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Parcel-based urban land use classification in megacity using airborne LiDAR, 1 

high resolution orthoimagery, and Google Street View  2 
 3 
 4 
 5 

Abstract   6 
Urban land use information is increasingly important for a variety of purposes. With their increasing 7 

coverage and availability, airborne light detection and ranging (LiDAR) data, high resolution 8 

orthoimagery (HRO), and Google Street View (GSV) images are showing great potential for accurate 9 

land use classification. However, no study mapped land use in megacity using GSV-derived features or 10 

the three kinds of data together for land use classification. The main objectives of this study are (1) to test 11 

the performance of a parcel-based land use classification method using a Random Forest classifier with 12 

LiDAR data, HRO, and GSV images in a megacity, and (2) to explore the use of GSV in separating 13 

parcels of mixed residential & commercial buildings from other land use parcels. Two neighbouring 14 

community districts in Brooklyn, New York, were selected as the study area. Thirteen automatically-15 

derived parcel features, including nine common parcel features and four GSV-derived parcel features, 16 

were used in land use classification. The average overall classification accuracy was 77.5%, with 17 

producer’s accuracies exceeding 92% for single-family housing. Comparing the results of classifications 18 

with and without GSV-derived parcel features shows that GSV-derived parcel features on average 19 

contribute to the classification accuracy of mixed residential & commercial buildings by 10 percentage 20 

points, improving it from 41.3% to 51.4%. In general, the results show that even in a complex megacity, 21 

the parcel-based land use classification technique, with parcel features extracted from airborne LiDAR, 22 

HRO, and GSV, is able to discriminate among different land use classes, such as single-family house, 23 

commercial & industrial building, and open space & park, with acceptable accuracies, and that integrating 24 

GSV into classification improves the classification accuracy of some urban land use classes, especially 25 

mixed residential & commercial building.    26 

 27 
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1. Introduction  31 

There were 34 megacities, defined as metropolitan areas with more than 10 million in population 32 

across the world by 2015 (Cox, 2015), in total having about 582 million in population. In order to have an 33 

in-depth understanding of the growth and development of megacities, accurate and timely information 34 

concerning urban land resources are needed (Moller-Jensen, 1997). Land use information in any city is 35 

important because it is essential to a variety of purposes (Wentz, Stefanov, Gries, & Hope, 2006), such as 36 

tax assessment, land use policy, city planning, zoning regulation, analysis of environmental processes and 37 

problems, and management of natural resources (Anderson, 1976; Treitz, Howarth, & Gong, 1992). 38 

Generally, local planning departments collect and update land use information by ground survey, visual 39 

interpretation of aerial images, or reference to other supplementary existing data (Anderson, 1976). For 40 

large-city areas, these traditional ways of collecting and updating land use data could be extremely 41 

laborious, costly, and time consuming (Wu, Qiu, Usery, & Wang, 2009).  42 

Due to recent technological advancement in remote sensors and image analysis tools, high spatial 43 

resolution imagery has shown a great capacity for land cover/use classification in urban areas (Barr & 44 

Barnsley, 2000). The nature of urban land use is mainly defined in terms of social economic functionality 45 

(Barnsley & Barr, 1997; Bauer & Steinnocher, 2001), so recognition of land use by spectral reflectance 46 

from optical remote sensing (RS) images is still a major challenge (Donnay & Unwin, 2001). Another 47 

challenging problem in mapping land use in urban areas is the complexity of the urban landscape 48 

(Aubrecht, Steinnocher, Hollaus, & Wagner, 2009).  49 

To overcome these difficulties, researchers have developed a variety of land-use classification 50 

methods. The existing methods of land-use classification may be grouped into two categories in terms of 51 
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land use units: one uses pixel-based approaches and the other uses region-based approaches. Delimitation 52 

of land-use regions or parcels is an initial requirement of analyses in the region-based approaches, several 53 

ways have been developed to divide an urban area, such as manual delineation (Herold, Liu, & Clarke, 54 

2003), use of GIS data (e.g., administrative boundary, parcel boundary, roads) (Wu, Silván-Cárdenas, & 55 

Wang, 2007), and image segmentation (Platt & Rapoza, 2008). Then urban land use can be classified 56 

based on the differences in spatial distributions and patterns of buildings, other built structures, vegetation 57 

cover, and other features within parcels (Bauer & Steinnocher, 2001). Region-based approaches have 58 

been widely used in land use classification. For example, Bauer and Steinnocher (2001) used an object-59 

oriented rule-based classifier for urban land use classification over IKONOS images. Wu, Silván-60 

Cárdenas, and Wang (2007) employed a region-based approach with a decision tree classifier for urban 61 

land use classification based on 12 parcel features and obtained a relatively high accuracy in a middle-62 

sized city. By taking up to 50 parcel features into account and using the same region-based approach in 63 

the same study area, Wu, Qiu, Usery, and Wang (2009) further improved the accuracy of land use 64 

classification.  65 

However, little effort has been spent in testing the effectiveness of region-based land-use 66 

classification approaches in megacities, which are probably the most complicated landscapes because of 67 

their substantial three dimensional (3D) components and mixed land use classes (e.g., mixed residential & 68 

commercial buildings). To deal with the complexity of megacity landscapes, in addition to high resolution 69 

orthoimagery (HRO) and LiDAR, Google Street View (GSV) images were first used in this study to 70 

improve land use classification. While LiDAR is able to provide informative 3D data of parcels, GSV 71 

enables us to horizontally observe parcels at street-level. Recently, GSV images were used in 72 

environmental and social researches, such as auditing neighbourhood environments (Rundle et al., 2011; 73 

Bentley, McCutcheon, Cromley, & Hanink, 2016), assessment of sidewalk accessibility (Hara & 74 

Froehlich, 2013), urban greenery assessment (Li et al., 2015).  75 

In this study, a region-based approach is used with parcel boundary data for land use classification in 76 

a megacity: New York. Parcel boundaries are reasonable boundaries of urban land use classes because 77 

urban land use is more of a socio-economic function than a natural one. Thus the term “parcel-based” was 78 

used to specify the urban land use classification method in this study. Additionally, using a region-based 79 

approach allows data obtained from different sensors to be configured consistently even though these data 80 

have various scales, resolutions, and visions. Particularly, with increasing coverage and more availability, 81 

airborne LiDAR data, HRO, and GSV images may have great potential for accurate up-to-date urban land 82 

use classification using region-based approaches. The objectives of this study are: (1) to investigate the 83 

performance of a parcel-based urban land use classification method using a Random Forest classifier with 84 

LiDAR data, HRO, and GSV images in a megacity; (2) to test the importance of different parcel features 85 

for urban land use classification; and (3) to exam the effectiveness of GSV images for improving 86 

accuracy of urban land use classification under a complex megacity background.  87 

 88 

2. Study Area and Data 89 

2.1. Study Area 90 

New York City (NYC) is the most populous city in the United States (US) (U.S. Census Bureau, 91 

2016) and also one of the most populous metropolises on the Earth (Worldatlas, 2016). The city has five 92 

boroughs: Brooklyn, Queens, Manhattan, the Bronx, and Staten Island. Brooklyn, which coincides with 93 

Kings County, is the most densely populated among these five boroughs, with 2.5 million residents and 1 94 

million housing units in 2014, according to 2010-2014 American Community Survey 5-Year Estimates. 95 

Brooklyn is located at the south-western end of Long Island. Two community districts, covering 12.9 96 

square kilometres, in the central part of Brooklyn were chosen as our case study area (Fig. 1).  97 

 98 

 99 
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 100 
Fig. 1. The study area – the central part of Brooklyn: (a) location of the study area in New York City; (b) New York City consists 101 
of five boroughs; and (c) a true-colour composite of the high resolution orthoimagery (RGB = 4, 3, 2) for the study area. The 102 
image was acquired on April 01, 2014, with a spatial resolution of 0.5 feet. The latitude and longitude of the upper left corner of 103 
the image is 40°40'25.467"N, 73°57'53.833"W.   104 
 105 

2.2. GIS Data 106 

We obtained parcel boundary data and study area boundary from the NYC Department of City 107 

Planning (DCP), and street data from the New York State GIS Program Office, in the 108 

“NAD_1983_2011_StatePlane_New_York_Long_Isl_FIPS_3104_Ft_US” projected coordinate system. 109 

The parcel boundary data are in vector polygon format, with 83 different social, administrative, and 110 

geographic attributes. The corresponding land use inventory information at parcel level in the study area 111 

is used as reference data. The parcel boundary data originally have a total of 11 land use classes, which 112 

were converted into 7 classes (Table 1) with minor classes merged with functionally similar major 113 

classes. 114 

 115 
Table 1  116 
Description of related land use classes in the study area. 117 

Land use class (before merging) 
Land use ID 

(before merging) 

Land use class (after 

merging) 

Land use 

ID (after 

merging) 

Descriptions 
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One & two family buildings 1 Single-family house  L1 
Single-family detached home, two-unit 

dwelling group, and duplex 

Multi-family walk-up buildings 2 Multi-family residential 

building  
L2 

Two-flat, three-flat, four-flat, townhouse,  

apartment building, and apartment 

community Multi-family elevator buildings 3 

Public facilities & institutions 8 
Public facility & 

institution 
L3 

Hospital, government services, and 

educational facilities 

Mixed residential & commercial 

buildings 
4 

Mixed residential & 

commercial building 
L4 

Mixed use building that has spaces for both 

commercial and residential use 

Commercial & office buildings 5 

Commercial & industrial 

building 
L5 

Retail and general merchandise, shopping 

mall, restaurant,  entertainment, 

manufacturing, warehousing, equipment 

sales and service, auto service, and multi-

story car park 

Industrial & manufacturing 6 

Transportation & utility 7 

Open space & outdoor recreation 9 
Park & open space L6 

Public parks, urban parks, recreational 

facilities, golf courses, reservoir, and vacant 

space Vacant land 11 

Parking facilities 10 Parking facility L7 Outdoor parking facility 

 118 

The street data are also in vector polyline format, including vector lines of public/private streets. New 119 

York City consists of 70 community districts. Two community districts in Brooklyn were chosen and 120 

merged as the study area. All of GIS data used in this study were obtained from multiple sources 121 

compiled by different agencies, so there is no absolute guarantee of their completeness, accuracy, content, 122 

or fitness for any particular purpose. Some pre-processing was conducted. For example, parcels of road, 123 

highway, and railway in the parcel boundary data were removed because they are not relevant to this 124 

study. Moreover, some obvious out-of-date mistakes in the parcel boundary data were corrected by 125 

editing vertices. For example, the parcel of Holy Cross Cemetery still covers half of adjacent E 47
th
 Street 126 

in the original data. Finally, the Project tool from ArcGIS tool box was used to project these GIS data into 127 

the “WGS_1984_UTM_zone_18N” projected coordinate system in order to match image data.  128 

 129 

2.3. Remotely Sensed Data 130 

2.3.1 Airborne Light Detection and Ranging (LiDAR) 131 

In this study, LiDAR dataset was downloaded in LAS format and “WGS_1984_UTM_zone_18N” 132 

projected coordinate system, from National Oceanic and Atmospheric Administration (NOAA) via a Data 133 

Access Viewer (https://coast.noaa.gov/dataviewer/#/lidar/search/). (The LAS format is a public data 134 

format for the interchange of 3-dimensional point cloud data between data users [Version, 2009].) The 135 

LiDAR data were acquired for 304 square miles in New York State, by contractor Woolpert, Inc., from 136 

August 5 to August 15, 2013 and from March 21 to April 21, 2014, respectively (NOAA, 2015). The 137 

dataset has an overall density of 3.6 returns/m
2
. The dataset was compiled to meet 0.42 meters horizontal 138 

accuracy at the 95 percent confidence level. According to the Consolidated Vertical Accuracy test result, 139 

the dataset has 0.116 meters consolidated vertical accuracy at the 95 percent confidence level for all land 140 

cover categories combined (NOAA, 2015). In order to keep the horizontal accuracy of the LiDAR dataset, 141 

it was resampled to 0.5 meters for further raster data processing with other aerial images.  142 

 143 

2.3.2 High Resolution Orthoimagery (HRO) 144 

High Resolution Orthoimages used in this study were obtained in the 145 

“NAD_1983_2011_StatePlane_New_York_Long_Isl_FIPS_3104_Ft_US” projected coordinate system 146 

from the United States Geological Survey (USGS) by EarthExplorer (http://earthexplorer.usgs.gov/).  147 

These aerial images were acquired from April 1 to April 25, 2014, with a pixel resolution of 0.1524 148 

meters (i.e. 0.5 feet), including red, green, blue, and near infrared bands. We resampled these aerial 149 

images to the same spatial resolution as LiDAR raster images. To match the projected coordinate system 150 

of LiDAR, we also projected resampled HRO into the “WGS_1984_UTM_zone_18N” projected 151 

coordinate system.  152 

http://earthexplorer.usgs.gov/
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 153 

2.3.3 Google Street View (GSV) Images 154 

GSV images are available via Google Maps APIs. The GSV image API enables users to obtain a 155 

static (non-interactive) Street View panorama through a standard HTTP request with required URL 156 

parameters (Google, 2016). These parameters are size, location, heading, fov, pitch, and key. So far there 157 

has been no research using derived information (e.g., text information) from GSV images for improving 158 

land use classification. Therefore, in order to minimize the effect of zoom level on derived information 159 

caused by the varying distance between a building and the street view vehicle, three different horizontal 160 

field view angles (i.e., fov, which represents the level of zoom), 30, 45, and 60 degrees with default 5 161 

degree vertical angle value (i.e., pitch) of the camera relative to the street view vehicle, were chosen when 162 

requesting GSV images for each parcel. To have corresponding GSV images for each parcel in the study 163 

area, we used the Near tool from ArcGIS toolbox to extract the x- and y-coordinates (i.e., location) of the 164 

nearest geo-location from Street Map for each parcel, and a near angle (i.e., heading) to measure the 165 

direction of the parcel to this nearest geo-location (Fig. 2(a)). Then the x- and y-coordinates of the nearest 166 

geo-location were converted to latitude and longitude coordinates. We developed a Python script to read 167 

the coordinates of each parcel and download the GSV images at that site by parsing GSV URL 168 

automatically (Fig. 2(b) and Fig. 2(c)). The requested GSV images did not include capture time, but they 169 

were acquired by Google from 2011 to 2014 based on sampling observation.  170 

 171 

 172 
Fig. 2. GSV image downloading. (a) Using the Near tool to locate the nearest geo-location i and j from Street Map for two 173 
parcels, whose BBL (BBL is a concatenation of the borough code, tax block and tax lot) codes are 3051720039 and 3051720037, 174 
respectively. Based on x- and y-coordinates of extracted i and j, we requested two GSV images for these two parcels: (b) a GSV 175 
image was downloaded from GSV URL for parcel 3051720039; (c) a GSV image was downloaded from GSV URL for parcel 176 
3051720037. 177 

 178 
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3. Methods 179 

In this study, thirteen parcel features (Table 2) were chosen as input variables in a Random Forest 180 

classifier for land use classification (Fig. 3). They include nine common parcel features: parcel size, 181 

number of buildings, maximum of building areas, standard deviation (STD) of building areas, percentage 182 

of total building area, maximum of building story numbers, STD of building story numbers, average of 183 

normalized difference vegetation index (NDVI), STD of NDVI. These parcel features were selected on the 184 

basis of related previous researches and empirical considerations (Fig. 4). For example, a study found that 185 

building-relevant features are the major discriminant factors between land use types with parcel-relevant 186 

features as secondary discriminant factors (Wu, Silván-Cárdenas, & Wang, 2007). Compared with other 187 

urban land-use classes, single-family house parcels tend to have smaller parcel size, smaller maximum of 188 

building areas, and lower maximum of building story numbers. Both apartment communities and public 189 

facilities have a larger number of buildings than parcels in any other land use class have, but apartment 190 

communities have more uniform building heights (Fig. 4(b-2)). Thus, STD of building story numbers can 191 

distinguish apartment communities from the others. Using the average of NDVI and STD of NDVI can 192 

identify park & open space because this land-use type tends to have higher coverage of vegetation (Fig. 193 

4(f-3)). Using maximum of building areas, maximum of building story numbers and percentage of total 194 

building area can be helpful in recognizing commercial & industrial buildings because their parcels 195 

usually have large but low-rise buildings with large parking areas (Fig. 4(e-2)) (Wu, Silván-Cárdenas, & 196 

Wang, 2007).  197 

The rest four parcel features were automatically detected and derived from GSV images (i.e., GSV-198 

derived parcel features): length of detected text from fov 30 GSV image, length of detected text from fov 199 

45 GSV image, length of detected text from fov 60 GSV image, and index of English words from all 200 

detected text from GSV images. Mixed residential & commercial buildings have spaces for both 201 

commercial and residential uses. Therefore, it is difficult to distinguish mixed residential & commercial 202 

buildings from either single-family houses or multi-family residential buildings because they have a lot of 203 

common building-relevant features, parcel-relevant features, and vegetation features (Fig. 4(a-1), (a-2), 204 

(a-3), (d-1), (d-2), and (d-3)). We propose to extract text information from GSV images in order to 205 

improve the accuracy of distinguishing mixed residential & commercial buildings from single-family 206 

houses and multi-family residential buildings, because the former have shop signs but the latter do not 207 

have (Fig. 4(a-4) and (d-4)).  208 
    209 
Table 2  210 
Description of selected parcel features. 211 

No. Parcel feature 
Feature 

symbol 
Description 

1 Parcel size PF-1 Area of a parcel 

2 Number of buildings PF-2 Number of detected buildings within a parcel  

3 
Maximum of building 

areas 
PF-3 The largest area among the areas of buildings within a parcel 

4 STD of building areas PF-4 Standard deviation of areas of buildings within a parcel 

5 
Percentage of total 

building area 
PF-5 Percentage of total building area within a parcel 

6 
Maximum of building 

story numbers 
PF-6 

The largest story number among the story numbers of buildings 

within a parcel 

7 
STD of building story 

numbers 
PF-7 Standard deviation of building story numbers within a parcel 

8 Average of NDVI PF-8 Mean of NDVI values of pixels in a parcel 

9 STD of NDVI PF-9 Standard deviation of NDVI values of pixels in a parcel 

10 
Length of detected text 

from fov 30 GSV image 
PF-10 

Length of detected text derived from a requested GSV image with 

a horizontal field view angle as 30 

11 
Length of detected text 

from fov 45 GSV image 
PF-11 

Length of detected text derived from a requested GSV image with 

a horizontal field view angle as 45 
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12 
Length of detected text 

from fov 60 GSV image 
PF-12 

Length of detected text derived from a requested GSV image with 

a horizontal field view angle as 60 

13 

Index of English word 

from all detected texts 

from GSV images 
PF-13 

Sum of existence of English word among detected texts from fov 

30 GSV image,  fov 45 GSV image, and  fov 60 GSV image for a 

parcel (ranging from 0 to 3) 

 212 

 213 
Fig. 3.  A flowchart of the whole procedure from parcel feature calculation to classifier training to accuracy assessment.   

 214 
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 215 
Fig. 4.  Examples of used data for seven land use types.   216 
 217 
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In this study, only parcel size was calculated from parcel boundary data directly. The calculation of 218 

other 12 parcel features is described in following sections. After deriving the totally thirteen parcel 219 

features of each parcel from input data mentioned above, we trained a Random Forest classifier by using 220 

these derived parcel features and known land-use labels from the randomly selected 20 percent of all 221 

parcels. Then, the Random Forest Classifier classified the rest of parcels into the seven land use types. We 222 

chose the Random Forest Classifier in this study because we found that this classifier generated the best 223 

result after comparing it with some other common classifiers (e.g. Support Vector Machine and Decision 224 

Tree) in a test. Accuracy of land use classification was validated by the land use information of the 80 225 

percent of parcels that were classified in the former step. Five random seeds (611, 1924, 3391, 6763, and 226 

9930, all generated by a random number generator) were used to initialize a pseudorandom number 227 

generator when randomly selecting 20 percent of all parcels as training samples (Table 3). Accuracies 228 

were validated using the other 80 percent of the parcels (Table 3). Therefore, 5 different data groups were 229 

used as inputs to conduct classification and validation.  230 

 231 
Table 3 232 
Number of training parcels and test parcels for each land use type.   233 

  Number of parcels for different land use types 

Random seed number Parcel L1 L2 L3 L4 L5 L6 L7 Total 

611 

Training parcels 3298 1036 86 366 131 80 66 5063 

Test parcels 12910 4243 334 1478 622 262 209 20058 

Total parcels 16208 5279 420 1844 753 342 275 25121 

1924 

Training parcels 3193 1030 79 393 143 69 48 4955 

Test parcels 13015 4249 341 1451 610 273 227 20166 

Total parcels 16208 5279 420 1844 753 342 275 25121 

3391 

Training parcels 3306 1054 92 378 142 62 66 5100 

Test parcels 12902 4225 328 1466 611 280 209 20021 

Total parcels 16208 5279 420 1844 753 342 275 25121 

6763 

Training parcels 3162 1123 79 385 142 68 50 5009 

Test parcels 13046 4156 341 1459 611 274 225 20112 

Total parcels 16208 5279 420 1844 753 342 275 25121 

9930 

Training parcels 3251 1050 92 338 161 68 58 5018 

Test parcels 12957 4229 328 1506 592 274 217 20103 

Total parcels 16208 5279 420 1844 753 342 275 25121 

* L1: Single-family house; L2: Multi-family residential building; L3: Public facility & institution; L4: Mixed residential & 234 
commercial building; L5: Commercial & industrial building; L6: Park & open space; L7: Parking facility.  235 

 236 

3.1 Normalized Difference Vegetation Index (NDVI)  237 

The Normalized Difference Vegetation Index (NDVI) is a widely used measurement of vegetation 238 

because of its high reflectance in the near-infrared spectral region but low reflectance in the red spectral 239 

region (Song, 2005; Li et al., 2014). The value of the NDVI is generally between –1 and +1. It is close to 240 

+1 if a pixel is covered by vegetation. NDVI is calculated as (Tucker, 1979) 241                                                                            (1) 242 

where      is the reflectance in the near-infrared band and      is the reflectance in the red band. 243 

 244 

3.2 Building Detection and Building Story Estimation 245 

Point cloud of the LiDAR dataset was classified into some classes (in this data, they are default, 246 

ground, noise, water, ignored ground, overlap default, and overlap ground) during pre-processing. For the 247 
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bare-earth (i.e. ground) and non-ground LiDAR points, a manual Quality Assurance/Quality Control step 248 

was taken to verify their quality by removing artefacts (NOAA, 2015). Therefore, non-ground LiDAR 249 

points included artefacts (e.g., buildings), waterbody, and others (e.g., conifers and evergreens). However, 250 

the study area has no waterbody. Based on these characteristics of LiDAR data, a ground binary raster 251 

image (1: ground; 0: undecided) was produced by converting LiDAR ground points in LAS format into 252 

0.5 meter pixels. Then, a moving window with the Boolean operation “and” and a radius of five pixels 253 

(i.e. 2.5 meters) was used to fill the gaps among ground pixels using the ground pixels located in each 254 

quadrant neighbourhood (Fig. 5). Finally, only relatively large patches (larger than 5 × 5 meters) with 255 

aggregative label-undecided pixels were left and regarded as buildings, and other label-undecided pixels 256 

surrounded by ground pixels were changed into ground pixels in the raster image. There were 1951 pixels 257 

selected randomly for building detection validation. The overall accuracy of building detection was 258 

95.03%. Some mistakes might be attributed to some objects that have high elevation and do not have 259 

multiple laser returns and ground laser return, such as non-deciduous trees with dense canopy, trash piles, 260 

and truck trailers.   261 

 262 

 263 
Fig. 5. Moving window with a radius for a quadrantal neighborhood for filling the gaps in LiDAR data. (a) LiDAR ground points 

(marked as black dots) are converted into ground pixels (marked as green pixels). The search area with a radius of 2.5 meters is 

used for seeking the nearest neighbors to decide whether a gap pixel’s label is ground or building at the pixel   . Because there is 

at least one ground pixel per quadrant, the pixel    is labelled as a ground pixel. (b) Because there is no LiDAR ground point 

located in the southwestern quadrant of the neighborhood, the gap pixel    will be labelled as a building pixel (marked as pink 

pixels). (c) A filled ground binary raster image was produced by the moving window.   

  264 

As opposed to methods that derive building heights by subtracting ground surface elevation data from 265 

LiDAR elevation data, we derived building heights by subtracting the elevation of each parcel from the 266 

mean of LiDAR elevations at pixels within detected buildings. Usually researchers divide LiDAR points 267 

into ground (terrain) and non-ground (non-terrain) points by filtering. Then, an interpolation method is 268 

used to generate a digital elevation model (DEM) as ground surface elevation data (Liu, 2008). However, 269 

in megacities, parcels tend to be flat and their elevations may be very different from neighbouring parcels 270 

but uniform within themselves. We extracted elevation values of pixels for parcels with a 10 pixels (i.e. 5 271 

meters) buffer but not including pixels in other parcels. For example, only elevation values of pixels from 272 

the front of a parcel would be extracted only if the front side of the parcel faces a street (Fig. 6). The 273 

median value of 5% of the smallest elevation values was used to represent the elevation of a parcel in 274 

order to avoid overestimation l. This is because that there may be some trees, cars and artefacts located at 275 
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the front of a parcel other than the street surface (Priestnall, Jaafar, & Duncan, 2000). Finally, derived 276 

building heights were converted to the storey numbers of buildings using 3 meters per storey.  277 

 278 

 279 
Fig. 6. Extraction areas (shown with red boundaries) for elevation values of pixels within a 10 pixels (i.e. 5 meters) buffer around 

parcels (shown with green boundaries).   

 280 

3.3. Automatic Detection and Recognition of Texts in GSV Images 281 

The basic assumption in using GSV images in distinguishing mixed residential & commercial 282 

buildings (Fig. 7) from single-family houses and multi-family residential buildings (Fig. 8) is that shop 283 

signs of mixed residential & commercial buildings can be detected and recognized as texts from the 284 

corresponding GSV images. The Computer Vision System Toolbox of MATLAB (version: R2016a) was 285 

used to conduct robust text detection in GSV images. Firstly, the maximally stable extremal regions 286 

(MSER) feature detector was used to detect potential text regions. The MSER algorithm is able to detect 287 

most of the text regions, but it can also detect many other non-text regions in the image. Therefore, we 288 

removed non-text regions using a rule-based method to filter non-text regions based on geometric 289 

properties. We chose thresholds for these geometric properties based on the recommendation of example 290 

codes (http://www.mathworks.com/help/vision/examples/automatically-detect-and-recognize-text-in-291 

natural-images.html) in MATLAB. Secondly, Stroke Width (SW) was used to further discriminate 292 

between text and non-text. The SW is a metric for measuring the width of the curves and lines that make 293 

up a character (MathWorks, 2016). Text regions tend to have little SW variation, whereas non-text 294 

regions tend to have larger SW variation (MathWorks, 2016). Thirdly, to extract more meaningful 295 

information than just individual characters, detected text regions were merged into text lines for obtaining 296 

final text detection results by forming a bounding box around text regions and expanding the bounding 297 

box (MathWorks, 2016). Finally, the Optical character recognition (OCR) function was used to 298 

recognize the text within each bounding box.  299 

 300 
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 301 
Fig. 7. Detected texts from GSV images for mixed residential & commercial buildings.   

 302 

 303 
Fig. 8.  Detected texts from GSV images for single-family houses and multi-family residential buildings. 
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3.4. Random Forest Classifier 304 

The Random Forest (RF) classifier is a powerful machine learning classifier, which was initially 305 

developed by Breiman (2001) (Rodriguez-Galiano, Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez, 306 

2012). Different from the Decision Tree (DT) classifier, the RF classifier builds multiple decision trees. 307 

Moreover, rather than training each tree on all inputs as the DT classifier does, the RF classifier builds 308 

each tree using different partial data from all inputs (also known as bootstrapped samples) (Grus, 2015). 309 

Rather than using all the remaining attributes, the RF classifier starts from choosing a random subset of 310 

them and then splits them based on an optimum choice (Grus, 2015). When classifying a new input 311 

vector, the RF classifier determines the final classification based on a majority vote (Gislason, 312 

Benediktsson, & Sveinsson, 2004). In this study, we used the RF classifier from the Scikit-learn Machine 313 

Learning Library (scikit-learn.org/stable/) for the Python programming language.  314 

 315 

4. Results and Analyses 316 

4.1 Classification Results Using Nine Common Parcel Features  317 

Fig. 9(a) shows the land use classification based on the nine common parcel features (without the four 318 

GSV-derived parcel features) from training samples randomly selected using the random seed number 319 

611. Fig. 9(b) shows incorrectly classified land-use class labels. The overall accuracies (OAs) of the 320 

classifications with different random number seeds were given in Table 4. Without the parcel features 321 

from GSV images, OAs range from 75.9% to 76.7%. The averaged OA of land use classifications based 322 

on the nine common parcel features is 76.3%. The accuracy assessment (Table 4) shows that the single-323 

family house land use class has the highest producer’s and user’s accuracies (above 91% and 81%, 324 

respectively), compared with other land use classes. This can be explained by the relatively uniform small 325 

parcel size and single low-rise buildings of this land-use class (Wu, Qiu, Usery, & Wang, 2009). The 326 

land-use class for park & open space has the second highest average producer’s and user’s accuracies 327 

(greater than 68%) among all land-use classes. This may be because parcels for park & open space are 328 

more likely to have large areas and high percent vegetation cover. Next to the class of park & open space 329 

is the class of commercial & industrial building, of which the average producer’s and user’s accuracies 330 

are above 61% and 63%, respectively. Many parcels of the commercial & industrial building class were 331 

misclassified as single-family house, multi-family residential building, and mixed residential & 332 

commercial building (Table 5). The reason may be that, in a megacity, many small businesses or light 333 

industrial buildings, such as one or two story garages and convenient stores, have very similar parcel sizes 334 

and building features. However, for those large commercial & industrial buildings, they were easily 335 

classified correctly (see the lower right of Fig. 9(b)). Average producer’s and user’s accuracies for multi-336 

family residential buildings are around 49.8% and 63.4%, respectively. It is not surprising that almost half 337 

of the multi-family residential parcels were misclassified as single-family houses (Table 5). This is 338 

because in the study area multi-family residential buildings mainly consist of two-flat, three-flat, and 339 

four-flat buildings, and these two- to four-flat multi-family residential buildings are similar to single-340 

family houses in terms of parcel- and building-relevant characteristics. Average producer’s and user’s 341 

accuracies for mixed residential & commercial buildings are 41.3% and 57.9%, respectively, which can 342 

be explained by the similarity between residential buildings and mixed residential & commercial 343 

buildings in terms of parcel characteristics (e.g., in study area, some residential buildings and mixed 344 

residential & commercial buildings are two-story height single buildings with similar parcel size and 345 

building size). Parking facility and public facility & institution are two minor land-use classes here, with 346 

quite low classification accuracies due to some reasons discussed below. 347 

 348 
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 349 
Fig. 9.  (a) Land use classification based on nine common parcel features and the training samples randomly selected using the 350 
random seed number 611. (b) Corresponding land use misclassification.  351 

 352 
Table 4  353 
Accuracy assessment of land use classifications using five different training sample datasets, based on nine common 354 
parcel features and all thirteen parcel features (including four GSV-derived parcel features), respectively.   355 

Random 

Seed 

GSV-derived 

parcel 

features  

  

Overall 

Accuracy 

(%) 

Producer's Accuracy (%)   User's Accuracy (%) 

Class 

L1 L2 L3 L4 L5 L6 L7 
 

L1 L2 L3 L4 L5 L6 L7 

611 

No Value 75.9 92.4 48.0 21.3 40.8 59.2 71.0 13.9   81.2 63.4 44.1 57.8 66.3 65.3 28.2 

Yes Value 77.2 93.7 46.6 20.4 52.7 59.6 68.7 10.5 
 

81.7 65.8 46.3 65.6 66.7 66.7 26.2 

 
Improvement 1.4 1.3 -1.3 -0.9 11.9 0.5 -2.3 -3.3 

 
0.5 2.4 2.2 7.8 0.4 1.4 -2.0 

1924 

No Value 76.7 92.6 50.2 17.9 42.4 62.0 71.4 11.5   81.9 64.5 48.8 56.7 64.7 70.4 38.2 

Yes Value 77.8 93.5 49.2 16.4 52.7 62.3 72.9 12.8 
 

82.2 66.0 47.5 64.6 68.8 72.1 46.0 

 
Improvement 1.1 0.9 -1.0 -1.5 10.3 0.3 1.5 1.3 

 
0.3 1.4 -1.3 8.0 4.1 1.7 7.8 

3391 

No Value 76.3 92.2 50.6 19.8 42.3 57.0 61.8 20.6   81.9 63.8 44.8 58.7 61.9 75.2 30.7 

Yes Value 77.6 93.0 51.0 18.9 51.6 58.1 63.9 19.1 
 

82.5 65.2 49.2 66.9 64.8 74.9 31.7 

 
Improvement 1.3 0.7 0.4 -0.9 9.3 1.1 2.1 -1.4 

 
0.6 1.4 4.4 8.2 2.9 -0.3 1.0 

6763 

No Value 76.4 92.1 49.7 16.1 40.2 66.8 71.5 19.1   81.9 62.7 56.1 58.2 63.2 71.0 36.4 

Yes Value 77.7 93.0 50.3 15.2 50.0 65.5 69.3 18.2 
 

82.6 64.1 54.7 68.5 64.8 69.1 35.7 

 
Improvement 1.3 0.9 0.6 -0.9 9.7 -1.3 -2.2 -0.9 

 
0.7 1.4 -1.4 10.3 1.7 -1.9 -0.8 

9930 

No Value 76.1 91.7 50.6 18.6 40.9 61.3 67.5 20.7   81.9 62.6 49.6 58.2 63.5 64.9 34.6 

Yes Value 77.2 92.5 50.2 15.9 49.9 62.5 67.9 19.8 
 

82.5 63.6 52.0 66.8 63.2 62.6 35.5 

  Improvement 1.1 0.8 -0.4 -2.7 9.0 1.2 0.4 -0.9 
 

0.6 1.0 2.4 8.5 -0.2 -2.3 0.9 

Average 

No Value 76.3 92.2 49.8 18.7 41.3 61.2 68.7 17.2   81.7 63.4 48.7 57.9 63.9 69.4 33.6 

Yes Value 77.5 93.1 49.5 17.4 51.4 61.6 68.6 16.1 
 

82.3 64.9 49.9 66.5 65.7 69.1 35.0 

  Improvement 1.2 0.9 -0.4 -1.4 10.0 0.4 -0.1 -1.1   0.5 1.5 1.2 8.6 1.8 -0.3 1.4 
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* L1: Single-family house; L2: Multi-family residential building; L3: Public facility & institution; L4: Mixed residential & 356 
commercial building; L5: Commercial & industrial building; L6: Park & open space; L7: Parking facility.  357 
 358 
Table 5  359 
Confusion matrices for land use classifications using the training sample dataset randomly selected by the random 360 
seed 611, based on nine common parcel features and all thirteen parcel features (including GSV-derived parcel 361 
features), respectively.   362 

Without GSV-

derived parcel 

features 

Reference truth data 

Class L1 L2 L3 L4 L5 L6 L7 Total User Accuracy (%) 

L1 11930 1993 62 548 70 39 58 14700 81.2 

L2 766 2035 89 280 34 1 6 3211 63.4 

L3 11 22 71 11 36 2 8 161 44.1 

L4 160 173 20 603 74 0 13 1043 57.8 

L5 10 12 85 33 368 2 45 555 66.3 

L6 25 7 4 1 12 186 50 285 65.3 

L7 8 1 3 2 28 32 29 103 28.2 

Total 12910 4243 334 1478 622 262 209 20058 
 

Producer Accuracy (%) 92.4 48.0 21.3 40.8 59.2 71.0 13.9     

Overall Accuracy: 75.9%  

With GSV-

derived parcel 

features 

Reference truth data 

Class L1 L2 L3 L4 L5 L6 L7 Total User Accuracy (%) 

L1 12094 2059 63 414 63 50 64 14807 81.7 

L2 647 1979 89 241 42 2 7 3007 65.8 

L3 11 17 68 7 33 1 10 147 46.3 

L4 120 167 24 779 85 1 11 1187 65.6 

L5 8 10 84 33 371 1 49 556 66.7 

L6 22 9 3 0 10 180 46 270 66.7 

L7 8 2 3 4 18 27 22 84 26.2 

Total 12910 4243 334 1478 622 262 209 20058 
 

Producer Accuracy (%) 93.7 46.6 20.4 52.7 59.6 68.7 10.5     

Overall Accuracy: 77.2%  

* L1: Single-family house; L2: Multi-family residential building; L3: Public facility & institution; L4: Mixed residential & 363 
commercial building; L5: Commercial & industrial building; L6: Park & open space; L7: Parking facility.  364 
 365 

4.2 Classification Results Using All Thirteen Parcel Features  366 

Fig. 10(a) shows the land use classification based on all the selected thirteen parcel features 367 

(including four GSV-derived features) from training samples randomly selected using the random seed 368 

number 611. Fig. 10(b) shows incorrectly classified land use class labels (also see Table 4). The average 369 

OA of land use classifications is 77.5%. Like the land-use classifications based on the nine parcel 370 

features, the single-family house land-use class has the highest producer’s and user’s accuracies. The park 371 

& open space class and the commercial & industrial building class have the second and third highest 372 

producer’s and user’s accuracies, respectively. Average producer’s and user’s accuracies for public 373 

facilities & institutions are 17.4% and 49.9%, respectively. Parking facilities show the lowest 374 

classification accuracies, with only 16.1% and 35% for average producer’s and user’s accuracies, 375 

respectively (Table 4).  376 

Although the contribution of GSV-derived parcel features to the average OA improvement is not 377 

much (only 1.2% or so) due to a variety of possible reasons (e.g., chosen method for automatic detection 378 

and recognition of texts from images, chosen extracted features), their contributions to the producer’s 379 

accuracy and user's accuracy of the mixed residential & commercial building class are quite high (10 380 

percentage points and 8.6 percentage points, respectively). Therefore, the producer’s and user’s 381 
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accuracies of mixed residential & commercial buildings are even higher than those of multi-family 382 

residential buildings after GSV-derived parcel features are incorporated into classification (Table 4). As 383 

Table 5 shows, given selected training samples with the random seed 611, producer’s and user’s 384 

accuracies for mixed residential & commercial buildings based on nine common parcel features are 385 

40.8% and 57.8%, respectively, and those based on thirteen parcel features (with GSV-derived parcel 386 

features) are 52.7% and 65.6%, respectively. According to the parcel boundaries data, there were 1478 387 

mixed residential & commercial buildings parcels. When only the nine parcel features were used as input 388 

features, 548 mixed residential & commercial buildings parcels were misclassified as single-family 389 

houses, and 280 were misclassified as multi-family residential buildings. With the four GSV-derived 390 

parcel features, 176 misclassifications were corrected, among which 134 were from misclassified single-391 

family house parcels and 39 were from misclassified multi-family residential building parcels (Table 5). 392 

 393 

 394 
Fig. 10.  (a) Land use classification based on all selected thirteen parcel features, including GSV-derived parcel features, and the 395 
training samples randomly selected using the random seed number 611. (b) Corresponding land use misclassification. 396 
 397 
4.3 Parcel Features Importance Evaluation 398 

The feature importance was evaluated by the depth of a feature used as a decision node in a tree. In 399 

other words, the top of the tree impacts a larger fraction of the input samples in terms of final 400 

classification than the bottom part of the tree (Pedregosa et al., 2011). The blue bars in Fig. 11 show the 401 

feature importance values of the thirteen parcel features in the random forest, along with their inter-trees 402 

variability values, which were calculated as STDs from feature importance evaluation of classifications 403 

based on 5 different random seeds. STD of building story numbers (PF-7), STD of building areas (PF-4), 404 

and number of buildings (PF-2) were the three least important features used in classification. Because in 405 

the study area parcels with single building are common, STD of building story numbers and STD of 406 

building areas are just zero and number of buildings is just 1 for most of parcels. Maximum of building 407 

areas (PF-3), percentage of total building area (PF-5), and parcel size (PF-1) are the three most significant 408 

features. The significance of PF-5 (percentage of total building area) may explain why both average of 409 

NDVI (PF-8) and STD of NDVI (PF-9) are also influential due to the fact that the latter are 410 

complementary to the former. Compared to other parcel features, in this study the selected parcel features 411 

derived from GSV images (PF-10 to PF-13) are not very significant in decision tree building. Detected 412 

text at a smaller horizontal field view angle is more important than that at a larger view angle. Referring 413 

to the results above, GSV-derived parcel features are only important in improving the classification 414 

accuracy of the mixed residential & commercial building parcels.   415 
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 416 

 417 
Fig. 11.  Average feature importance values for all thirteen parcel features, including parcel size (PF-1), number of buildings (PF-418 
2), maximum of building areas (PF-3), STD of building areas (PF-4), percentage of total building area (PF-5), maximum of 419 
building story numbers (PF-6), STD of building story numbers (PF-7), average of NDVI (PF-8), STD of NDVI (PF-9), length of 420 
detected text from fov 30 GSV image (PF-10), length of detected text from fov 45 GSV image (PF-11), length of detected text 421 
from fov 60 GSV image (PF-12), and index of English word from all detected texts (PF-13). 422 

 423 

    In order to further test the effectiveness of GSV for improving accuracy of land use classification 424 

under a complex megacity background, we made a comparison between land use classification based on 425 

only six relatively important common parcel features (no GSV-derived parcel features) and land use 426 

classification based on the six relatively important common parcel features and the GSV-derived parcel 427 

features (Table 6). Removing the three least important features (STD of building story numbers, STD of 428 

building areas, and number of buildings) only makes a small difference. Contributions of GSV-derived 429 

parcel features to the producer’s accuracy and user's accuracy of mixed residential & commercial 430 

buildings are still high (12.1% and 8.4%, respectively) (Table 6).  431 

 432 
Table 6  433 
Confusion matrices for land use classifications using the training sample dataset randomly selected by the random 434 
seed 611, based on six relatively important common parcel features (PF-1, PF-3, PF-5, PF-6, PF-8, and PF-9) and 435 
these important common parcel features plus GSV-derived four parcel features, respectively.   436 

Without 

GSV-

derived 

parcel 

features  

Reference truth data   

Class L1 L2 L3 L4 L5 L6 L7 Total 

User 

Accuracy 

(%)   

L1 11966 2011 62 542 73 47 63 14764 81.0 

 L2 740 2011 86 280 37 0 6 3160 63.6 

 L3 14 25 73 13 25 1 8 159 45.9 

 L4 153 177 23 607 78 1 11 1050 57.8 

 L5 6 12 82 34 371 2 49 556 66.7 

 L6 21 6 3 0 11 180 43 264 68.2 

 L7 10 1 5 2 27 31 29 105 27.6 

 Total 12910 4243 334 1478 622 262 209 20058 
 

 Producer Accuracy (%) 92.7 47.4 21.9 41.1 59.6 68.7 13.9       

Overall Accuracy: 76%    

With GSV-

derived 

parcel 

features  

Reference truth data   

Class L1 L2 L3 L4 L5 L6 L7 Total 

User 

Accuracy 

(%) 

User Accuracy 

Improvement 

(%) 

L1 12083 2026 59 399 64 47 64 14742 82.0 0.9 

L2 670 2014 90 252 40 1 7 3074 65.5 1.9 

L3 7 22 66 7 34 1 5 142 46.5 0.6 

L4 115 164 27 786 82 1 13 1188 66.2 8.4 
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L5 7 9 84 29 370 2 50 551 67.2 0.4 

L6 20 6 3 0 12 178 42 261 68.2 0.0 

L7 8 2 5 5 20 32 28 100 28.0 0.4 

Total 12910 4243 334 1478 622 262 209 20058 
 

 Producer Accuracy (%) 93.6 47.5 19.8 53.2 59.5 67.9 13.4 
  

 Producer Accuracy 

Improvement (%) 
0.9 0.1 -2.1 12.1 -0.2 -0.8 -0.5 

  

 
Overall Accuracy: 77.4%     

Overall Accuracy Improvement: 1.4%                   

* L1: Single-family house; L2: Multi-family residential building; L3: Public facility & institution; L4: Mixed residential & 437 
commercial building; L5: Commercial & industrial building; L6: Park & open space; L7: Parking facility.  438 
 439 

5. Discussion  440 

5.1 Land Use Classification in Megacity  441 

      The complexity of the megacity landscape may explain the relative low classification accuracies for 442 

some land use classes. For example, multi-family residential buildings in megacities are commonly single 443 

two-flat, three-flat, or four-flat buildings. In other sizes of cities, parcels for multi-family residential 444 

buildings tend to consist of a multi-story large building or a group of townhouses. Compared with the 445 

accuracies of public facility & institution in Wu et al. (2009) and Hu and Wang (2013), it is not surprising 446 

that the public facility & institution land use class has low classification accuracy in this study of a 447 

megacity using only remotely sensed data, because public facility & institution land use is mainly a social 448 

function. Parking facility is another land use class with very low accuracy, which may be caused by its 449 

confusing use definition. In reality, a garage, towing company, bus station or even an auto shop can be 450 

classified as parking facilities. Table 5 shows that among the 209 parcels for the parking facility class, 64 451 

parcels were misclassified as single-family houses, 49 parcels were misclassified as commercial & 452 

industrial buildings, and 22 parcels were misclassified as park & open space. Comparing land use 453 

information from the parcel boundary dataset to Google Maps shows that some parking facility parcels 454 

include garages, car towing services, car dealers, outdoor large parking lots, and small parking lots. This 455 

may explain most of the classification errors for parking facilities as due to their misclassifications as 456 

single-family houses, commercial & industrial buildings, and park & open space.   457 

 458 

5.2 Using Text Information from GSV Images in Land Use Classification 459 

Although the contributions of parcel features from GSV images to the producer’s accuracy and user's 460 

accuracy of the mixed residential & commercial building class are high (10 percentage points and 8.6 461 

percentage points, respectively), the average OA improvement for all classes is not very much because 462 

the impacted classes (mainly the mixed residential & commercial building parcels) account for a small 463 

proportion of all land use parcels. Although the single-family house class has a high accuracy, multi-464 

family residential building, public facility & institution, and parking facility together reduce the average 465 

OA. In addition, in reality, detected texts by GSV images can also include other kinds of signs other than 466 

shop signs on mixed residential & commercial buildings, such as car-relevant business signs, church 467 

signs, and day-care signs (Fig. 12).  This may explain why the user’s accuracy of public facilities & 468 

institutions is improved by just 1.8 percentage points on average (Table 4), and why there are only slight 469 

accuracy increases and decreases for other land use classes. In addition, because of the complexity, low 470 

quality, and varying brightness of GSV images, it is still challenging to automatically derive correct texts 471 

from GSV images. This is also considered as a major barrier to classifying land use based on detected 472 

texts, because OCR performs best only when the text is located on a uniform background and is formatted 473 

like a document. 474 

  475 
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 476 
Fig. 12. Detected texts from GSV images for public facilities & institutions. 

 477 

6. Conclusions  478 

A case study using parcel features, including GSV-derived features, for parcel-level urban land use 479 

classification in a megacity area is presented. This case study shows that: (1) parcel-based urban land-use 480 

classification in a megacity by RF classifier using airborne LiDAR, HRO, and GSV is capable of 481 

distinguishing single-family houses from other buildings at an average accuracy of over 90%, even with 482 

the complexity of a megacity landscape; and commercial & industrial buildings and park & open space 483 

also can have relatively high classification accuracies using these data in concert; (2) among the thirteen 484 

used parcel attributes, parcel size, maximum of building areas, percentage of total building area, average 485 

of NDVI, and STD of NDVI are the five most important parcel features for classification; (3) the parcel 486 

features derived from GSV images can largely contribute to the producer’s accuracy and user's accuracy 487 

of mixed residential & commercial buildings, with 10 percent and 8.6 percent improvement, respectively.  488 

Compared to previous relevant work, this study indicates that parcel-based urban land-use 489 

classification using only remotely-sensed data with RF classifier can produce accurate classification of 490 

single-family houses and relatively accurate classification of multi-family residential buildings, mixed 491 

residential & commercial buildings, commercial & industrial buildings, and park & open space on a 492 

megacity landscape. In particular, this study demonstrates that using text information derived from GSV 493 

images may be an important aid in distinguishing between some related land-use classes, particularly 494 

mixed residential & commercial building, and others.   495 

 496 
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