaeleonis Baylis and Daubney, 1922

(fig. 12-15)

Seventeen specimens of the above parasite were collected from Cophotis ceylanica and 7 specimens from Ceratophora stoddarti. The infection in Cophotis ceylanica occurred in the small intestine and rectum, while in Ceratophora stoddarti the parasite was collected from the rectum along with Cosmocercoides rickae and Meteterakis baylisi.

Details of all these collections are set out in Table VII (a).

Fig. 12-15. - Strongyluris chamaeleonis.

Annales de Parasitologie humaine et comparée (Paris), t. 48, $\mathrm{n}^{\circ} 6$

Description :

The worms collected from Cophotis ceylanica are long and slender and in a highly coiled state while those from Ceratophora stoddarti are slender and straight but in a poor state of preservation. Body papillae are absent in all the specimens examined.

The mouth is surrounded by 3 well developed lips. The cuticular flange and the two shoulders present in S. calotis are absent in this form. The pharynx and œsophagus are well developed (fig. 12). A ventral kink is present in the lumen of the pharynx. The nerve ring is situated in the anterior half of the œsophageal region. The œesophagus enlarges into a bulb at its posterior extremity. The intestine is simple. The excretory pore is situated just behind the nerve ring.

Male :

The tail of the male is typical, with a pre-anal sucker having a chitinous ring, and with 10 papillae and 2 spicules (fig. 14). There are 4 pairs of pre-anal papillae and 6 pairs of post-anal papillae. The pre-anal papillae increase in size from before backwards, while the post-anal papillae are all much smaller in size.

The spicule lengths fall into all categories - equal, subequal and unequal. The spicules are longer and more slender than those of S. calotis and they are strongly tessellated throughout their lengths (fig. 13 and 14).

Female :

The female tail tapers regularly and has a terminal spike. The vulva opens behind the middle of the body. Eggs are oval with smooth shells, and they vary greatly in size.

A detailed chart of the measurements is given in Table VIII. As the forms from Ceratophora stoddarti (fig. 15) were not in a good state of preservation, the measurements of these worms are not given.

Discussion :

The worms described here belong to the species Strongyluris chamaeleonis, although they were collected from agamid lizards from the same geographical localities in Ceylon as Calotes nigrilabris which harbours S. calotis. S. chamaeleonis differs markedly from S. calotis in the shape and size of the spicules, size of sucker, arrangement of the papillae and the shape of the tail.

Strongyluris calotis Baylis and Daubney, 1923

(fig. 16-18)
A large number of specimens of Strongyluris calotis were collected from the rectum of Calotes nigrilabris that were brought from Horton Plains, Hakgala Gardens

Table VII (a)

Table V.II (a) (contd.)

and Nuwara Eliya Park, in July 1969. On one occasion, a solitary female specimen of the same parasite was collected from the stomach, along with larvae and eggs. On another occasion a mature female was collected from the stomach, along with a solitary male specimen of Cosmocercoides rickae. These infections in the stomach could have been accidental. All the collections however were made from freshly dissected hosts.

Details of all these collections are set out in Table VII (b).

Description :

The worms from Calotes nigrilabris are long and broad, with pointed posterior ends in the female and abruptly truncated posterior ends in the male.

The mouth is surrounded by 3 lips, each having a flange-like marginal extension of the cuticle. The cuticle is finely striated. Body papillae are absent. The neck is wider than the head, forming a «shoulder» behind the base of the lips (fig. 16). A second «shoulder» is formed a little further back by the commencement of a cuticular inflation which covers part of the pharyngeal and œsophageal regions. The pharynx is separated from the cesophagus by a constriction and a ventral kink in the lumen. The nerve ring is situated in the anterior half of the cesophageal region. The œesophagus enlarges into a bulb at its posterior extremity. The intestine is simple but it widens at its anterior end to meet the œsophagus. The excretory pore is situated behind the nerve ring and opens into an enlarged vesicle.

Male :

The tail of the male is typical, with a pre-anal sucker having a chitinous ring, and with 10 papillae and 2 spicules (fig. 17). There are 3 pairs of pre-anal papillae and 7 pairs of post-anal papillae, but in some males the arrangement is 4 pre-anal and 6 post-anal. The anteriormost pair of papillae are slender and small. The succeeding 3 pairs are very much larger, while the rest are small and either short and rounded or long and slender. The terminal end of each papilla has a prominent thickening. The spicules are strongly tessellated throughout their length (fig. 18). They are short and stout and equal in length.

Female :

The female tail tapers regularly and has a terminal spike. The vulva opens behind the middle of the body. Eggs are oval with smooth shells and vary greatly in size.

Discussion :

The worms described above, from Calotes nigrilabris, resemble in all respects Strongyluris calotis collected from the same host species by Baylis and Daubney in 1923. For purposes of comparison and for the completeness of the comparative data, detailed measurements of the male and female worms are given in Table VIII.
Table VIII. - Comparative data on Strongyluris spp.

Meteterakis longispiculata (Baylis, 1929)

(fig. 19 and 20)
Three female hump-nosed lizards, Lyriocephalus scutatus, were collected from Udawattekele (Kandy) on September 28, 1969, and one male on July 12, 1971. Each lizard was found to be infected with a species of Meteterakis. The parasites were coilected from both small intestine and rectum. Table IX sets out the number of parasites collected from each host.

Table IX

Host (Lyriocephalus scutatus)	Total number of worms collected	Male worms	Female worms	Immature female worms
1. Female	159	$\begin{gathered} 51 \\ \text { (small } \\ \text { intestine) } \end{gathered}$	76 (s.i.)	32 (s.i.)
2. Female	20	-	-	20 (rectum)
3. Female	28	13 (s.i.)	15 (s.i.)	-
4. Male	575	120 (r)	190 (r)	265 (s.i.)

Description :

The worms are short and stout with a distinct ventrally curved tail in the male. The anterior end has the typical structure of a heterakid, with three distinct lips and a cuticular flange projecting anterior to the mass of the lip. Each lip is provided with a pharyngeal tooth and an amphid.

The mouth leads into a distinct pharynx which is followed by a long, narrow muscular œsophagus ending in a pear-shaped posterior bulb. The post-œsophageal bulb is entirely muscular and is valvulated. The nerve ring encircles the narrow part of the œesophagus anterior to the excretory pore. This pore lies on the ventral surface and opens into a characteristic, large, lobulate excretory vesicle, which displaces dorsally the posterior section of the œesophagus (fig. 19).

The intestine is swollen at its anterior end, where it meets the œsophagus, and at this point it is wider than the post-œsophageal bulb.

Male :

The tail is curved ventrally, and has narrow caudal alae, each supported by 3 large fleshy papillae (fig. 20). The sucker is relatively small and there are 8 pairs of small sessile papillae anterior to it, and 3 pairs at the posterior end of the tail. The tail ends in a sharply pointed terminal spike.

Fig. 19-20. - Meteterakis longispiculata.
The spicules are large, equal and similar in form and structure, with the anterior end strongly curved ventrally. They are tessellated for their entire length. The gubernacular mass is very prominent.

Female:

The vulva opens on the ventral surface, about the middle of the body, and is covered by a prominent flap developed from the anterior lip. The eggs are oval and thin-shelled. The tail is long and pointed.

The various measurements of both male and female worms are set out in Table X.

Discussion :

Baylis and Daubney (1923) recorded a few immature specimens of a nematode from the duodenum of (?) Lyriocephalus scutatus, which nematode they identified as

Table X. - Measurements of Meteterakis longispiculata

	Male (12)	Female (11)
Body length	3.485-5.710	3.997-6.20
Body width	0.163-0.266	0.246-0.348
Head diameter	0.041-0.061	0.053-0.061
Pharynx length	0.049-0.061	0.053-0.061
©Esophagus length	0.502-0.902	0.635-1.004
Bulb dimensions	$0.121-0.164$ by	$\begin{gathered} 0.164-0.205 \\ \text { by } \end{gathered}$
	0.131-0.164	0.151-0.196
Nerve ring from anterior end	0.278-0.307	0.246-0.328
Excretory pore from anterior end	0.410-0.512	0.369-0.574
Sucker diameter	0.041-0.061	-
Distance from sucker to cloaca	0.041-0.061	-
Spicule length	0.553-0.799	-
Vulva from anterior end	-	1.414-2.50
Tail length	0.205-0.287	0.287-0.490
Egg dimensions	-	$0.0410-0.0779$ by
		0.0240-0.0430

a Spinicauda sp. They were unable to determine the species. According to Inglis (1958) «it is very probable that these actually represent a Meteterakis sp. probably M. cophotis of which L. scutatus is a known host ».

Baylis (1935) subsequently described Spinicauda cophotis from both Cophotis ceylanica and Lyriocephalus scutatus taken at Gammaduwa, Ceylon. He noted that the specimens from Ceylanica were slightly larger than those from L. scutatus. Inglis (1958) put this species, S. cophotis, into the genus Meteterakis.

The form described here differs markedly from M. cophotis in body and eggmeasurements, being about half the size of M. cophotis in these respects, although the host, Lyriocephalus scutatus, is a very much larger lizard than Cophotis ceylanica.

An important datum that appears to be lacking in previous accounts is the total number of worms found to infest each host specimen. If this had been recorded one could have looked for some correlation between the number of worms and their size.

The fact that Baylis (1935) found M. cophotis in both Cophotis ceylanica and Lyriocephalus scutatus, in the same locality, is strong evidence that the present forms too are of the same species, despite differences in body measurements, which may be a function of population size or due to hostal influences.

The absence of the cap-like structure at the tip of the spicules, in the present form, clearly differentiates it from M. baylisi. However, in the size and structure of its spicules it comes close to M. longispiculata, which differs from M. cophotis essen-
tially in having strongly tessellated alae, which in M. cophotis were found to be poorly cuticularised (Inglis, 1958). The spicules of M. longispiculata and M. cophotis are stated by Inglis to be in all other respects identical, while the difference in the alae «is most probably due only to variation within one species». Like Baylis, Inglis preferred to treat M. cophotis as distinct from M. longispiculata until more material was available for study. The present material should help considerably in settling this question. M. cophotis, M. longispiculata and the present form have hardly any differences except those of body-measurements and egg size to warrant their recognition as three separate species (vide Table XI). They are therefore considered to be conspecific, all belonging to the species Meteterakis longispiculata (Baylis, 1929).

It is interesting to note that Meteterakis longispiculata was described from the intestine of Gecko gecko in Samarang, Java. In all probability this nematode species originated early and had a wide distribution, and is now represented in Ceylon and the Malaysian region in the Geckoninae and Lyriocephalinae, the latter being essentially a relict subfamily of agamid lizards confined almost entirely to Ceylon, but represented also in Sumatra and Java by the species Cophotis sumatrana.

Meteterakis baylisi Inglis, 1958

Twelve male and 12 female horn-nosed lizards (Ceratophora stoddarti) collected on the Horton Plains and in Nuwara Eliya and Hakgala in July 1968 and July 1969, yielded a total of 334 specimens of Meteterakis baylisi, comprising 119 males and 156 females from the host's rectum and 59 immature females from the small intestine. The worms correspond in all respects with the species described by Inglis (1958). Hence no detailed measurements or figures are provided here.
M. baylisi is a well established species, which appears to be confined to Ceylon in relict mountain lizards.

Acknowledgements

Valuable advice on the kalicephalid was given to us by Dr. G. A. Schad of the Department of Pathobiology, School of Hygiene and Public Health, Johns Hopkins University, USA, and on the species of Strongyluris and Meteterakis by Dr. W. Grant Inglis, Director of the South Australian Museum at Adelaide. Dr. Alain G. Chabaud of the Muséum National d'Histoire Naturelle in Paris very kindly sent us photocopies of required articles. We thank them all for their generous help.

As in the case of the previous papers in this series, we are indebted to Messrs. Lionel Pereira and G. W. Abeyasekera, Laboratory Assistants in Zoology in this Department, who helped at various times in the animal collections and in some of the technical work, Miss Suneetha Wimalasuriya, Laboratory Assistant in Zoology, who drew the text figures in final form for publication, and our Secretary, Miss Priscilla Gnanamanikkam, who prepared the typescripts for the press.
Table XI. - Comparative data on Meteterakis spp.

	Meteterakis baylisi (vide: Inglis, 1958)		Meteterakis cophotis (vide: Inglis, 1958)		Meteterakis longispiculata (vide : Inglis, 1958)		Meteterakis longispiculata (Present study)	
	Male (4)	Female (5)	Male (7)	Female (8)	Male (3)	Female (3)	Male (12)	Female (11)
Body length	3.0-3.7	3.6-4.2	6.4-8.0	7.3-9.0	7.0-7.5	7.5-7.8	3.48-5.71	3.99-6.20
Body width	0.21-0.28	0.24-0.31	0.35-0.37	0.24-0.37	0.28-0.35	0.30-0.39	0.163-0.267	0.246-0.348
Spicule length ...	0.42-0.45	-	0.64-0.81	-	0.63-0.68	-	0.553-0.799	-
Nature of spicule	Tessellated throughout, excluding alae. Caplike structure at tip of spicules.	-	Tessellated throughout, excluding alae.	-	Strongly tessellated throughout, including alae.	-	Strongly tessellated throughout, including alae.	-
Vulva from anterior end	-	1.7-2.2	-	3.0-4.3	-	3.0-3.5	-	1.41-2.50
Egg dimensions . .	-	$\begin{gathered} 0.0580-0.0640 \\ \text { by } \\ 0.0370-0.0420 \end{gathered}$	-	$\begin{gathered} 0.0580-0.0760 \\ \text { by } \\ 0.0420-0.0480 \end{gathered}$	-	$\begin{gathered} 0.0730-0.0840 \\ \text { by } \\ 0.0440-0.0480 \end{gathered}$	-	$\begin{gathered} 0.0410-0.0779 \\ \text { by } \\ 0.0240-0.0430 \end{gathered}$
						One female, reported by Baylis (1929), has eggs as large as 0.1125 by 0.1155		

Bibliography

Baylis (H. A.), 1929. - Some new parasitic nematodes and cestodes from Java. Parasitology, 21, 256-265.
—, 1935. - Two new parasitic nematodes from Ceylon. Ann. Mag. nat. Hist., (Ser. 10), 16, 187-192.
-, 1936. - The fauna of British India. Nematoda, I, Ascaroidea and Strongyloidea, Taylor and Francis, London.
—, 1937. - Some parasitic worms from East African chamaeleons. Ann. Mag. nat. Hist. (Ser. 10), 19, 584-593.
Baylis (H. A.) and Daubney (R.), 1922. - Report on the parasitic nematodes in the collection of the Zoological Survey of India. Mern. Ind. Mus., 7, 263-347.
—, 一, 1923. - Preliminary descriptions of three new parasitic nematodes. Ann. Mag. nat. Hist. (Ser. 9), 2, 333-335.
Chabaud (A. G.) and Brygoo (E. R.), 1962. - Nématodes parasites de Caméléons malgaches. Deuxième note. Ann. Parasit. hum. comp., 37, 569-602.
-, -, and Petter (A. J.), 1961. - Description et caractères biologiques de deux nouveaux Rhabdias malgaches. Ann. Parasit. hum. comp., 36, 752-763.
Crusz (H.) and Mills (E. V.), 1970. - Parasites of the relict fauna of Ceylon I. Acanthocephalus serendibensis sp. nov. from the Ceylon horn-nosed lizard, Ceratophora stoddarti Gray. Ann. Parasit. hum. comp., 45, 13-19.
Golvan (Y. J.), 1965. - Acanthocéphales de Madagascar récoltés par E. R. Brygoo (Première note). Ann. Parasil. hum. comp., 40, 303-316.
Grasse (P.-P.) (Edit.), 1965. - Traité de Zoologie, 4 (3). Masson et C^{18}, édit., Paris.
Inglis (W. G.), 1958. - A revision of the nematode genus Meteterakis Karve, 1930. Parasitology, 48, 9-31.
-, 1965. - Patterns of evolution in parasitic nematodes: in Evolution of Parasites, A.E.R. Taylor, publ., Blackwells, Oxford.
Ogden (C. G.), 1966. - On some parasitic nematodes from reptiles, mainly from Ceylon. J. Helminth., 40, 81-90.

Schad (G. A.), 1962. - Studies on the genus Kalicephalus (Nematoda : Diaphanocephalidae). II. A taxonomic revision of the genus Kalicephalus Molin, 1861. Canad. J. Zool,, 40, 1035-1165.
Travassos (L.), 1930. - Pesquizas helminthologicas realisadas em Hamburgo. VII. Notas sobre os Rhabdiasoidea Railliet, 1916 (Nematoda). Mem. Inst. Oswaldo Criz, 24. 161-181.
Yamaguti (S.), 1961. - The nematodes of vertebrates. Parts I and II. Systema helminthum III. Interscience Publishers, New York and London.

