
UCRL-TR-225347

Paravirtualization for HPC
Systems

Lamia Youseff, Rich Wolski, Brent Gorda,
Chandra Krintz

October 17, 2006



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 

 
 
 

 

 This work was performed under the auspices of the U.S. Department of Energy by University of 
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 
 



Paravirtualization For HPC Systems∗

UCSB Computer Science Technical Report Number 2006-10

Lamia Youseffα Rich Wolskiα Brent Gordaβ Chandra Krintzα

α Department of Computer Science
University of California, Santa Barbara
{lyouseff, rich, ckrintz}@cs.ucsb.edu

β Lawrence Livermore National Lab (LLNL)
bgorda@llnl.gov

Abstract

Virtualization has become increasingly popular for en-
abling full system isolation, load balancing, and hardware
multiplexing. This wide-spread use is the result of novel
techniques such as paravirtualization that make virtualiza-
tion systems practical and efficient. Paravirtualizing sys-
tems export an interface that is slightly different from the
underlying hardware but that significantly streamlines and
simplifies the virtualization process.

In this work, we investigate the efficacy of using par-
avirtualizing software for performance-critical HPC ker-
nels and applications. Such systems are not currently em-
ployed in HPC environments due to their perceived over-
head. However, virtualization systems offer tremendous po-
tential for benefitting HPC systems by facilitating applica-
tion isolation, portability, operating system customization,
and program migration.

We present a comprehensive performance evaluation of
Xen, a low-overhead, Linux-based, virtual machine moni-
tor (VMM), for paravirtualization of HPC cluster systems
at Lawrence Livermore National Lab (LLNL). We consider
four categories of micro-benchmarks from the HPC Chal-
lenge (HPCC) and LLNL ASCI Purple suites to evaluate a
wide range of subsystem-specific behaviors. In addition, we
employ macro-benchmarks and HPC application to evalu-
ate overall performance in a real setting. We also employ
statistically sound methods to compare the performance of
a paravirtualized kernel against three popular Linux oper-
ating systems: RedHat Enterprise 4 (RHEL4) for build ver-
sions 2.6.9 and 2.6.12 and the LLNL CHAOS kernel, a spe-
cialized version of RHEL4. Our results indicate that Xen is

∗This work is sponsored in part by grant from the National Science
Foundation (ST-HEC-0444412).

very efficient and practical for HPC systems.

1 Introduction

Virtualization is a widely used technique in which a soft-
ware layer multiplexes lower-level resources among higher-
level software programs and systems. Examples of virtu-
alization systems include a vast body of work in the area
of operating systems [36, 34, 27, 33, 4, 17], high-level lan-
guage virtual machines such as those for Java and .Net, and,
more recently, virtual machine monitors (VMMs). VMMs
virtualize entire software stacks including the operatingsys-
tem (OS) and application, via a software layer between
the hardware and the OS of the machine. VMMs offer
a wide range of benefits including application and full-
system isolation (sand-boxing), OS-based migration, dis-
tributed load balancing, OS-level check-pointing and recov-
ery, non-native (cross-system) application execution, and
support for multiple or customized operating systems.

Virtualization historically came at the cost of perfor-
mance due to the additional level of indirection and soft-
ware abstraction necessary to achieve system isolation. Re-
cent advances in VMM technology however, address this
issue with novel techniques that reduce this overhead. One
such technique is paravirtualization [1] which is the process
of strategically modifying a small segment of the interface
that the VMM exports along with the OS that executes us-
ing it. Paravirtualization significantly simplifies the process
of virtualization (at the cost of perfect hardware compati-
bility) by eliminating special hardware features and instruc-
tions that are difficult to virtualize efficiently. Paravirtual-
ization systems thus, have the potential for improved scal-
ability and performance over prior VMM implementations.
A large number of popular VMMs employ paravirtualiza-



tion in some form to reduce the overhead of virtualization
including Denali [1], IBM rHype [46], Xen [31, 45, 11],
and VMWare [21, 37, 42]. Moreover, hardware vendors
now employ new ways of enabling efficient virtualization in
the next-generation processors [41, 32] which have the po-
tential for improving VMM-based execution performance
further.

Despite the potential benefits, performance advances,
and recent research indicating its potential [24, 48, 16, 20],
virtualization is currently not used in high-performance
computing (HPC) environments. One reason for this is the
perception that the remaining overhead that VMMs intro-
duce is unacceptable for performance-critical applications
and systems. The goal of our work is to evaluate empiri-
cally and to quantify the degree to which this perception is
true for Linux and Xen.

Xen is an open-source virtual machine monitor for the
Linux operating system which reports low-overhead and ef-
ficient execution of Linux [45]. Linux, itself, is the cur-
rent operating system of choice when building and deploy-
ing computational clusters composed of commodity com-
ponents. In this work, we study the performance impact of
Xen using current HPC commodity hardware at Lawrence
Livermore National Laboratory (LLNL). Xen is an ideal
candidate VMM for an HPC setting given its large-scale de-
velopment efforts [31, 47] and its availability, performance-
focus, and evolution for a wide range of platforms.

We objectively compare the performance of benchmarks
and applications using a Xen-based Linux system against
three Linux OS versions and configurations currently in
use for HPC application execution at LLNL. The Linux
versions include Red Hat Enterprise Linux 4 (RHEL4) for
build versions 2.6.9 and 2.6.12 and the LLNL CHAOS ker-
nel, a specialized version of RHEL4 version 2.6.9.

We collect performance data using micro- and macro-
benchmarks from the HPC Challenge, LLNL ASCI Purple,
and NAS parallel benchmark suites among others, as well
as using a large-scale, HPC application for simulation of
oceanographic and climatologic phenomena. We employ
four categories of micro-benchmarks that evaluate distinct
performance characteristics of machine subsystems includ-
ing MPI-based network bandwidth and latency, CPU pro-
cessing, memory and disk I/O. Our experiments using the
macro-benchmarks and HPC applications assess full system
performance.

We find that the Xen paravirtualizing system, in gen-
eral, does not introduce significant overhead over the other
OS configurations that we study – including the specialized
CHAOS kernel – for almost all of the test cases. The two
exceptions are for random access disk I/O (where Xen’s per-
formance degradation is significant) and bidirectional MPI
network bandwidth where the performance impact is only
for a small number of message sizes and is generally small.

In each such case, we attempt an analysis of the cause of
the overhead. Curiously, in a small number of other cases,
Xen improves subsystem or full system performance over
various other kernels due to its implementation for efficient
interaction between the guest and host OS. Overall, we find
that Xen does not impose an onerous performance penalty
for a wide range of HPC program behaviors and applica-
tions. As a result we believe the the flexibility and potential
for enhanced security that Xen offers makes it useful in a
commodity HPC context.

In the sections that follow, we first present background
and motivation for the use of paravirtualized systems in
HPC environments. In Section 3, we overview our exper-
imental methodology, platform, operating systems, VMM
configuration, and applications. We then present results
from a large number of experiments that show the perfor-
mance impact of using Xen for HPC systems and programs
as compared to extant non-virtualized Linux systems. We
analyze the performance characteristics of the micro- and
macro-benchmarks as well as of the HPC applications. We
present related work in Section 6, and our conclusions and
future work in Section 7.

2 Background and Motivation

Our investigation into the performance implications of
coupling modern virtualization technologies with high per-
formance computing (HPC) systems stems from our goal
to improve the flexibility of large-scale HPC clusters at
Lawrence Livermore National Laboratory (LLNL) without
introducing a serious performance degradation. For exam-
ple, Xen supports guest-OS suspend/resume and system im-
age migration. If it does not impose a substantial perfor-
mance cost, it is possible to use this facility to implement
automatic checkpoint/restart for cluster users without mod-
ifications to the Linux kernel.

OS migration is another added benefit to full-system
virtualization that makes deployment and maintenance of
VMM-based HPC clusters appealing. Several researchers
have explored OS and process migration, such as Internet
Suspend/Resume [23] andµDenali [43]. Recent studies on
OS image migration [18, 12] illustrate that migrating an en-
tire OS instance with live interactive services is achievable
with very little down time (e.g. 60ms) using a VMM. Ef-
fective migration can be used for load balancing but also for
proactive replacement of failing hardware. For example, ifa
hardware failure occurs, the application which was running
on it has to be restarted from the last checkpoint. A proac-
tive approach can avoid this re-execution overhead by mi-
grating applications off of machines requiring maintenance
or exhibiting behaviors indicative of potential failures (disk
errors, fan speed inconsistency, etc.). Such an approach can
potentially save HPC centers thousands of computational



hours and leading to higher hardware utilization rates.
In addition, it is possible for one cluster to run different

Linux images which aids software maintenance (by provid-
ing an upgrade path that does not require a single OS “up-
grade” event) and allows both legacy codes and new func-
tionality to co-exist. This is important for legacy codes that
execute using a particular version of the OS and/or obsolete
language-level libraries that depend on a specific OS kernel
release level. VMMs also enable very fast OS installation
(even more when coupled with effective check-pointing),
and thus, their use can result significant reductions in sys-
tem down time for reboot. Finally, VMMs offer the poten-
tial for facilitating the use of application-specific and cus-
tomized operating systems [24, 48, 16, 20].

Though many of the benefits of virtualization are well
known, the perceived cost of virtualization is not accept-
able to the HPC community, where performance is critical.
VMMs by design introduce an additional software layer,
and thus overhead, to facilitate virtualization. This overhead
however, has been the focus of much optimization effort
recently. In particular, extant, performance-aware, VMMs
such as Xen [31], employparavirtualizationto reduce virtu-
alization overhead. Paravirtualization is the process of sim-
plifying the interface exported by the hardware in a way
that eliminates hardware features that are difficult to virtu-
alize. Examples of such features aresensitiveinstructions
that perform differently depending on whether they are ex-
ecuted in user or kernel mode but that do not trap when ex-
ecuted in user mode; such instructions must be intercepted
and interpreted by the virtualization layer, introducing sig-
nificant overhead. There are a small number of these in-
structions that the OS uses that must be replaced to enable
execution of the OS over the VMM. No application code
must be changed to execute using a paravirtualizing system
such as Xen. A more detailed overview of system-level vir-
tual machines, sensitive instructions, and paravirtualization
can be found in [38].

To investigate the performance implications of using par-
avirtualization for HPC systems, we have performed a rigor-
ous empirical evaluation of HPC systems with and without
virtualization using a wide range of HPC benchmarks, ker-
nels, and applications, using LLNL HPC hardware. More-
over, we compare VMM-based execution with a number
of non-VMM-based Linux systems, including the one cur-
rently employed by and specialized for LLNL users and
HPC clusters.

3 Methodology and Hardware Platform

Our experimental hardware platform consists of a four-
node cluster of IntelExtendedMemory 64Technology
(EM64T) machines. Each node consists of four Intel Xeon
3.40 GHz processors, each with a 16KB L1 data cache and

a 1024KB L2 cache. Each node has 4GB of RAM and a
120 GB SCSI hard disk with DMA enabled. The nodes
are interconnected with an Intel PRO/1000, 1Gigabit Eth-
ernet network fabric using the chp4 interface with TCP/IP.
We used ANL implementation of message passing interface
(MPI) protocol; i.e. MPICH v1.2.7p1 for establishing com-
munications between the distributed processes on different
nodes in the cluster.

We perform our experiments by repeatedly executing the
benchmarks and collecting the performance data. We per-
form 50 runs per benchmark code per kernel and compute
the average across runs. We perform at-testat theα ≥ 0.95
significance level to compare the means of two sets of ex-
periments (e.g. those from two different kernels). The t-test
tells us whether the difference between the observed means
is statistically significant. More information on the t-test
and the computation we use can be found in [25, 8].

3.1 HPC Linux Operating System Comparison

We empirically compare four different HPC Linux op-
erating systems. The first two are current releases of the
RedHat Enterprise Linux 4 (RHEL4) system. We employ
builds v2.6.9 and v2.6.12 and refer to them respectively in
this paper asRHEL2.6.9andRHEL2.6.12.

We also evaluate the CHAOS kernel. CHAOS is the
Clustered,High-Availability, OperatingSystem [13, 10]
from LLNL. CHAOS is a Linux distribution based on
RHEL4 v2.6.9 that LLNL computer scientists have cus-
tomized for the LLNL HPC cluster hardware and for the
specific needs of current users. In addition, CHAOS ex-
tends the original distribution with new administrator tools,
support for very large Linux clusters, and HPC application
development. Examples of these extensions include utilities
for cluster monitoring, system installation, power/console
management, and parallel job launch, among others. We
employ the latest release of CHAOS as of this writing which
is v2.6.9-22; we refer to this system as CHAOS kernel in
our results.

Our Xen-based Linux kernel (host OS)1 is RHEL4
v2.6.12 with the Xen 3.0.1 patch. Above Xen, i.e. the guest
kernel, is a paravirtualized Linux RHEL4 v2.6.12, which
we configure with 4 virtual CPUs and 2GB of virtual mem-
ory. We refer to this overall configuration asXen in our
results. Xen v3 is not available for Linux v2.6.9, the lat-
est version for which the CHAOS extensions are available.
We thus, include both v2.6.9 and v2.6.12 (non-CHAOS and
non-XEN) in our study to identify and isolate any perfor-
mance differences between these versions.

1The Xen host OS is commonly referred to as dom0 and the guest OS
which sits above dom0 is commonly referred to as domU (U for unprivi-
leged). We also refer to the two kernels as the host OS and the guest OS,
respectively



For RHEL2.6.9, RHEL2.6.12, and CHAOS, we execute
the applications without VMM (Xen) support. Only Xen
employs VMM support. Figure 1 depicts these two cases,
respectively.

Figure 1. Software stack for our different ex-
periments. (i) shows the traditional OS de-
ployment running directly on the hardware;
we employ this setup for CHAOS, RHEL2.6.9
and RHEL2.6.12 experiments. (ii) shows the
virtualized system on which Xen executes
on the hardware and RHEL2.6.12 Linux (the
guest OS) runs on Xen. We refer to experi-
ments that employ this setup simply as Xen.

3.2 Benchmarks

We overview the benchmarks that we use in this empiri-
cal investigation in Table 1. The benchmarks set consists of
micro-benchmarks, macro-benchmarks, and real HPC ap-
plications. We employ the same benchmark binaries for all
operating system configurations.

Our micro-benchmark set includes programs from the
HPC Challenge [26] and LLNL ASCI Purple [3]. The
programs are specifically designed to evaluate distinct per-
formance characteristics of machine subsystems including
MPI-based network bandwidth and latency, CPU process-
ing, memory and disk I/O. The ASCI Purple Presta suite
evaluates inter-process network latency and bandwidth for
MPI message passing operations. The benchmark is writ-
ten in C. We employ two of the benchmark codes to eval-
uate latency (Laten) and bandwidth (Com). Presta uses
MPI wtime to report the time measurements of the codes,
therefore we configure the code to perform one thousand
operations between calls to MPIwtime to obtain accurate
resolution.

To evaluate computational overhead, we employ the
freely available Linpack benchmark [30]. Linpack is a
benchmark that solves dense systems of linear equations.
It is available in different languages, and parallel and se-
rial versions. We employ serial Fortran implementation as
our micro-benchmark for evaluating computational perfor-
mance in isolation.

Stream is a standard memory benchmark that is part of
both HPCC and LLNL ASCI Purple [40]. It reports the

sustainable memory bandwidth in MB/s for four different
memory operations:

Copy : A(i) = B(i)

Scale : A(i) = q ∗ B(i)

Sum : A(i) = B(i) + C(i)

Triad : A(i) = B(i) + q ∗ C(i)

The first operation:copyreads a large array from memory,
and writes it back to a different location. The three other op-
erations combine computation with memory access to mea-
sure the corresponding computational rate for simple vector
operations.

For evaluation of disk performance, we employ Bon-
nie [9]. Bonnie is a disk stress-test that uses popular UNIX
file system operations. Bonnie measures the system I/O
throughput for six different patterns of reads, writes, and
seeks. We employ three different file sizes: 100MB, 500MB
and 1GB for our experiments to eliminate any cache impact
on measured performance.

To evaluate the full system performance, we employ
several popular macro-benchmarks from the NAS Parallel
benchmark suite [6, 5]. The former set is from the NASA
Advanced Supercomputing (NAS) facility at the NASA
Ames Research Center. The suite evaluates the efficiency
of highly parallel HPC computing systems in handling crit-
ical operations that are part of simulation of the future space
missions. The benchmarks mimic the computational, com-
municational and data movement characteristics of large
scale computational fluid dynamics (CFD) applications.

As an example of large-scale HPC applications, we em-
ploy an application from the popular scientific simulations
class of programs: the General Circulation Model (GCM)
from the Massachusetts Institute of Technology. GCM is a
popular numerical model used by application scientists to
study oceanographic and climatologic phenomena. GCM
simulates ocean and wind currents and their circulation in
the earth’s atmosphere thousands of years in advance. A
widely used implementation of GCM is made available by
Massachusetts Institute of Technology (MIT) Climate Mod-
eling Initiative (CMI) team [29]. Researchers commonly
integrate this implementation into oceanographic simula-
tions. The MIT CMI team supports a publicly available
version [2, 28], which we employ and refer to in this pa-
perMIT GCM. The MIT GCM package has been carefully
optimized by its developers to ensure low overhead and high
resource utilization.

The package includes a number of inputs. We use the
sequential version ofexp2 for this study. Exp2 simulates
the planetary ocean circulation at a 4 degree resolution. The
simulation uses twenty layers on the vertical grid, ranging
in thickness between 50m at the surface to 815m at depth.
We configure the experiment to simulate 1 year of ocean



Benchmark Category Code Name What it measures

M
ic

ro

Communication
Presta Com Bandwidth and OpTime versus message size
Presta Laten Max latency versus number of processes

Computational Linpack 3000d Total Mflops and different execution time
Memory Stream Rate of memory read/write in MB/s
Disk I/O Bonnie sequential & Random disk input/output in MB/s

M
ac

ro Parallel Benchmarks

NAS Parallel Benchmark; class C Total time and millions of operations per second (Mops)
Multigrid (MG) input 5123

LU Solver (LU) input 1623

Integer Sort (IS) input 227

Embarrassingly parallel (EP) input 232

Conjugate gradient (CG) input 150000

A
pp Scientific Simulations MIT GCM exp2 Total execution time

Table 1. Benchmark Overview

0

5

10

15

20

25

2^
5

2^
6

2^
7

2^
8

2^
9

2^
10

2^
11

2^
12

2^
13

2^
14

2^
15

2^
16

2^
17

2^
18

2^
19

2^
20

2^
21

2^
22

2^
23

Message size in Bytes

B
an

dw
id

th
 in

 M
B

/s

CHAOS kernel
Xen kernel
RHEL 2.6.9
RHEL 2.6.12

0

5

10

15

20

25

2^
5

2^
6

2^
7

2^
8

2^
9

2^
10

2^
11

2^
12

2^
13

2^
14

2^
15

2^
16

2^
17

2^
18

2^
19

2^
20

2^
21

2^
22

2^
23

Message size in Bytes

B
an

dw
id

th
 in

 M
B

/s

CHAOS kernel
Xen kernel
RHEL 2.6.9
RHEL 2.6.12

Figure 2. Com benchmark results for average network bandwid th (MB/s) for the MPI unidirectional
(left graph) and the MPI bidirectional test (right graph)



circulation at a one-second resolution.

4 Micro-Benchmarks

In this section, we evaluate the performance impact of
using virtualization for specific subsystems of our cluster
system. We employ micro-benchmarks for network com-
munication, computation, memory access, and disk I/O. We
present and analyze the results for each of these micro-
benchmarks in the following subsections.

4.1 Network Performance

We first evaluate the impact that using Xen has on net-
work communication performance. We focus on the Mes-
sage Passing Interface (MPI) for this investigation since ap-
plications commonly employ MPI to facilitate and coor-
dinate distributed execution of the program across cluster
resources. Although, applications differ in the type and
amount of communication they perform [49], MPI micro-
benchmark performance gives us insight into the perfor-
mance overhead introduced by virtualized communication.

Our MPI micro-benchmarks are part of the LLNL ASCI
Purple Presta Stress Benchmark v1.2 [35]. To investigate
unidirectional and bidirectional bandwidth, we employ the
Combenchmark. Com calculates bisectional bandwidth for
unidirectional and bidirectional MPI process communica-
tion. Com outputs both bandwidth and the average time
calculated for the longest operation per test. We refer to the
latter as operation time (OpTime) and report these values in
microseconds. Each test consists of 1000 operations and we
consider 1 pair of MPI processes. We vary the message size
from 25 to 223 bytes. Our cluster system currently imple-
ments cluster connectivity via 100Mb (12.5MB/s) Ethernet.

Figure 2 shows the bandwidth attained by the different
kernels for unidirectional (left graph) and bidirectionalmes-
sages (right graph). The y-axis in each graph is the attained
bandwidth in MB/s as a function of the message size shown
along the x-axis (higher is better).

The MPI bandwidth saturates at approximately 12 MB/s
equally for all kernels (except RHEL2.6.9 unidirectional
MPI bandwidth) for both unidirectional and bidirectional
MPI messages. RHEL2.6.9 performs significantly worse
than the other three kernels for the MPI unidirectional test.
This is due to a known implementation error in the TCP seg-
mentation offload (TSO) of RHEL Linux in versions. The
bug causes the driver to limit the buffer size to the maximum
transmission unit (MTU) of the fabric and thus, to drop
packets prematurely which results in the decreased band-
width. This bug is fixed in the CHAOS, Xen, and RHEL
v2.6.12 kernels, and thus they are not impacted by it.

Xen bandwidth for small buffer sizes is less than that
achieved by CHAOS or RHEL2.6.12. This is due to the im-

0

5

10

15

20

25

2^
5

2^
6

2^
7

2^
8

2^
9

2^
10

2^
11

2^
12

2^
13

2^
14

2^
15

2^
16

2^
17

2^
18

2^
19

2^
20

2^
21

2^
22

2^
23

Message size in Bytes

B
an

dw
id

th
 in

 M
B

/s

CHAOS kernel
Xen kernel
RHEL 2.6.9
RHEL 2.6.12

Figure 3. Com benchmark results for the max-
imum bandwidth (MB/s) attained by MPI bidi-
rectional messages.

0

200

400

600

800

1000

1200

1400

1600

2^
5

2^
6

2^
7

2^
8

2^
9

2^
10

2^
11

2^
12

2^
13

2^
14

2^
15

2^
16

2^
17

2^
18

2^
19

2^
20

2^
21

2^
22

2^
23

Message size in Bytes

op
tim

e 
in

 m
ic

ro
se

co
nd

s

CHAOS Unidirectional
XEN Unidirectional
RHEL2.6.9 Unidirectional
RHEL2.6.12 Unidirectional
CHAOS Bidirectional
XEN Bidirectional
RHEL2.6.9 Bidirectional
RHEL2612 Bidirectional

Bidirectional

Unidirectional

Figure 4. Com benchmark results for OpTime
for both MPI unidirectional and MPI bidirec-
tional tests. OpTime is the average time cal-
culated for the longest bandwidth operation
per test.



plementation of the network layer in Xen. Xen provides two
I/O rings of buffer descriptors for each domain for network
activity, one for transmit and the other for receive. To send
a packet, the guest OS produces a buffer descriptor and adds
it to the I/O ring. The host OS consumes the requests using
a simple round-robin packet scheduler. The guest OS how-
ever, must however exchange a page frame with host OS for
each received packet in order to ensure efficient packet re-
ception. This process degrades the bandwidth achieved for
small packet sends since there are a large number of guest-
host interactions and heavy use of the I/O rings of buffer
descriptors. Xen is able to amortize this overhead as the
buffer size increases. Similarly, for the bidirectional experi-
ments, this difference is insignificant for small packet sizes.

For the bidirectional experiments (right graph in Fig-
ure 2), CHAOS, Xen, and RHEL2.6.12 achieve hypersat-
uration for message sizes between 212 and 216. This is due
to the buffering that the kernels perform that enables over-
lap of communication and message processing. Xen and
RHEL2.6.9 do not achieve the same benefits as CHAOS
and RHEL2.6.12 on average. Figure 3 shows the maxi-
mum bandwidth achieved across tests for different message
sizes. These results show that RHEL2.6.9 behaves similarly
to CHAOS and RHEL2.6.12. Thus, the apparent loss of
performance in the average for RHEL2.6.9 is due to greater
variation rather than an absolute loss.

However, Xen bidirectional performance for message
sizes 214 and 215 does not achieve the same maximum even
in the best case, i.e., there is a true systemic difference in
absolute best-case performance for these message sizes. We
believe that this effect is due to the management of the dual
ring buffer descriptors which reduces the effective buffer
size and thus, efficacy, of kernel buffering thereby reduc-
ing the amount of overlap that Xen is able to achieve. All
kernels saturate the network at the same level for message
sizes greater than 216. We plan to investigate optimizations
for the I/O rings and descriptor management in Xen as part
of future work.

We present the OpTime for both unidirectional and bidi-
rectional messages in Figure 4. The y-axis is the average
time in microseconds for the longest operation in a test as
a function of the message size on the x-axis (lower is bet-
ter). The data indicates that there is no significant difference
in OpTime between Xen and Chaos and RHEL2.6.12. The
RHEL2.6.9 data for the unidirectional test shows a statis-
tically significant performance degradation in OpTime for
large message sizes. This is a side-effect of the lack of the
TSO bug in the Ethernet driver as we described previously.

We next evaluate network latency using the Presta Laten
benchmark from the ASCI Purple suite. Laten calculates
the maximum latency for a test (1000 operations) between
pairs of MPI processes as the elapsed time in a ping-pong
communication. In this benchmark we vary the number of

0

50

100

150

200

250

300

2 4 8 16 32 64

Number of MPI processes

La
te

nc
y 

in
 u

se
c

CHAOS kernel
Xen Kernel
RHEL 2.6.9
RHEL 2.6.12

Figure 5. Laten MPI bidirectional results in
microseconds.

simultaneously communicating processes.
Figure 5 shows the results for the four kernels. The y-

axis is the average of maximum latency in microseconds
between per test as a function of the number of processes
shown on the x-axis (lower is better).

Although it is counter-intuitive, Xen has lower latency
for up to 32 MPI communicating processes than CHAOS
and RHEL2.6.12. This is a result of the use ofpage-flipping
in Xen that optimizes data transfer by avoiding copying be-
tween the guest OS and the host OS. However, as the num-
ber of processes increases, the overhead of Xen’s I/O rings
of buffer descriptors has a larger impact that the optimiza-
tion cannot amortize to the same degree.

RHEL2.6.9 enables the lowest latency. This behavior
depicts an interesting effect of the TSO bug described ear-
lier. The bug causes RHEL2.6.9 to achieve lower bandwidth
than the other kernels but also to introduce less overhead for
individual sends that do not require buffering. Therefore,
kernels prior to v2.6.11 impose lower latency.

4.2 Computational Performance

HPC are performance-critical systems. The computa-
tional performance is undoubtedly one of the most impor-
tant factors -if not the most important- in characterizing the
efficiency of the HPC system. Therefore, we also evaluate
the computational performance of the paravirtualized sys-
tem in comparison with the non-virtualized kernels.

We use Linpack [14] LU decomposition for this study.
The Linpack LU decomposition process consists of two
phases: factoring and back-solve. The benchmark reports
the time taken in each phase and the rate of floating point
operations in mflops. We also measure the total time using
the Linux time utility. Our input to Linpack is a matrix with
3000x3000 in double-precision values.



0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Factor Solve Total Mflops Usr Time Sys Time Real Time

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 C
H

A
O

S

CHAOS kernel
Xen kernel
RHEL2.6.9
RHEL2.6.12

Figure 6. Linpack LU decomposition 3000d
performance relative to CHAOS. Lower is bet-
ter for metrics factor, solve, total, user, sys-
tem, and real time. Higher is better for Mflops.

Figure 6 illustrates a Linpack performance comparison
between the four kernels. The y-axis is the performance
of the different kernels relative to the CHAOS kernel with
respect to the different metrics on the x-axis. The smaller
the time ratio, the better but the higher the Mflops ratio is
the better.

The comparison indicates that Xen is slower than
CHAOS kernel for the factoring phase and in terms of the
total time. However, Xen is faster than the other kernels.
Furthermore, the t-values for these differences show statis-
tical significance for these differences even at the0.999 con-
fidence level.

Most of the difference occurs during the factoring phase
of LU. The Xen kernel does appear to have a shorter back-
solve time than three other kernels, but the t-values do not
indicate statistical significance at the0.95 confidence level.
On the other hand, Xen achieves a total Mflops rate that
is approximately 2% lower than CHAOS kernels and 3%
higher than the RHEL kernels. The reason behind better
Mflops performance for Xen is due to its CPU scheduling
process: a very efficient implementation of the borrowed
virtual time (BVT) scheduler [15]. BVT and the overhead
of scheduling in general positively impacts the Mflops rate
of Xen-based Linpack. CHAOS scheduler optimizations
enable additional performance improvements. As a result,
a Xen-based CHAOS implementation (that we are building
as part of future work) should be able to achieve benefits
similar to those for CHAOS reported here.

For these reasons, Xen improves user time (and thus to-
tal time) by approximately 3% over the RHEL kernels and
achieve user/total time that is lower by 2% than CHAOS.
The system time bar in the graph for Xen is an anomaly that

0

500

1000

1500

2000

2500

3000

Add Copy Scale Triad

R
at

e 
in

 M
b/

s

CHAOS kernel
Xen Kernel
RHEL 2.6.9
RHEL 2.6.12

Figure 7. Stream memory bandwidth perfor-
mance in Mb/s.

is due to a known bug in they way Xen computes system
time – this value is invalid but we report it to enable others
to validate our exact results using this version of Xen. The
bug will be fixed in the next release of Xen.

4.3 Memory Access Performance

Sustainable memory bandwidth is another important per-
formance aspect for HPC systems, since long cache miss
handling can hinder the computational power attainable by
any machine. To study the impact of paravirtualization on
sustainable memory bandwidth, we use Stream [40], which
we configure with the default array size of 2 million ele-
ments.

Figure 7 shows the results. CHAOS attains the highest
memory bandwidth for all stream operations. This is the re-
sult of CHAOS optimizations by LLNL computer scientists
for memory-intensive workloads. Surprisingly, Xen attains
consistently higher memory bandwidth by approximately
1-2% for every operation over RHEL2.6.12. The t-value
for the difference ranges between 12-14, indicating that the
differences between Xen and RHEL2.6.12 measurements is
statistically significant.

Since Xen uses asynchronous I/O rings for data transfers
between the guest OS and the host OS, it is able to reorder
requests and amortize each for better memory performance.
The Xen I/O ring algorithm was wise enough to arrange the
requests produces by domU on behave of the stream code,
and exploited their sequential nature to gain performance
and memory bandwidth. On the other hand, these gains are
less apparent between the Xen and RHEL2.6.9 configura-
tions.



0

1

2

3

4

5

6

7

8

9

10

11

12

13

C
H

A
O

S 
/ 1

00
M

B
 fi

le
Xe

n 
/ 1

00
M

B
 fi

le
R

H
EL

 2
.6

.9
 / 

10
0M

B
 fi

le
R

H
EL

 2
.6

.1
2 

/ 1
00

M
B

 fi
le

C
H

A
O

S 
/ 5

00
M

B
 fi

le
Xe

n 
/ 5

00
M

B
 fi

le
R

H
EL

 2
.6

.9
 / 

50
0M

B
 fi

le
R

H
EL

 2
.6

.1
2 

/ 5
00

 M
B

 fi
le

C
H

A
O

S 
/ 1

G
B

 fi
le

Xe
n 

/ 1
G

B
 fi

le
R

H
EL

 2
.6

.9
 / 

1G
B

 fi
le

R
H

EL
 2

.6
.1

2 
/ 1

 G
B

 fi
le

K
er

ne
l P

er
fo

rm
an

ce
 a

s 
a 

fr
ac

tio
n 

of
 C

H
A

O
S

 p
er

fo
rm

an
ce

Sequentional output Per_Char
Sequentional output Per_Block
Sequentional output Rewrite
Sequentional input Per_Char
Sequentional Input Per_Block
Random Seeks
Real-Time

Figure 8. Bonnie Disk I/O bandwidth rate and Real-time relat ive to CHAOS performance

4.4 Disk I/O Performance

Disk performance of virtualized systems is also a con-
cern for applications that perform significant disk I/O such
as those for scientific database applications. To measure
this performance, we use the Bonnie I/O benchmark. For
the Xen kernel, we configure an LVM-backed virtual block
device (VBD).

Bonnie reads and writes sequential character input and
output in 1K blocks using the standard C library calls
putc() , getc() , read() , andwrite() . For the Bon-
nie rewrite test, Bonnie reads, dirties, and writes back
each block after performing anlseek() . The Bonnie ran-
dom I/O test performs anlseek() to random locations in
the file, then thenread() to reads a block from that loca-
tion. For these events, Bonnie rewrites 10% of the blocks.

Figure 8 shows the performance comparison for the four
kernels relative to the performance of CHAOS. The x-axis is
the performance of the different disk I/O metrics relative to
the performance of CHAOS, for different file sizes (y-axis).
The first three bars in each group show the performance of
the sequential output tests; the next two bars are for the se-
quential input test; the sixth bar is for the random test; and
the last bar is total time (Real-Time).

Xen has a higher per-character output, per-block output,
and rewrite rate for all file sizes relative to CHAOS. Xen
performance is slower for sequential output rewrite for the

1GB file. CHAOS has not been optimized for disk I/O. The
1GB sequential output rewrite performance using Xen is
the result of Xen’s disk scheduling algorithm. As described
previously, Xen used an I/O descriptor ring for each guest
domain, to reduce the overhead of domain crossing upon
each request. Each domain posts its request in the descrip-
tor ring; the host OS consumes them as they are produced.
This results in producer-consumer problem that the authors
of Xen describe in [31]. The improvements from Xen I/O
are the result of reordering of I/O requests by the host OS to
enable highly efficient disk access. In the case of sequential
output for 1GB files, the requests are very large in number
and randomly generated across the file. This prevents Xen
from making efficient use of the I/O rings and optimizing
requests effectively. This effect is also apparent and signifi-
cant in the results from the random seek tests. These results
indicate that if random seeks to large files is a key operation
in a particular HPC application, the Xen I/O implementa-
tion should be changed and specialized for this case.

The sequential input per character among all kernels is
not significantly different. However, for sequential input
per block, Xen disk I/O speed lags behind the other three
kernels by about 11-17%. We suspect this is a configuration
problem and we will work to verify this conjecture for the
final version of this paper, should it be accepted.



5 Macro-Benchmarks

Paravirtualization offers many opportunities to HPC ap-
plications and software systems, e.g., full system cus-
tomization, check-pointing and migration, etc. As such, it
is important to understand the performance implications of
such systems impose for a wide range of programs and ap-
plications. We do so in this section for the popular NAS
parallel benchmarks and the MIT GCM oceanographic and
climatologic simulation system. This set of experiments
shows the impact of using Xen for programs that exercise
the complete machine (subsystems in an ensemble).

5.1 NAS Parallel Benchmarks (NPB)

For the first set of experiments we employ the NAS
parallel benchmarks (NPB) as we describe in Section 3.
The benchmarks mimic the computational, communica-
tional and data movement characteristics of large scale com-
putational fluid dynamics applications.

Figure 9 shows the performance of the NPB codes(x-
axis) for our different kernels relative to CHAOS (y-axis).
We present two different metrics for each of the five bench-
marks. The left five sets of bars reflect total execution time.
The right five are for the total millions of operations per
second (Mops) the benchmarks achieve.

All of the kernels perform similarly for EP, IS, and MG.
The differences between the bars, though visually differ-
ent in some cases, are not statistically significant when we
compare them using the t-test with 95% confidence. This is
interesting since the benchmarks are very different in terms
of their behavior: EP performs distributed computation with
little communication overhead, IS performs a significant
amount of communication using collective operations, and
MG employs a large number of blocking send operations.
In all cases, paravirtualization imposes no statisticallysig-
nificant overhead.

LU decomposition shows a performance degradation of
approximately 5% for RHEL2.6.12 for both total time and
Mops. The reason for this is similar to that for the Linpack
results in the previous section due to overhead this kernel
places on computation (c.f. Section 4.2). CHAOS opti-
mizes this overhead away and RHEL2.6.9 makes up for this
loss due to its low overhead on MPI-based network latency
(c.f. Section 4.1). A combination of the scheduling policy
and network performance enabled by Xen enables the Xen
system to avoid the overhead also.

TheConjugateGradient (CG) code computes an approx-
imation to the smallest eigenvalue of a large sparse ma-
trix. It combines unstructured matrix system vector multi-
plication with irregular MPI communications. CG executes
slower using CHAOS than using the other kernels by about
5%. The statistical difference however was not significant,

0.8

0.9

1

1.1

1.2

EP IS MG LU CG EP IS MG LU CG

P
er

fo
rm

an
ce

 in
 ti

m
e 

an
d 

to
ta

l M
op

s 
re

la
tiv

e 
to

 C
H

A
O

S
 k

er
ne

l

CHAOS kernel
Xen kernel
RHEL269 kernel
RHEL2612 kernel

Total Time Total Mops

Figure 9. NAS Parallel Benchmark perfor-
mance relative to CHAOS. The left half (first
benchmark set) is for total time (lower is bet-
ter); the right half is for Mops (higher is bet-
ter).

which may mean that the differences was introduced due to
noise in the readings. We support this claim using the stan-
dard deviation of the 50 measurements that we collected us-
ing this kernel: This value is 31 for an average measurement
of 607s, in terms of Mops this value is 12 for an average of
237s. In summary, Xen performs consistently comparable
to CHAOS and the two RHEL kernels and delivers perfor-
mance similar to that of natively executed parallel applica-
tions.

5.2 MIT GCM

To evaluate the use of virtualization for real HPC ap-
plications, we employ the MITGeneralCirculationModel
(GCM) implementation. MIT GCM is a simulation model
for oceanographic and climatologic phenomena. The ex-
ecution of the MIT GCM using theexp2 input, involves
reading several input files at the beginning of the run for
initialization, processing a computationally intensive sim-
ulation, check-pointing the processed data to files periodi-
cally, and outputting the final results to several other files.
The total amount of data that is read and written by the sys-
tem during each run is approximately 33MB. The individual
writes are on the order of 200B per call to write() and the
total size of each file is approximately 1MB.

We use the Linux time utility to measure the perfor-
mance of MIT GCM which reports the time spent execut-
ing user code (User Time), the time spent executing system
code (System Time), and the total time (Real Time). We
present the results in Figure 10. The y-axis is the time in
seconds for the kernels shown on the x-axis.



37
.2

9

1.
59

37
.7

5

37
.1

3

64
.2

1

1.
30

1.
283.
34

12
8.

34

12
7.

77

12
7.

74

12
7.

24

0

20

40

60

80

100

120

140

CHAOS Kernel Xen Kernel RHEL2.6.9 Kernel RHEL2.6.12 Ke rnel

T
im

e 
in

 s
ec

on
ds

User Time

System Time

Real time

Figure 10. MIT GCM performance using input
Exp2 in seconds (lower is better).

From the experiments, we found Xen execution time of
MIT GCM to be slightly faster than that for CHAOS. The
difference however, is not statistically significant givena
95% confidence level. Similarly, the difference in perfor-
mance between Xen and RHEL kernels is negligible.

Our experience with the system indicates that the differ-
ence between Xen and CHAOS is primarily due to the disk
I/O activity. We also observe that Xen User Time and CPU
usage is consistently and uniformly different from that of
the other kernels. This is due to the way Xen computes user
and system time in the Linux time utility (in error as men-
tioned previously). This is a Xen implementation bug that
will be fixed in the next version of Xen.

These results are extremely promising, despite the time
utility bug. They show that Xen achieves performance equal
to that of the RHEL kernels and slightly better than that of
CHAOS. In addition, our results from the prior section on
disk I/O indicate that Xen is able to mask I/O overhead for
common disk activities. Our results show, that Xen can sat-
isfy the performance requirements of real HPC applications
such as GCM. We plan to investigate how other applications
behave over Xen as part of future work.

6 Related Research

The work related to that which we pursue in this paper,
include performance studies of virtualization-based sys-
tems. To our knowledge, our study is the first to inves-
tigate the performance implications of using paravirtual-
ization technologies in an HPC setting. We investigate a
wide range of metrics for HPC benchmarks, applications,
and systems. We consider both subsystem performance for
a number of important HPC components as well as full-
system performance when using paravirtualizing systems

for HPC cluster resources (IA64, SMP machines).
Other work has investigated the performance of Xen

and other similar technologies in an non-HPC setting. The
most popular performance evaluation of Xen is described
in [31]. A similar, yet independent but concurrent, study
is described in [11]. Both papers show the efficacy and
low overhead of paravirtualizing systems. The benchmarks
that both papers employ are general-purpose operating sys-
tems benchmarks. The systems that the authors evaluate are
IA32, stand-alone machines with a single processor. Fur-
thermore, those papers investigate the performance of the
first release of Xen, which has changed significantly. We
employ the latest version of Xen (v3.0.1) that includes a
wide range of optimization and features not present in the
earlier versions.

Students as part of an unpublished, class project at the
Norwegian University of Science and Technology (NTNU)
have investigated Xen performance for clusters [19]. This
study investigates the network communication perfor-
mance in Xen versus a native kernel using low-level and
application-level network communication benchmarks. The
resulting Master’s Thesis [7] describes a port of Xen to
IA64 but provides only a minimal evaluation. On the other
hand, another study [39] done at Wayne State University
investigated the communication performance for different
network switch fabric on Linux clusters. They evaluated
performance of Fast Ethernet using chp4 interface, Giga-
bit Ethernet using chp4 interface, Myrinet using chp4 in-
terface, and Myrinet using chgm interface. Based on that
study results, we anticipate that Xen would perform on Fast
Ethernet and Myrinet using chp4 similar to how it did per-
form on Gigabit Ethernet in our study. However, It would
be interesting to see how Xen page-flipping algorithm, de-
scribed earlier interact with Myrinet’s OS-bypass features.

More recent studies evaluate other features of Xen such
as the performance overhead of live migration of a guest
OS [12]. They show that live migration can be done with no
performance cost, and with down times as low as 60 msec-
onds. Related tools have been developed to Xen VMM, as
in Jisha [22] andXen-Get [44]. These systems do not
rigorously investigate the performance overheads of doing
so in an HPC setting.

7 Conclusions and Future Work

Paravirtualizing systems expose unique and exciting op-
portunities to the HPC community in the form of flexi-
ble system maintenance, management, and customization.
Such systems however, are currently not considered for
HPC environments since they are perceived to impose over-
head that is unacceptable for performance-critical applica-
tions and systems. In this paper, we present a rigorous em-
pirical evaluation of using Xen paravirtualization for HPC



applications, kernels, and systems that shows that such con-
cern is unwarranted.

We compare three different Linux configurations with
a Xen-based kernel. The three non-Xen kernels are those
currently in use at LLNL for HPC clusters: RedHat En-
terprise 4 (RHEL4) for build versions 2.6.9 and 2.6.12 and
the LLNL CHAOS kernel, a specialized version of RHEL4
version 2.6.9. We perform experiments using micro- and
macro-benchmarks from the HPC Challenge, LLNL ASCI
Purple, and NAS parallel benchmark suites among others,
as well as using a large-scale, HPC application for simu-
lation of oceanographic and climatologic phenomena. As a
result, we are able to rigorously evaluate the performance of
Xen-based HPC systems relative to non-virtualized system
for subsystems independently and in ensemble.

Our results indicate that, in general, the Xen paravirtual-
izing system poses no statistically significant overhead over
other OS configurations currently in use at LLNL for HPC
clusters – even one that is specialized for HPC clusters –
except in two instances. We find that this is the case for
programs that exercise specific subsystems, a complete ma-
chine, or combined cluster resources. In the instances where
a performance difference is measurable, we detail how Xen
either introduces overhead or somewhat counter-intuitively
produces superior performance over the other kernels.

As part of future work, we will empirically evaluate the
Linux v2.6.12 CHAOS kernel as well as Infiniband net-
work connectivity. The latter is very high-performance and
successful networking technology for HPC applications.
LLNL’s cluster implementation will soon be extended to
make use of this technology and our goal is to optimize
Xen communication for the Infiniband hardware. We plan
to port Xen to the latest version of CHAOS v2.6.12 when
this version becomes available.

In addition, we are currently investigating a number of
research directions that make use of Xen-based HPC sys-
tems. In particular, we are investigating techniques for high-
performance check-pointing and migration of full systems
to facilitate load balancing, to isolate hardware error man-
agement, and to reduce down time for LLNL HPC clus-
ters. We are also investigating techniques for automatic
OS installation over Xen [22] and for static and dynamic
specialization of OS images in a way that is application-
specific [24, 48].

8 Acknowledgements

The authors owe great thanks to Makia Munich at LLNL
and Graziano Obertelli at UCSB for their continuous work
and help with the CHAOS system and the benchmarks. We
would also like to extend our thanks to Xen-community,
for their prompt response to our questions through the Xen
mailing lists.

References

[1] A. Whitaker and M. Shaw and S. Gribble. Scale and Perfor-
mance in the Denali Isolation Kernel. InSymposium on Op-
erating Systems Design and Implementation (OSDI), 2002.
http://denali.cs.washington.edu/ .

[2] A. Adcroft, J. Campin, P. Heimbach, C. Hill, and J. Marshall.
MIT-GCM User Manual. Earth, Atmospheric and Planetary
Sciences, Massachusetts Institute of Technology, 2002.

[3] Llnl asci purple benchmark suite.http://www.llnl.
gov/asci/purple/benchmarks/ .

[4] J. D. Bagley, E. R. Floto, S. C. Hsieh, and V. Watson. Shar-
ing data and services in a virtual machine system. InSOSP
’75: Proceedings of the fifth ACM symposium on Operating
systems principles, pages 82–88, New York, NY, USA, 1975.
ACM Press.

[5] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo,
and M. Yarrow. The nas parallel benchmarks 2.0.The Inter-
national Journal of Supercomputer Applications, 1995.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga. The nas parallel benchmarks.The In-
ternational Journal of Supercomputer Applications, 5(3):63–
73, Fall 1991.

[7] H. Bjerke. HPC Virtualization with Xen on Itanium. Mas-
ter’s thesis, Norwegian University of Science and Technology
(NTNU), July 2005.

[8] BMJ Publishing Group: Statistics at Square One: The
t Tests, 2006. http://bmj.bmjjournals.com/
collections/statsbk/7.shtml .

[9] Bonnie Disk I/O Benchmark. http://www.
textuality.com/bonnie/ .

[10] R. Braby, J. Garlick, and R. Goldstone. Achieving order
through chaos: the llnl hpc linux cluster experience, June
2003.

[11] B. Clark, T. Deshane, E. Dow, S. Evanchik, M. Finlayson,
J. Herne, and J. N. Matthews. Xen and the art of repeated re-
search. InUSENIX Annual Technical Conference, FREENIX
Track, pages 135–144, 2004.

[12] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration of Vir-
tual Machines. InUSENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI ’05), Boston, MA,
USA, May 2005.

[13] Clustered high availability operating system (chaos)
overview.http://www.llnl.gov/linux/chaos/ .

[14] J. Dongarra. The linpack benchmark: An explanation. In
Proceedings of the 1st International Conference on Super-
computing, pages 456–474, London, UK, 1988. Springer-
Verlag.

[15] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT)
scheduling: supporting latency-sensitive threads in a general-
purpose schedular. InSymposium on Operating Systems
Principles, pages 261–276, 1999.

[16] Eric Van Hensbergen. The Effect of Virtualization on OSIn-
terference. InWorkshop on Operating System Interference
in High Performance Applications, held in cooperation with
The Fourteenth International Conference on Parallel Archi-
tectures and Compilation Techniques: PACT05, Septmber
2005.http://research.ihost.com/osihpa/ .



[17] S. W. Galley. Pdp-10 virtual machines. InProceedings of the
workshop on virtual computer systems, pages 30–34, New
York, NY, USA, 1973. ACM Press.

[18] J. Hansen and E. Jul”. Self-migration of Operating Sys-
tems. InACM SIGOPS European Workshop (EW 2004),
pages ”126–130”, ”2004”.

[19] H.Bjerke and R.Andresen. Virtualization in clus-
ters, 2004. http://haavard.dyndns.org/
virtualization/clust_virt.pdf .

[20] E. V. Hensbergen. PROSE : Partitioned Reliable Operat-
ing System Environment. InIBM Research Technical Report
RC23694, 2005.

[21] J. Sugerman and G. Venkitachalam and B. Lim. Virtualizing
I/O devices on VMware workstations hosted virtual machine
monitor. InUSENIX Annual Technical Conference, 2001.

[22] Jisha:Guest OS Deployment Tool for Xen.http://cs.
ucsb.edu/˜ahuda/jisha/ .

[23] M. Kozuch and M. Satyanarayanan. Internet sus-
pend/resume. InWMCSA ’02: Proceedings of the Fourth
IEEE Workshop on Mobile Computing Systems and Applica-
tions, page 40, Washington, DC, USA, 2002. IEEE Computer
Society.

[24] C. Krintz and R. Wolski. Using phase behavior in scien-
tific application to guide linux operating system customiza-
tion. In Workshop on Next Generation Software at IEEE In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), April 2005.

[25] R. J. Larsen and M. L. Marx.An Introduction to Mathe-
matical Statistics and Its Applications. Prentice Hall, Third
Edition, 2001.

[26] P. Luszczek, J. Dongarra, D. Koester, R. Raben-
seifner, B. Lucas, J. Kepner, J. McCalpin, D. Bai-
ley, and D. Takahashi. Introduction to the hpc
challenge benchmark suite, March 2005. http:
//icl.cs.utk.edu/projectsfiles/hpcc/
pubs/hpcc-challenge-benchmark05.pd%f .

[27] S. E. Madnick and J. J. Donovan. Application and analysis of
the virtual machine approach to information system security
and isolation. InProceedings of the workshop on virtual com-
puter systems, pages 210–224, New York, NY, USA, 1973.
ACM Press.

[28] J. Marotzke and R. G. et al. Construction of the adjoint MIT
ocean general circulation model and application to Atlantic
heat transport sensitivity.Journal of Geophysical Research,
104(C12), 1999.

[29] MIT’s Climate Modeling Initiative.http://paoc.mit.
edu/cmi/ .

[30] ”Netlib Repository at UTK and ORNL”.http://www.
netlib.org/ .

[31] P. Barham and B. Dragovic and K. Fraser and S. Hand and
T. Harris and A. Ho and R. Neugebauer. Virtual machine
monitors: Xen and the art of virtualization. InSymposium
on Operating System Principles, 2003.http://www.cl.
cam.ac.uk/Research/SRG/netos/xen/ .

[32] AMD Virtualization Codenamed ”Pacifica” Technology, Se-
cure Virtual Machine Architecture Reference Manual, May
2005.

[33] G. J. Popek and R. P. Goldberg. Formal requirements for
virtualizable third generation architectures.Commun. ACM,
17(7):412–421, 1974.

[34] G. J. Popek and C. S. Kline. The pdp-11 virtual machine
architecture: A case study. InSOSP ’75: Proceedings of the
fifth ACM symposium on Operating systems principles, pages
97–105, New York, NY, USA, 1975. ACM Press.

[35] Presta stress benchmark code.http://www.llnl.gov/
asci/purple/benchmarks/limited/presta/ .

[36] R.A. Meyer and L.H. Seawright. A Virtual Machine Time
Sharing System. InIBM Systems Journal, pages 199–218,
1970.

[37] M. Rosenblum and T. Garfinkel. Virtual machine monitors:
Current technology and future trends.Computer, 38(5):39–
47, 2005.

[38] J. E. Smith and R. Nair. Virtual Machines: Versa-
tile Platforms for Systems and Processes. Morgan Kauf-
mann/Elsevier, 2005.

[39] P. J. Sokolowski and D. Grosu. Performance considerations
for network switch fabrics on linux clusters. InProceedings
of the 16th IASTED International Conference on Parallel and
Distributed Computing and Systems, November 2004.

[40] The memory stress benchmark codes: stream.http:
//www.llnl.gov/asci/purple/benchmarks/
limited/memory/ .

[41] Enhanced Virtualization on Intel Architecture-basedServers,
March 2005.

[42] C. A. Waldspurger. Memory resource management in
vmware esx server.SIGOPS Oper. Syst. Rev., 36(SI):181–
194, 2002.

[43] A. Whitaker, R. Cox, M. Shaw, and S. Gribble. Constructing
services with interposable virtual hardware, 2004.

[44] Xen-Get.http://www.xen-get.org/ .
[45] Xen Virtual Machine Monitor Performance. http:

//www.cl.cam.ac.uk/Research/SRG/netos/
xen/performance.html .

[46] J. Xenidis. rHype: IBM Research Hypervisor. InIBM
Research, March 2005.http://www.research.ibm.
com/hypervisor/ .

[47] XenSource.http://www.xensource.com/ .
[48] L. Youseff, R. Wolski, and C. Krintz. Linux kernel special-

ization for scientific application performance. TechnicalRe-
port UCSB Technical Report 2005-29, Univ. of California,
Santa Barbara, Nov 2005.

[49] R. Zamani and A. Afsahi. Communication characteristics of
message-passing scientific and engineering applications.In
17th IASTED International Conference on Parallel and Dis-
tributed Computing and Systems (PDCS 2005), Phoenix, AZ,
USA, pages 644–649, ”November” 2005.


