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Figure 1: Pareidolia Face Reenactment. We propose an unsupervised method for static illusory faces to become animated by reenacting

the human face in a video. The eyes and mouth of the illusory faces, as defined by users, move in tandem with those of the human in the

video, simultaneously.

Abstract

We present a new application direction named Parei-

dolia Face Reenactment, which is defined as animating a

static illusory face to move in tandem with a human face

in the video. For the large differences between pareido-

lia face reenactment and traditional human face reenact-

ment, two main challenges are introduced, i.e., shape vari-

ance and texture variance. In this work, we propose a novel

Parametric Unsupervised Reenactment Algorithm to tackle

these two challenges. Specifically, we propose to decom-

pose the reenactment into three catenate processes: shape

modeling, motion transfer and texture synthesis. With the

decomposition, we introduce three crucial components, i.e.,

Parametric Shape Modeling, Expansionary Motion Trans-

fer and Unsupervised Texture Synthesizer, to overcome the

problems brought by the remarkably variances on pareido-

lia faces. Extensive experiments show the superior perfor-

mance of our method both qualitatively and quantitatively.

Code, model and data are available on our project page1.

*Equal contribution.
†Corresponding author.
1https://wywu.github.io/projects/ETT/ETT.html

1. Introduction

It’s not often that you look at your meal to find it staring

back at you. But when Diane Duyser picked up her cheese

toastie, she was in for a shock. “I went to take a bite out of

it, and then I saw this lady looking back at me,” she told the

Chicago Tribune. “It scared me at first.” [1].

The phenomenon described in this BBC news is called

face pareidolia, a natural inclination of the human brain to

perceive illusory faces that do not actually exist [19, 50]. In

this work, we attempt to bring this interesting imagination

into reality by animating. As shown in Fig. 1 (b), we pro-

pose a new application direction named “Pareidolia Face”

Reenactment, which is defined as animating illusory faces

by the motion extracted from human faces automatically.

Pareidolia face reenactment, has large potential usages

in filmmaking [46, 24], cartoon production [53, 56] and

mixed reality [47, 55], which always requires a massive la-

bor of professional animators. Mostly related, face reen-

actment [13, 46, 25, 52] is becoming an emerging topic in

recent years. However, all of these methods are designed

specifically for human faces, of which rich priors like facial
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landmarks [54, 18] or 3D face models [46, 24] can be uti-

lized. But, all of these priors are unachievable for pareidolia

faces. Moreover, large-scale face datasets [5, 35] with mas-

sive annotations are sufficient for human faces, which are

also unreachable for pareidolia faces. Reenacting pareido-

lia faces by human portrait videos is still an open question.

The main challenges for pareidolia face reenactment can

be summarized into two large variances, i.e., shape variance

and texture variance. Shape variance means that the bound-

ary shapes of facial parts are remarkably diverse, such as

circular, square and moon-shape mouths as shown in Fig. 1

(a). For human faces, landmarks are always used as the in-

termediary to transfer motions [7, 18, 56]. However, land-

mark suffers from the tightly coupling with the shape/size

of facial parts. It cannot be used as the intermediary to per-

form a precise motion transfer from the source human face

to the target pareidolia face. The shapes of target faces will

be affected by the source ones’ easily. Also, it is difficult

to define the meaning of landmarks’ annotation for com-

plex shapes, e.g., the tree’s mouth in Fig. 1 (b). Thus, it

is challenging to design a universal shape representation to

transfer motion from human faces to pareidolia faces.

Texture variance means the textures of pareidolia faces

are remarkably diverse, such as wood, downy and metal tex-

tures as shown in Fig. 1 (a). Also, the texture distribution

of pareidolia faces is extremely discrete, since there is even

no two faces with a similar texture. For human face, pre-

vious works always deployed 3D facial models [46, 24] or

GAN-based generator [18, 54] in texture synthesis. How-

ever, there is no 3D face model that can be leveraged to

model pareidolia face. Also, for the GAN-based synthesis,

large-scale labeled datasets with landmark-image pairs are

always needed to train a generator [32, 52]. But, there exists

no dataset or annotation for pareidolia faces, which makes

the strong supervision with paired data out of action for tex-

ture synthesis. Thus, synthesizing the textures of pareidolia

faces is challenging, without a 3D model or annotated data.

In this work, we propose a novel Parametric Unsuper-

vised Reenactment Algorithm, to tackle the pareidolia face

reenactment problem. First, to solve the shape variance

challenge, we propose a Parametric Shape Modeling tech-

nique, in which we introduce Bézier Curve [9], a classic

parametric technology in computer graphics, to represent

the boundary shapes of facial parts of both the source and

target faces with a set of control points. With the para-

metric modeling of boundaries on target pareidolia face,

control points of the Bézier Curve can locally modify the

curve while keeping its global structure unchanged, even

with large shape variance.

With the robust shape representation, a naı̈ve solution to

transfer motion is to directly adapt the human face’ control

points to the pareidolia face. However, the transferred mo-

tion so far only decides the movement of the facial bound-

aries of the pareidolia face, which is a local motion and

cannot be used to drive the whole face. Thus, we pro-

pose an Expansionary Motion Transfer technique to get a

global motion representation named motion field for a nat-

ural animation, in which a Motion Spread strategy is de-

signed to propagate the transferred motion from boundary

to the whole face and a First-order Motion Approximation

strategy is designed to refine the motion field further.

While the motion has been successfully transferred, the

next step is to use the motion field to deduce an image with

high-quality textures. Reviewing the challenge of texture

variance, we propose an Unsupervised Texture Synthesizer

to address it in an AutoEncoder framework with a carefully

designed Feature Deforming Layer. High-quality textures

can be synthesized successfully, while neither 3D model,

nor large-scale face datasets with annotations are needed.

We summarize our contributions as follows: 1) We make

the first attempt to animate pareidolia faces by the facial

motion derived from the human faces. 2) We propose a

novel Parametric Unsupervised Reenactment Algorithm to

tackle pareidolia face reenactment, with three crucial com-

ponents, i.e., Parametric Shape Modeling, Expansionary

Motion Transfer and Unsupervised Texture Synthesizer. 3)

Extensive experiments present the superior performance of

our method and the effectiveness of each component.

2. Related Work

2.1. Face Reenactment

Face reenactment refers to transferring motion patterns

from one face to another one, including both graphics-

based [45, 2] and learning-based [18, 22, 32, 43] methods.

The former mainly relies on 3DMMs [4]. Benefiting from

the face fitting capacity of 3DMMs, recent methods, e.g.

Face2Face [46] and DVP [25], can reenact a given face by

adjusting the fitted parameters. Nevertheless, 3DMMs, de-

signed for human faces, are inapplicable to our pareidolia

faces. The latter mainly resorts to Deep Neural Networks

(DNNs). Thanks to the powerful expression capacity of

DNNs, GAN [16]-based methods [21, 40, 10, 12, 11, 49]

like ReenactGAN [52] can achieve face reenactment via

learning a mapping from a source face to a target one. How-

ever, these methods usually require a large amount of paired

training data, which are unavailable in our task. Further-

more, apart from reenacting human faces, there are also

some methods try to animate non-human faces, such as the

cat face [51, 33] or the cartoon face [56]. Recent audio-

driving method [56] animates cartoon faces while their

labeled 68 facial landmarks correspond to human faces.

These methods are all driven by facial landmarks, which

are inapplicable in our pareidolia face reenactment task.
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Figure 2: Parametric Unsupervised Reenactment Algorithm. We separate the proposed algorithm into three components: (a) Parametric

Shape Modeling. First, we model the facial boundary of three kinds of faces on the left-most column, with Bézier Curve fitting. Then

the facial boundaries can be represented as a set of control points. By simply adapting the motion controller inferred from the human and

FLAME face, we can get the animated control points of the pareidolia face P′. (b) Expansionary Motion Transfer: The animated control

points are then converted into an optical flow map as motion seeds, which represent a local motion of the target pareidolia face. Motion

Spread and First-order Motion Approximation are proposed to extend the local motion seed to a global motion field Me. (c) Unsupervised

Texture Synthesizer: With the motion field and the raw pareidolia face as conditions, we can synthesize the final animated pareidolia face.

2.2. Geometric Shape Modeling

There are two means to model facial geometric shape:

implicit or explicit modeling. The former directly disen-

tangles shape representations from faces via elaborately de-

signed networks and training manners [48, 27, 6]. The lat-

ter leverages extra auxiliary models to present facial shape

information, e.g. facial landmarks [21, 54, 14] or 3D pa-

rameters [44, 41]. Bézier curves are a very popular tool

in computer-aided design [15], computer graphics and in-

teractive curve design [36]. Recently, Bézier curves are

incorporated with deep learning methods like CNNs [26]

and GANs [16] in tasks includes parametric skeleton extrac-

tion [30] and sketch generation from human drawing [42].

In this paper, we explore the application of Bézier curves in

modeling the boundary of facial parts.

3. Methodology

The architecture of our proposed method is shown in

Fig. 2, which is separated into three main components:

Parametric Shape Modeling, Expansionary Motion Transfer

and Unsupervised Texture Synthesizer. First, we extract the

boundaries of both human and pareidolia faces. We build a

robust shape model for the facial boundaries based on the

Bézier Curve and represent the motion as the Motion Con-

troller (Sec. 3.1). Then, we get an optical flow map named

motion seed to represent the transferred local motion at the

facial boundaries. In order to animate the whole pareido-

lia face, we propose Motion Spread and First-order Motion

Approximation strategy to induce a global motion represen-

tation named motion field. (Sec. 3.2). At last, we propose

an unsupervised network with a carefully designed Feature

Deforming Layer to synthesize high-quality animated tex-

ture conditioned on the static pareidolia face and the motion

field. (Sec. 3.3)

3.1. Parametric Shape Modeling

Reviewing the remarkable shape variance exists in facial

parts’ shapes of human and pareidolia faces. Bézier Curve

can be edited locally while remain the whole structure.

Thus, we introduce it to robustly model the shapes of fa-

cial parts. In this section, we first describe the Shape Mod-

eling of facial boundaries in detail, then introduce Motion

Controller, the motion representation based on our shape

modeling fashion.

Shape Modeling by Bézier Curves. Composite Bézier

Curve [38], defined as a piecewise Bézier Curve [9], is ex-

ploited to fit the facial boundaries since composite Bézier

Curves can freely model complex boundary and each of

its control points can regulate the curve locally and do not
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break the curve’s global structure.

As shown in Fig. 2, to represent the human face’s shape

independent of the face scale and rotation, we use the tem-

plate alignment algorithm [37] to affine the human face

H to the referred generic head model F of FLAME [28].

The aligned facial boundaries will be used for the follow-

ing shape modeling. In Fig. 3, we illustrate the procedure

of shape modeling for human facial parts in detail. First,

by connecting inferred 68 3D landmarks [17] of the human

face H we obtain facial parts’ boundaries SH = {CH
i }

N
i=1

composed of NH branches. For example, the mouth bound-

ary can be divided into four branches: inner and outer con-

tours of upper and lower lips. Then, each branch CH
i is fit-

ted by a single hi-order composite Bézier Curve BH
i param-

eterized by hi + 1 control points PBi

H = {(x̂i
j , ŷ

i
j , ẑ

i
j)}

hi

j=0,

where (x̂i
j , ŷ

i
j , ẑ

i
j) represents 3D coordinates of each con-

trol point. Please refer to the supplementary material about

the single n-order composite Bézier curve fitting. Thus,

all branches of SH can be parameterized as control points

PH =
⋃N

i=1 P
Bi

H . At last, we conduct a similar proce-

dure on the referred FLAME head model F and the bound-

aries SF = {CF
i }

N
i=1 are parameterized as control points

PF =
⋃N

i=1 P
Bi

F =
⋃N

i=1{(x̄
i
j , ȳ

i
j , z̄

i
j)}

hi

j=0. For a pareido-

lia face, we manually label its boundaries SP = {CP
i }

NP

i=1

composed of NP branches and they are parameterized of

control points PP. By now, we get control points of facial

parts’ boundaries for H, F and P as PH, PF, PP respec-

tively, which is used for the following motion controller’s

calculation.

Motion Controller. Our motion representation extracted

from human face, denoted asMS, is defined as position of

control points PH relative to PF as follows:

MS =

N⋃

i=1

{(
x̂i
j

x̄i
j

,
ŷij

ȳij
,
ẑij

z̄ij
)}hi

j=0, (1)

MS will animate boundaries of pareidolia faces SP and it is

called as motion controllers in Fig. 3. In general, boundary

branches of a pareidolia face are a subset of those of a hu-

man face, e.g., NP ≤ N . Because some facial parts of the

pareidolia face such as nose and jawline are hard to define

and only the observed facial parts are adopted, e.g., eyes and

mouth in Fig. 2. First, for simplicity, we assume that the i-th
boundary branch of P is corresponding to the i-th bound-

ary branch of H. We parametrize the boundaries SP by

control points PP =
⋃NP

i=1 PBi
=

⋃NP

i=1{(x
i
j , y

i
j , z

i
j)}

ti
j=0,

where NP is the branch number and ti is the curve order

of the i-th branch. Then, we note that the shape of curve

Bi (pareidolia face) might greatly differ from the shape of

corresponding curve BH
i (human face), e.g., the number of

control points differs (ti 6= hi). Thus, we uniformly remove

(when ti < hi) or linearly interpolate (when ti > hi) the

ordered motion controllers of the curve BH
i inMS and de-

Figure 3: Parametric Shape Modeling. The boundaries of hu-

man face (SH) and pareidolia face (SP) are parameterized as con-

trol points of composite Bézier curves. For simplicity, we use the

mouth as an example in SH.

note the adapted motion controllers asMe
S. At last, facial

parts of pareidolia face are animated by applying the motion

controllersMe
S on their control points PP as follows:

P ′
P =Me

S ⊗ PP =

NP⋃

i=1

{(
x̂i
j

x̄i
j

xi
j ,
ŷij

ȳij
yij ,

ẑij

z̄ij
zij)}

ti
j=0, (2)

where ⊗ is point-wise dot product and P ′
P is the control

points of the boundaries animated by motionMe
S.

3.2. Expansionary Motion Transfer

Now we transfer the motion at the facial boundaries by

animated control points of composite Bézier curves in the

pareidolia face. However, the transferred motion is local

and a global motion of the whole face is required to ani-

mate a pareidolia face. Thus, we develop a Motion Spread

strategy to expand the motion at the boundaries to the whole

face. Moreover, we find that the texture animated by the ex-

panded motion contains missing pixels as shown in Fig. 5

(a). We will detail the cause and then propose the First-

order Motion Approximation to address it.

Motion Spread. The motion at curve Bi, denoted asMe
Bi

,

is defined by the optical flow map of points on composite

Bézier Curves parameterized by PP and P ′
P. We call the

facial motion at each boundary branch of facial parts, e.g.

Me
Bi

, as the motion seed. Then {Me
Bi
}NP

i=1 is called as mo-

tion seeds as shown in Fig. 2. Each composite Bézier curve

Bi is related to a motion seed Me
Bi

in the pareidolia face

P. Note that the motion seeds only define a very local mo-

tion at the facial boundaries, we develop a Motion Spread

strategy to derive the facial motion of the whole pareidolia

face.
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Figure 4: (a) motion spread. A motion Me
Bi(1,τi)

of the mo-

tion seed at Bi spreads to Bi(ωi, τi) as motion MBi(ωi,τi). (b)

motion combine. At pixel p, we combine spreaded motion from

motion seeds at B1, B2.

Our Motion Spread strategy decays motion seeds along

the directions orthogonal with their composite Bézier

curves as shown in Fig. 4 (a). Each motion seedMe
Bi

rep-

resents the motion of all points on curve Bi. We expand

the curve Bi to different scales to cover its neighboring

area. If a pixel position p locates at the relative position

τi (τi ∈ [0, 1]) of ωi-time scaled curve Bi, we can represent

it as p = Bi(ωi, τi). Then, the decayed motionMe
Bi(ωi,τi)

from the motion seedMe
Bi

can be written as follows:

Me
Bi(ωi,τi)

= λ(ωi) · M
e
Bi(1,τi)

, Me
Bi(1,τi)

∈Me
Bi
, (3)

where · means scalar multiplication and the motion decay

factor λ(ωi) is determined by ωi as presented in the supple-

mentary material. One pixel p in the pareidolia face might

receive decayed motion from several motion seeds. There-

fore, we calculate the motion at p by motion combine. The

motion at p, denoted as Me
p, is the combination of these

decay motion as shown in Fig. 4 (b).

To animate the pareidolia face P, a global motion for the

whole pareidolia face is built from the motion seeds through

our proposed Motion Spread strategy. Such a global motion

is constituted by the motion ofMe
p for all p ∈ G(P), where

G(·) is a function that returns the pixel grid of the input

image. We call it as motion field and denote it as Me =
{Me

p}p∈G(P). Then, for a pixel at p in the pareidolia face,

the motion field can animate it to a new location Me
p +

p (∀p ∈ G(P), Me
p ∈M

e) by the motion fieldMe.

First-order Motion Approximation. The motion fieldMe

can be used to animate the pareidolia face P as the reen-

acted face P′. If we regard Me as a function G(P) →
G(P′), then it is neither an injection nor a surjection since

multiple pixel locations in G(P) might be mapped to one

pixel location in G(P′). Thus, directly using Me to an-

imate P will cause some missing pixels in P′ as shown

in Fig. 5 (a). To solve this problem, we introduce the in-

verse function of Me, denoted as
←−−
Me : G(P′) → G(P)

since
←−−
Me do not have valid function value at the locations

Figure 5: First-order Motion Approximation. (a) A practical

example of missing pixels after directly applying the motion field.

(b) Motion field represents the motion of G(P) → G(P′). The

pixel inside the hole Ω move outward. (c) Inverse motion field

misses valid values inside Ω and the proposed First-order Motion

Approximation is used to approximate them.

of missing pixels. Thus, our goal is to inpaint the
←−−
Me and

we propose our First-order motion approximation.

To illustrate the First-order Motion Approximation, we

take a typical case in Fig. 5 (b) where all pixels in the area

Ω move outward. At first, we call
←−−
Me as inverse motion

field since it defines the pixel movements opposite to that

of the motion field. Then, in Fig. 5 (c),
←−−
Me does not con-

tain valid function value in the area Ω ⊂ G(P′). At last,

since close pixels will have similar motion, we propose the

First-order Motion Approximation for
←−−
Me to spread facial

motion from the area boundary Ω̄ to the area Ω. Specially,

We compute the first-order Taylor expansion of
←−−
Me around

the area boundary pixel p̄ ∈ Ω̄ as follows:

←−−
Me(p̄+∆p) =

←−−
Me(p̄) + (

d

dp

←−−
Me(p)|p=p̄)∆p+ o(||∆p||), (4)

where p̄+∆p is a nearby pixel of the boundary p̄. We omit

o(||∆p||) of Eq. (4) to approximate
←−−
Me(p̄+∆p). We con-

duct Eq. (4) for all missing pixels in
←−−
Me and the enhanced

inverse motion field is denoted as
←−−
ME . The motion approx-

imation along ∆p can be viewed in Fig. 5 (c).

3.3. Unsupervised Texture Animator

While we get the inverse motion field, the final step is to

synthesize the image result conditioned on the raw pareido-

lia face P and the inverse motion field. Reviewing the ab-

sence of large-scale datasets and annotations for pareidolia

face, we propose an AutoEncoder based Unsupervised Tex-

ture Animator. Specifically, we first train a simple AutoEn-

coder with only natural images without any annotation. The

trained AutoEncoder can be seen as a texture reconstructor

by now, which can reconstruct the input texture but can-

not animate it. To this end, we design a Feature Deforming

Layer, which is coupled with the AutoEncoder network, to

transfer the motion to texture progressively. Note that Fea-

ture Deforming Layer is only used in the inference stage,

which makes the training unsupervised and enjoys the di-

versity of large-scale datasets of natural images.
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Figure 6: (a) Unsupervised Texture Animator. Training and test-

ing phases of our Unsupervised Texture Animator. (b) Feature

Deforming Layer. For simplifying the understanding, we visual-

ize the feature maps Pn,P
′

n,P
′

n−1 using the tree texture images.

Unsupervised AutoEncoder. We train an unsupervised

AutoEncoder G to extract image features at different scales

as shown in Fig. 6. During the training phase, an image I is

fed into G to produce reconstructed image G(I). We apply l1
reconstruction loss Lrec and perceptual loss [23] Lvgg on I

and G(I). The loss function of G is LG = α1Lrec+α2Lvgg ,

where α1 and α2 are set empirically. We put the network

details in the supplementary material.

Feature Deforming Layer. The pareidolia image features

Pn of the scale H/2n ×W/2n can be retrieved from layer

Dn in the pretrained G. During the testing phase, in Fig. 6,

we design the Feature Deforming Layer Fn to warp the

synthesized features P′
n by the downsampled motion field

←−−
ME

↓2n and refine it by Dn. Thus, the texture is progres-

sively synthesized by F3,F2,F1. At last, since some pixels

of P do not move in P′. A 0-1 motion mask M is calculated

based on
←−−
ME to keep the texture at these pixels unchanged.

The motion mask M is defined as M = ✶(
←−−
ME −MI),

where ✶ is an indicator function that returns 0 if the input

is 0 and returns 1 elsewise, and MI is an identity motion

field that do not move any pixel of P. Thus, the texture

refinement of layer Fn is written as:

P′
n−1 = Fn(Pn,P

′
n,
←−−
ME

↓2n ,M↓2n), (5)

where M↓2n is obtained by downsampling the mask M (2n

is the scale factor) through the mask update method in Par-

tialConv [31]. In Eq. (5), P′
3 is our coarsest texture pro-

duced by the encoder of G. By the progressive warp and

refine, we get P′
0 = P′ as our final synthesized pareidolia

face with the same motion of the human face video.

4. Experiments

We show qualitative and quantitative results on the gen-

erated videos of pareidolia faces to demonstrate the perfor-

mance of our reenactment method for pareidolia faces and

the effectiveness of the proposed components.

Datasets. During the training phase, the AutoEncoder G
is trained on the COCO2017 dataset [29]. During the test-

ing phase, the human portrait videos include videos from

Obama Weekly Address [43] and CelebVox2 [8]. Moreover,

we collect a dataset PareFace, which includes 1, 000 parei-

dolia faces to facilitate future researches on this topic. More

samples can be viewed in our supplementary material.

Metric. We evaluate videos of the animated pareidolia

faces in terms of textures and the shape/motion of facial

parts. We use IS [3], FID [20] to evaluate the synthesized

texture quality. Due to the lack of metrics about evaluating

the shape and motion differences between human and parei-

dolia faces. We design the following metrics to evaluate the

shape similar and motion accuracy: 1) Shape similarity

(S-Sim). Following [34], we use the eccentricity histogram

of a shape as its descriptor. The cosine distance is used to

measure the similarity between two shapes. 2) Close-open

accuracy (CO-Acc). To measure the extreme motion ac-

curacy of the mouth and eyes, we compare their open/close

status. The CO-Acc is defined as the average difference of

the mouth/eyes open ratio between input human and ani-

mated pareidolia faces, where the open ratio is expressed as

a percentage of the maximum height of the mouth/eyes. 3)

Motion accuracy (M-Acc). To measure the overall motion

accuracy of the mouth and eyes, we compare their tenden-

cies of becoming larger/smaller. We use 0-1 flags to denote

if the area becomes larger or smaller in the next frame. The

flag serves as a motion indicator and we compare its average

differences between human and pareidolia faces.

4.1. Pareidolia Face Reenactment

We use a human portrait video to drive a given pareidolia

face and present visual results in Fig. 7. It can be seen that

the generated pareidolia face imitates the motion of the in-

put human face at the mouth and eyes areas, even the subtle

size changing. Benefits from our parametric shape model-

ing, the prominent motion at facial parts is transferred from

the human to pareidolia face. Our Motion Spread strategy

makes it possible to animate the area around facial parts

and make the whole pareidolia face looks more lively. Even

large texture discrepancy exists between human and parei-

dolia faces as shown in Fig. 8 (a), where the distribution of

pareidolia faces’ texture is more discrete than that of hu-

man faces. We recommend to view reenactment results in

the supplementary video.
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Figure 7: Pareidolia Face Reenactment. In each block, we use the human face portrait video in the first row to drive pareidolia faces in

the second and third row. Our method mainly focuses on facial motion transferring at the mouth and eyes.

Figure 8: (a) t-SNE of texture features of human and pareidolia

faces. The texture feature is extracted by VGG16 [39] pre-trained

on ImageNet. (b) Effect of Motion Spread Strategy. Com-

parison of animated results before and after applying the Motion

Spread strategy.

4.2. Ablation Study

In this section, we present an ablation to evaluate the ef-

fectiveness of our proposed components. First, we man-

ually label “landmarks” for pareidolia faces and use them

to replace the control points of composite Bézier curves

to validate the effect of our parametric shape modeling

(Sec. 4.2.1). Then, we show the decisive role that the Mo-

tion Spread strategy plays in the pareidolia face animation

(Sec. 4.2.2). In addition, we compare the texture quality

improvement brought by our First-order Motion Approxi-

mation (Sec. 4.2.3). At last, we progressively add our pro-

posed Feature Deforming Layers (F1,F2,F3) in the Un-

supervised Texture Animator to visualize the progressively

refined textures (Sec. 4.2.4).

4.2.1 Composite Bézier Curve v.s. Landmarks

To valid the superiority of incorporating composite Bézier

curves, we compare our method with the one that replaces

the control points of composite Bézier curve with the man-

ually labeled “landmarks” for pareidolia faces. We present

Figure 9: Composite Bézier Curves v.s. Landmarks. Our

proposed representation motion controllers inspired by compos-

ite Bézier curve is better than landmarks in reenacting pareidolia

faces.

the qualitative results in Fig. 9. We can see that the facial

parts’ global shape is broken when landmarks are applied

while our method preserves them well. Also, the reenact-

ment results produced by our method also imitate the facial

motion of the human face better (the eyes’ motion of the left

man in Fig. 9). To quantitatively compare the shape similar,

motion accuracy and image quality, we present Tab. 1 (a)

and Tab. 1 (b) that compare the results of driving by land-

marks and composite Bézier curves. Compare with land-

marks, modeling facial parts by composite Bézier curves

are better at preserving the facial parts’ global shapes, imi-

tating the motion of human faces and the synthesized image

visual quality.

4.2.2 Effect of the Motion Spread Strategy

We propose the Motion Spread strategy to obtain the motion

filed that defines the global motion of the pareidolia face

from the motion seeds that only define the motion of facial

parts’ boundaries. As shown in Fig. 8 (b), only the pixels at
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Table 1: (a) Shape similarity and motion accuracy of Motion

Controllers v.s. Landmarks. In the table, ’m’ means mouth and

’e’ means eyes. (b) Visual Quality Comparison. The IS and

FID of images synthesized by different settings are compared. In

the ‘landmark’, we use labeled landmarks of pareidolia faces in-

stead of composite Bézier curves. In the ‘w/o motion appr.’, we

do not apply the First-order Motion Approximation. In the ‘Ours’,

the Unsupervised Texture Animator applies the network structure

F2,F2,F3.

(a) Method landmark
composite

Bézier curve

S-Sim(m) 0.43 0.75

S-Sim(e) 0.55 0.82

CO-Acc(m) 0.52 0.76

CO-Acc(e) 0.71 0.82

M-Acc(m) 0.77 0.84

M-Acc(e) 0.80 0.89

(b) Method IS FID

landmark 8.21 13.1

F1,D2,D3 8.79 12.9

F2,F2,D3 8.89 12.5

w/o motion appr. 9.17 12.3

Ours 9.22 12.3

Figure 10: Effect of First-order Motion Approximation. The

texture synthesized by our Unsupervised Texture Animator when

our proposed First-order Motion Approximation is applied (b) or

not (a).

facial boundaries are animated without the Motion Spread

strategy, which presents failed animation results. Benefiting

from the Motion Spread strategy, we can animate the whole

pareidolia face.

4.2.3 Effect of the Motion Approximation

Our First-order Motion Approximation is designed to ap-

proximate the missing motion in the inverse motion field.

Thus, the quality of the synthesized textures is improved

after introducing this motion approximation method, as

shown in Fig. 10. Some pixel-level visual artifacts in Fig. 10

(a) are caused by the missing value in the inverse motion

field, thus the original pixels are remained. They are obvi-

ously eliminated after applying our First-order Motion Ap-

proximation. We also present the quantitative results of im-

age quality in Tab. 1 (b). Both IS and FID are slightly im-

proved after applying our motion approximation method.

Figure 11: Effect of the Feature Deforming Layers. (a) We di-

rectly use the inverse motion field to animate the pareidolia face.

(b-d) The texture quality of animated pareidolia faces is progres-

sively improved by our Feature Deforming Layers.

4.2.4 Effect of the Feature Deforming Layer

Directly applying the inverse motion field usually induce

blurred synthesized textures. Our Feature Deforming Lay-

ers in the Unsupervised Texture Animator benefits the tex-

ture synthesis by progressively warp and refine the input

pareidolia faces. We present the textures synthesized by

each Feature Deforming Layer in Fig. 11 where we can see

that the synthesized textures become more and more clear

after we add F1,F2,F3 layer by layer. We also present the

quantitative results of image quality in terms of IS and FID

in Tab. 1 (b) where both metrics are improved if more Fea-

ture Deforming Layers are applied.

5. Discussion

In this paper, we make the first attempt on pareidolia face

reenactment, which might benefit the cartoon production

and mixed reality in the future. We present a Parametric

Unsupervised Reenactment Algorithm to tackle this chal-

lenging problem and demonstrate superior reenactment re-

sults in the experiments.

Pareidolia face reenactment is an extremely challenging

problem that might fail when meet extreme head poses,

complex shapes and textures of the pareidolia faces. Our

method mainly focuses on transferring the motion of eyes

and mouth from human faces to the frontal pareidolia faces.

We leave the motion transferring of other facial parts (e.g.

nose and facial muscles), the head movement and animating

non-frontal pareidolia faces as our future works.
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Hans-Peter Seidel, Thabo Beeler, Christian Richardt, and

Christian Theobalt. Neural style-preserving visual dubbing.

TOG, 38(6):1–13, 2019.

[25] Hyeongwoo Kim, Pablo Garrido, Ayush Tewari, Weipeng

Xu, Justus Thies, Matthias Niessner, Patrick Pérez, Christian
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