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As an adaption to their complex lifecycles, helminth parasites garner a unique repertoire of
genes at different developmental stages with subtle regulatory mechanisms. These
parasitic worms release differential components such as microRNAs (miRNAs) and
extracellular vesicles (EVs) as mediators which participate in the host-parasite
interaction, immune regulation/evasion, and in governing processes associated with
host infection. MiRNAs are small (~ 22-nucleotides) non-coding RNAs that regulate
gene expression at the post-transcriptional level, and can exist in stable form in bodily
fluids such as serum/plasma, urine, saliva and bile. In addition to reports focusing on the
identification of miRNAs or in the probing of differentially expressed miRNA profiles in
different development stages/sexes or in specific tissues, a number of studies have
focused on the detection of helminth-derived miRNAs in the mammalian host circulatory
system as diagnostic biomarkers. Extracellular vesicles (EVs), small membrane-
surrounded structures secreted by a wide variety of cell types, contain rich cargos that
are important in cell-cell communication. EVs have attracted wide attention due to their
unique functional relevance in host-parasite interactions and for their potential value in
translational applications such as biomarker discovery. In the current review, we discuss
the status and potential of helminth parasite-derived circulating miRNAs and EV cargos as
novel diagnostic tools.
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INTRODUCTION

Parasitic helminths, comprising the Phylum Platyhelminthes and the Phylum Nematoda, are
regarded as some of the most prevalent human infectious agents in developing countries (Hotez
et al., 2008). The most common human helminthiases are caused by soil-transmitted helminths,
schistosomes (causative agents of schistosomiasis) and filarial worms, which cause onchocerciasis
and lymphatic filariasis (Hotez et al., 2008). Approximately 8 million DALYs are lost annually due
to these infections (Molyneux et al., 2017). As a result of the high prevalence and significant
morbidity they cause in both humans and livestock animals, parasitic helminths represent an
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important global health problem and the cause of significant
economic burden (Charlier et al., 2014). Developing effective
strategies such as vaccines and accurate diagnostic tools for the
prevention and control of helminth infections will be paramount
in reducing the overall disease burden due to these parasites
(Lustigman et al., 2012).

Small non-coding RNAs (sncRNAs) are a class of non-coding
RNAs (ncRNA), which have been identified in a wide range of
organisms including helminths (Cai et al., 2016). sncRNAs
include housekeeping ncRNAs, such as small nuclear RNAs
(snRNAs), transfer RNAs (tRNAs), and tRNAs-derived small
RNAs (tsRNAs); and regulatory ncRNAs, such as microRNAs
(miRNAs), endogenous short interfering RNAs (siRNAs), and
PIWI-interacting RNAs (piRNAs) (Zhang et al., 2019). Due to
advances in helminth genomics (Ghedin et al., 2007; The
Schistosoma japonicum Genome Sequencing and Functional
Analysis Consortium, 2009; Zheng et al., 2013; International
Helminth Genomes Consortium, 2019) and high-throughput
deep sequencing, a considerable number of miRNAs have been
identified in a range of parasitic helminths (Hao et al., 2010;
Poole et al., 2010; Cucher et al., 2015). Furthermore, miRNA
expression profiles of different developmental stages and/or in
specific tissues or cell types have been determined in some key
helminth taxa (Cai et al., 2011; Cucher et al., 2011; Cai et al.,
2013; Bai et al., 2014). These studies provide a solid basis for
further functional and translational investigations of helminth
miRNAs. Accumulating evidence also reveals that sncRNAs
present in the circulation may play an important role in
disease diagnosis and prognosis (Drury et al., 2017),
particularly for cancer (Lan et al., 2015). The presence of
helminth-derived miRNAs in the serum/plasma of helminth-
infected definitive hosts has stimulated considerable interest in
evaluating the potential of utilizing worm-derived miRNAs as
diagnostic biomarkers for helminthiases (Cai et al., 2016;
Ghalehnoei et al., 2020; Cucher et al., 2021).

Extracellular vesicles (EVs) are small membrane-bounded
secreted vesicles that were previously considered a general
mechanism for waste disposal by living systems including
helminths, but are now recognized to be important cell-cell
communicators, as they are able to transmit a wealth of
bioactive cargos, such as proteins, lipids, glycans, DNA,
messenger RNAs (mRNAs), small RNAs, and DNAs between
cells (Yáñez-Mó et al., 2015). EVs are found in all bodily fluids
including blood, urine, saliva, cerebrospinal fluid, milk and
pleural effusion (Karin-Kujundzic et al., 2019) and they possess
several key properties which underpin their potential as
biomarkers, including 1) structural stability, 2) high abundance
in plasma, and 3) the ability to alter their concentration and
constitution under diverse conditions (Wu et al., 2019).

The application of specific EV molecules as biomarkers for
the diagnosis and prognosis of diseases, including but not
limited to cancer, have been widely reported and reviewed
(Lai et al., 2017; Kosaka et al., 2019; Logozzi et al., 2020;
Pang et al., 2020). Studies on helminth-derived EVs have
been carried out in the last decade, ranging from the
determination of their molecular composition (Sotillo et al.,
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2016; Samoil et al., 2018; Sotillo et al., 2020) to dissecting their
regulatory roles in the host immune system/immunopathology
(Buck et al., 2014; Eichenberger et al., 2018b; Wang et al.,
2020a). However, there is still much to be explored regarding
the applications of helminth-derived EVs, such as their
potential in diagnosis, as therapeutics (Siles-Lucas et al.,
2015), and as vaccines (Mekonnen et al., 2018). Accumulating
evidence shows that parasitic helminths, particularly those that
are blood dwelling, can actively release EVs into the host
circulatory system and other bodily fluids (Figure 1)
(Meningher et al., 2017; Ricciardi et al., 2021). These
advances have led to the speculation that components within
helminth-derived EVs may represent a potential source of
biomarkers for helminthic diseases (Zakeri et al., 2018).
HELMINTH-DERIVED MIRNAS AND EV
CONSTITUENTS IN THE CIRCULATORY
SYSTEM AS POTENTIAL BIOMARKERS

Trematodes
There is increased interest in determining the potential of
trematode-derived miRNAs as biomarkers of infection and
disease. A number of studies have targeted the human
schistosome blood flukes, the causative agents of schistosomiasis
that afflicts more than 250 million people worldwide (McManus
et al., 2020). Cheng et al. (2013) were the first to report deep
sequencing of small RNA populations in the plasma of
Schistosoma japonicum-infected rabbits and identified five
schistosome-specific miRNA signatures (sja-bantam, sja-miR-
3479, sja-miR-10, sja-miR-3096 and sja-miR-8185). Four of
these five miRNAs were also confirmed in the plasma of S.
japonicum-infected mice by RT-PCR. This study, for the first
time, indicated that helminth-derived miRNAs had potential as
biomarkers of helminthiases. In a subsequent low dosage cercarial
infection animal model, sja-miR-277 and sja-miR-3479-3p, but
not sja-bantam, were reliably detected in the sera of S. japonicum-
infected BALB/c and C57BL/6 mice by RT-PCR (Cai et al., 2015).
In addition, the serum levels of sja-miR-277 and sja-miR-3479-3p
showed a positive correlation with hepatic egg burdens as well as
the severity of liver fibrosis (Cai et al., 2015).

In a subsequent study, six miRNA candidates were validated
with serum samples from a human cohort in a schistosomiasis-
endemic area of the Philippines, which showed that two parasite-
derived miRNAs (sja-miR-2b-5p and sja-miR-2c-5p) could be
detected in infected individuals with a moderate diagnostic
performance (sensitivity/specificity values of 66%/68% and
55%/80%, respectively) (Mu et al., 2020). Duplex and multiplex
assays were also developed for the detection of schistosomal
miRNAs for which the diagnostic performance was also
moderate (Mu et al., 2020). These rather moderate diagnostic
outcomes may have been the result of the low intensity infections
in the study cohort as the endemic area experienced regular mass
drug administration (MDA) for schistosomiasis. For the
detection of another schistosome species, S. mansoni, three
June 2021 | Volume 11 | Article 708952
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parasite-derived miRNAs (sma-miR-277, sma-miR-3479-3p and
sma-bantam) were identified in the sera of S. mansoni-infected
mice and patients from endemic areas in Zimbabwe and Uganda
(Hoy et al., 2014). Detection of these miRNAs in human sera
resulted in specificity/sensitivity values of 89%/80% and 80%/
90%, respectively.

Elsewhere, miRNAs of S. mansoni and S. haematobium (sub-
Saharan Africa) and S. mekongi (Laos) have been detected in the
sera of returning travelers with schistosomiasis (diagnosis
confirmed by egg detection or serology); the level of sma-
bantam was able to distinguish infected individuals from
healthy controls with a sensitivity of 66% and a specificity of
85%, respectively and with an area under the curve (AUC) of
0.786 (Meningher et al., 2017). Circulating miRNAs were also
identified in buffaloes infected with Fasciola gigantica, a tropical
liver fluke and the cause of fascioliasis; four worm-specific
miRNAs, fgi-miR-87, fgi-miR-71, fgi-miR-124 and, the novel
miR-1, were identified in the sera of infected animals by deep
sequencing (Guo and Guo, 2019).

A number of EV components, including miRNAs and
proteins, have been identified in different trematode species
(Fromm et al., 2015; Sotillo et al., 2016; Zhu et al., 2016;
Fromm et al., 2017; Samoil et al., 2018; Mekonnen et al., 2020;
Ovchinnikov et al., 2020), and these can provide additional
biomarkers for the detection of fluke infections. Meningher
et al. (2017) explored whether miRNAs of helminth origin in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
serum EVs could be biomarker candidates for the diagnosis of
schistosome infection in returning travelers. The authors
confirmed that four schistosomal miRNAs (Bantam, miR-2c-
3p, miR-3488 and miR-2a-5p) in serum EVs showed diagnostic
potential, with the three former miRNAs exhibiting an AUC >
0.91. Two of the EV-derived miRNAs, bantam and miR-2c-3p
showed a sensitivity/specificity of 85.71%/94.12% and 85%/
93.75%, respectively. Notably, a proteomic analysis of adult S.
mansoni worm EVs (Sotillo et al., 2016) showed that some
antigens were present in the schistosome vesicles, including the
vaccine candidate antigen Sm-TSP-2 and the ortholog (the
saposin containing protein, Smp_130100) of a previously
described S. japonicum diagnostic candidate, SjSPA4 (Cai et al.,
2017). A study on the EVs released by Fasciola hepatica, the
major cause of human fascioliasis and an emerging zoonotic
pathogen, revealed the presence of the diagnostic antigen
cathepsin L1 (Marcilla et al., 2012; Cwiklinski et al., 2015;
Sarkari and Khabisi, 2017). It has been suggested that liver
flukes can secret EVs into host bile (Marcilla et al., 2012;
Chaiyadet et al., 2015), raising the possibility that the
molecular information within EVs could be utilized for the
diagnosis of fascioliasis.

Cestodes
Tapeworm-derived miRNAs are stably detectable in the serum/
plasma of mammalian hosts during infection even though these
FIGURE 1 | Diagrammatic representation of the secretion of helminth-derived non-vesicular extracellular miRNAs and/or EVs in the circulatory system and bile of the
mammalian host. Figure 1 was created with BioRender.com.
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organisms do not reside in the blood vascular system. With
Echinococcus multilocularis, which causes the very serious
alveolar echinococcosis (AE) in humans, deep sequencing
showed that seven parasite-specific miRNAs were detectable in
the sera of mice infected with this tapeworm; two of the miRNAs,
emu-miR-10 and emu-miR-227, were specifically amplified by
RT-PCR, and thus may have potential as novel biomarkers for
the diagnosis of AE (Guo and Zheng, 2017). In contrast, a more
recent study exploring extracellular RNAs (ex-RNAs) produced
by the metacestode stage of E. multilocularis found, using high
throughput RNA-sequencing and RT-qPCR, that two miRNAs,
miR-71-5p and miR-4989-3p, were secreted in vitro by the
metacestode stage of E. multilocularis; however, although these
two components were detectable in medium in which the
parasites were cultured they were not found in the plasma/sera
collected from a small number of patients with AE or cystic
echinococcosis (CE) (due to E. granulosus) with hepatic location
(Ancarola et al., 2020). Somewhat more encouraging, however,
were results obtained by Alizadeh et al. (2020) who showed that
the levels of two circulating worm-specific miRNAs (egr-miR-71
and egr-let-7) were detectable in the plasma of patients infected
with E. granulosus, compared with uninfected individuals.
Furthermore, the expression levels of both miRNAs declined
substantially at three and six months post-cystectomy surgery to
remove the echinococcal cysts, indicating that these miRNAs
may represent promising novel biomarkers for the early
diagnosis and monitoring of CE (Alizadeh et al., 2020).

The composition of EVs, such as small RNA and/or protein
profiles is available for some cestode species (Wang et al., 2020b).
In E. granulosus, studies were carried out on EVs isolated from
hydatid cyst fluid (HCF) directly from hosts with CE (Siles-Lucas
et al., 2017; Zhou et al., 2019) and cultured protoscoleces
(Nicolao et al., 2019), leading to the identification of highly
immunogenic antigens, such as antigen 5, Antigen B, P29 and
endophilin-1. In E. multilocularis, Ding et al. (2019) identified 18
miRNAs from metacestode EVs, within which the top four
expressed (emu-miR-71-5p, -let-7-5p, -miR-4989-5p and
-miR-10-5p) and emu-miR-2c-3p also were detectable in the
sera of parasite-infected mice. Notably, one of the threonine
tRNA-derived small sequences positioned at the 5’ end has a
dominant read count higher than that the sum of read counts of
all 18 miRNAs, indicating that small RNAs, such as tsRNAs, may
be better diagnostic biomarkers than miRNAs in EVs.

Another investigation confirmed EV production in different
cestodes including Taenia crassiceps, Mesocestoides corti and
E. multilocularis (Ancarola et al., 2017). However, unlike
T. crassiceps and M. corti metacestodes, the in vitro culture of
E. multilocularis metacestodes did not release EVs into the
culture medium (Ancarola et al., 2017). This outcome
conflicted with the observations of another group (Zheng et al.,
2017) who were able to identify EVs in culture supernatants of
E. multilocularis metacestodes. Ancarola et al. (2017)
hypothesized that the laminated layer of larval cysts, which is a
specialized extracellular matrix found only in members of the
genus Echinococcus, acts as a barrier to EV release. However,
there is still a possibility that metacestode EVs may be in contact
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
with the host in the early stages of development, when the
laminated layer is still not formed or is incipient, and/or when
the laminated layer undergoes rupture due to metacestode ageing
or chemotherapy treatment (Ancarola et al., 2017). Taken
together, these studies provide a stepping-stone for the rational
search of EV constituents for improved diagnosis of
cestode infections.

Nematodes
A number of studies on several species including Loa loa,
Dirofilaria immitis, Onchocerca ochengi and O. volvulus
demonstrate that parasitic nematode-derived miRNAs are
actively released into the host circulatory system (Tritten et al.,
2014a; Tritten et al., 2014b; Quintana et al., 2015). In a further
study evaluating the circulating miRNAs released by
Angiostrongylus cantonensis (the cause of eosinophilic
meningoencephalitis) as potential biomarkers of infection,
Chen et al. (2014) found that the level of aca-miR-146a in
serum was significantly higher in A. cantonensis-infected mice
compared with uninfected control animals, having an area under
the curve value of 0.90 determined by receiver operating
characteristic curve analysis. The diagnostic performance of
aca-miR-146a was further assessed with human serum samples
and showed a sensitivity of 83% and a specificity of 86.7%,
respectively in 30 patients with proven angiostrongyliasis
compared with 30 healthy individuals. Two independent
studies confirmed the presence of a panel of Onchocerca-
derived miRNA signatures in the nodular fluid and the plasma
from O. ochengi-infected bovines (Tritten et al., 2014b; Quintana
et al., 2015). Nematode-derived miRNAs, including miR-100a/d,
lin-4 and miR-71, have also been detected in the serum/plasma of
O. volvulus-infected humans (Quintana et al., 2015). However,
further studies have demonstrated that the levels of O. volvulus
miRNAs in human blood are too low to be employed as
biomarkers for the detection of infection or treatment
monitoring, even using locked nucleic acids (LNA)-based RT-
qPCR analysis (Lagatie et al., 2017; Macfarlane et al., 2020).

Some studies have analyzed the composition of nematode-
derived EVs (Buck et al., 2014) that constitute the basis for
developing novel EV-targeted diagnostic tools for blood-
dwelling and blood-feeding nematodes. A recent study
exploring the regulatory roles of the EVs released from Brugia
malayi microfilariae on the host innate immune system,
demonstrated the presence of 576 proteins and a unique
miRNA profile in the EVs (Ricciardi et al., 2021); these EV
components should be pursued further as they may include
markers with diagnostic potential. Hookworms are gut dwelling,
blood-feeding nematodes affecting approximately 600 million
people globally. Proteomics and RNAseq analysis of EVs from
the rodent parasite Nippostrongylus brasiliensis, a model for
human hookworm infection, identified 81 proteins, including
27 sperm-coating protein-like extracellular proteins in addition
to those frequently found in exosomes (like tetraspanin, enolase,
14-3-3 protein, and heat shock proteins) and 52 miRNAs
(Eichenberger et al., 2018a); these again warrant further study
as potential diagnostic markers.
June 2021 | Volume 11 | Article 708952
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CURRENT CHALLENGES AND FUTURE
PERSPECTIVES

While there have been a number of recent studies utilizing
circulating miRNAs for the diagnosis of helminthic infections,
the results have been mixed and interpretation of results with
miRNA raises some challenges/problems. 1) A low sample size
was employed in most of the studies to date, which may lead to
biased results. 2) Many promising reports involved data obtained
in animal models, contrasting with the more challenging
diagnostic application using human clinical samples,
particularly those obtained in areas with low prevalence and
infection intensity. When used for the detection of low intensity
infections, the accuracy of detecting circulating miRNAs may be
improved by using an optimized reverse transcription step,
normalization methods (Deng et al., 2019; Cai et al., 2020)
and/or more specific LNA primers. 3) The detection of
helminth-derived miRNAs in circulation may be subject to the
similar issues inherent to the detection of antigen and circulating
cell-free DNA in the host that usually depends on an active
infection. Indeed, the kinetics of decline in miRNA levels in the
circulation after drug administration is still unclear, both in
animal experiments and in humans after drug treatment. 4) No
helminth-derived miRNA family member has emerged as a
common biomarker for helminthic infections.

The recent identification of parasitic helminth-derived EV
constituents (Sotillo et al., 2020) has provided new impetus for
development novel EV-based diagnostic methods for
helminthiasis, but the area is in its infancy due to the fact that
researchers are presently confounded by the relative dearth of
protocols for the isolation and enrichment of EVs released by
parasitic helminths from those derived from their human and
animal hosts. In this regard, a method has been developed for the
rapid differentiation of host and parasite exosome vesicles using a
microfluidic photonic crystal biosensor (Wang et al., 2018).
Furthermore, it has been shown there is substantially increased
enrichment of the ether lipid plasmalogen in parasite exosomes
versus those derived from the mammalian host (Simbari et al.,
2016), pointing the way for improved differentiation and
purification of helminth parasite EVs. Different EV isolation
methods may affect the outcome of the EV-based diagnostics;
accordingly, strict methodological guidelines should be followed
(Coumans et al., 2017; Thery et al., 2018). In addition, whereas
the costs for developing diagnostic tools targeting circulating
miRNA and EV components such as sncRNAs and proteins are
high, expenditure could be reduced substantially if multiplex or
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
high-through-put assays targeting multiple helminths and/or
non-helminth pathogens are developed for simultaneous
application (Sanprasert et al., 2019).
CONCLUDING REMARKS

Parasitic worm-derived miRNAs/EVs play key roles in the
development, host-parasite interplay and parasitic establishment
of helminths, but their presence in the host circulatory system
means they could also provide novel targets for parasite diagnosis.
Current evidence confirms their utility in helminth diagnosis
based on the detection of circulating helminth miRNAs for some
taxa in the serum/plasma of mammalian hosts, but optimization
steps are still needed to improve the performance of these assays.
Diagnostic tools such as qPCR, serology, mass spectrometry, and
next-generation sequencing targeting the contents (e.g. proteins
and small RNAs including miRNAs and tsRNAs) encapsulated in
worm EVs, can be applied for the diagnosis of parasitic worms,
especially for blood-borne helminths such as Schistosoma spp.,
B. malayi (microfilarial stage), L. loa, D. immitis and Onchocerca
spp., and blood-deeding helminths such as hookworms, once
suitable enrichment of helminth-derived EVs can be achieved.
Taking all the information currently available, it should be
feasible to develop novel supplementary methods that target
parasitic worm-derived miRNAs and EVs for the diagnosis of a
number of important helminth parasites.
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