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Abstract: Subdural hemorrhage is a key imaging finding in cases of abusive head trauma and one
that many radiologists and radiology trainees become familiar with during their years of training.
Although it may prove to be a marker of trauma in a young child or infant that presents without a
history of injury, the parenchymal insults in these young patients more often lead to the debilitating
and sometimes devastating outcomes observed in this young population. It is important to recognize
these patterns of parenchymal injuries and how they may differ from the imaging findings in other
cases of traumatic injury in young children. In addition, these parenchymal insults may serve as
another significant, distinguishing feature when making the medical diagnosis of abusive head injury
while still considering alternative diagnoses, including accidental injury. Therefore, as radiologists,
we must strive to look beyond the potential cranial injury or subdural hemorrhage for the sometimes
more subtle but significant parenchymal insults in abuse.

Keywords: abusive head trauma; child abuse; hypoxic-ischemic injury; computed tomography;
magnetic resonance imaging

1. Introduction

Child physical abuse and neglect fatality rates have continued to increase over the
past several years, with almost 70% of fatalities involving children less than age 3 years and
just under half occurring in infants and young children less than age 1 year [1]. Abusive
head injury is a serious form of child physical abuse and is the leading cause of deaths
in physically abused children [2]. In survivors, it often results in significant morbidity
with permanent neurologic and developmental disabilities [3,4]. Even those patients with
apparent minor injuries at presentation may be left with long-term altered behavioral or
academic outcomes [4].

Neuroimaging plays a key role in the diagnosis and subsequent evaluation of children
with abusive head injury. Since patients may present with little to no outwards signs of
trauma, it is imperative that radiologists be familiar with the imaging findings, reported
controversies [5], as well as correlate the imaging with the clinical and historical presenta-
tion while also contemplating alternative explanations, such as infections, metabolic and
bleeding disorders, and especially accidental injury. Although child abuse pediatricians are
usually familiar with the imaging features of abusive head injury and child physical abuse,
in my experience, I find that radiology trainees often have limited knowledge of the imag-
ing findings beyond subdural hemorrhage and some of the more classic skeletal injuries.
Although sometimes simplified and referred to as the “triad” of findings in abusive head
injury, which includes subdural hemorrhages, retinal hemorrhages, and encephalopathy,
these patients can be complex, with the medical diagnosis of abusive head trauma [5,6] not
only limited to this “triad”. However, these features remain key for arriving at a potential
diagnosis [7].

Subdural hemorrhage is the most frequent intracranial finding in abusive head
injury [8–11] and is reported to occur in over 80% of cases [10–13]. Post-traumatic subdural
hemorrhage occurs more commonly following abusive rather than accidental head injuries
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in infants and young children [14–22]. In a systematic review identifying features that aid
in distinguishing abusive from accidental head injuries in young children, Kemp et al. [22]
found subdural hemorrhage to be significantly associated with abusive head injury, po-
tentially serving as a marker of trauma when a child presents with unexplained head
injuries or injuries that are out of proportion to only minor trauma reported by a caretaker.
In addition to subdural hemorrhage, multifocal or diffuse brain parenchymal insults in
patterns suggesting hypoxic-ischemic brain injury and cerebral edema were also identified
as key features favoring abusive rather than accidental head injury [22]. In abused patients,
these diffuse parenchymal insults are accompanied by subdural hemorrhage but are less
commonly seen in children presenting with fractures [23]. Clinically, these patients more
commonly present with an increased frequency of seizures, requirement of intubation [24],
and hypotension/hypoperfusion and/or hypoxia [23] in comparison to abused patients
with more focal brain injury.

These diffuse parenchymal insults may be elusive and difficult to detect on early
CT imaging, the modality most frequently utilized for initial evaluation. Therefore, it is
imperative that radiologists look beyond the potential cranial injury and extra-axial hemor-
rhage that might serve as a marker for trauma in these young patients, searching for these
parenchymal insults that may be very subtle and potentially missed on initial imaging but
are frequently the most devastating and may serve as a means to help distinguish inflicted
from accidental head injury [22]. In addition, they strongly contribute to the significant
morbidity and numerous fatalities observed in abusively head-injured patients [22,24–27].
Because of these reasons, in my practice, I stress to the radiology trainees the importance of
recognizing these parenchymal insults and encourage them to take a second look beyond
the often more obvious subdural hemorrhage.

2. Patterns of Diffuse Parenchymal Insults

Diffusion-weighted imaging (DWI) is a key sequence in magnetic resonance imag-
ing (MRI), and its indications have reached far beyond its early application in detecting
cytotoxic edema in the clinical setting of stroke. In cases of abusive head injury, DWI is
invaluable in the detection of associated brain parenchymal injuries and has been shown
to demonstrate more extensive parenchymal injury [26,28] than might be detected on con-
ventional T1, T2, or FLAIR sequences. Several authors [24–29] have evaluated the utility
of DWI in abused infants and described various imaging patterns that may be observed,
including diffuse hemispheric involvement of the brain, the most commonly observed
pattern. Although presumed to be at least partially hypoxic-ischemic in etiology, the precise
nature and pathophysiology behind this pattern of diffusion restriction in this population of
infants and young children remains incompletely understood and debated. A recent letter
to the editor by Silverman et al. [30] challenged the use of the term hypoxic-ischemic injury
(HII) when describing the often-large areas of parenchymal abnormality and associated
diffusion restriction frequently seen on MR imaging in abusive head injury. The authors
advocate for a more basic terminology, cytotoxic edema, as this avoids the assertion that
the underlying cause of parenchymal injury in these patients is just hypoxic-ischemic
injury. However, Orru’ et al., as pointed out in their response, described multiple injury
patterns in their initial study [27], including those that result from direct injury to the brain
(contusions and axonal injury) that also result in cytotoxic edema on MRI. Hence, at this
point in our understanding, although the exact mechanism of injury at a cellular level
might be incompletely understood as well as why some abused children present with this
diffuse, hemispheric pattern of injury [23] while others do not, the injury, at least in part, is
thought to be hypoxic-ischemic [24–29,31–33]. Argument aside, this discussion and lack
of complete understanding of this complex process, however, should not detract from the
necessity of physicians to recognize these parenchymal insults as being present in abusive
head trauma patients.

These diffuse, hemispheric patterns of injury/insult are observed in abusive head
injury much more commonly than in cases of accidental pediatric head trauma [22,24], sug-
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gest permanent brain injury, and portend a poor outcome [22–24] (Figure 1). Except in cases
of significant accidental trauma, such as pedestrians hit by cars or motor vehicle accidents,
this type of injury is not found in children with more routine, household injuries [34], such
as a short fall from a couch. In a comparative study looking at DWI in young children with
abusive (n = 30) and accidental (n = 22) injuries, Ichord et al. [24] found that patients in their
series with abusive injuries much more commonly demonstrated a pattern of restricted
diffusion concerning for hypoxic-ischemic injury than those suffering accidental injuries
(37% versus 9%). Nine of thirty abused patients demonstrated a predominantly diffuse
pattern of parenchymal injury with a coexistent, small-volume subdural hemorrhage or
other traumatic lesion compared with only 1/22 of accidental cases. Their patients with
these diffuse insults tended to be younger in age, had greater acute and chronic neurologic
abnormalities, and a higher likelihood of requiring longer-term inpatient rehabilitation.

In another study, Zimmerman et al. [25] evaluated DWI in 33 abused infants and
young children. The most common pattern of parenchymal insult, found in 13/33 (39%)
patients, was of diffuse, restricted diffusion of the supratentorial cortex and white matter.
Combined with their second most common pattern, which was present in 12/33 (36%),
that of a more watershed or border zone distribution of restricted diffusion with primarily
supratentorial but also infratentorial involvement, almost three-quarters of their patients
had parenchymal imaging patterns suggesting diffuse hypoxic-ischemic injury/insult and
resulting in permanent brain injury. These areas of restricted diffusion were not limited to
isolated vascular distributions and were more extensive than focal impact or contusional
injuries Figure 2.

Kadom et al. [29] evaluated 64 young children initially referred for suspected abuse
with both cervical and brain MRI studies. Forty-five percent (29/64) of the total cohort had
brain parenchymal diffusion abnormalities on MR. Fifty-five percent with diffusion abnor-
malities on MR (16/29) had a pattern suggesting a diffuse and symmetric hypoxic-ischemic
insult, with 12/16 (75%) of those having a coexistent cervical spine injury. Abusive injury
was diagnosed in 88% (14/16) of cases with a bilateral and diffuse parenchymal pattern and
in 10/12 (83%) of cases with this parenchymal pattern and coexistent cervical spine injury.
This coexistence of spinal injuries on MR, including spinal subdural hemorrhage, has been
demonstrated by multiple other authors [35–38] and is likely being increasingly recognized
on imaging, as recent trends advocate for whole-spine MRI in children presenting with
concerns of abusive head injury.

In a more recent investigation, Orru’ et al. [27] reported on 57 abused patients less than
age 5 years and described two predominant patterns of parenchymal injury including large
areas of primarily cortical and subcortical restricted diffusion or a diffuse cortical and deep
gray matter insult, each consistent with cytotoxic edema and presumed hypoxic-ischemic
injury and present in 70% of their DWI-positive patients (36.8% of the total abuse cohort).
In-hospital deaths occurred in twenty percent of cases (6/30) with diffusion abnormalities,
all with diffusion restriction/cytotoxic edema patterns suggesting hypoxic-ischemic injury.
In contrast, however, there were no fatalities in patients with more focal diffusion abnormal-
ities or in cases lacking parenchymal injury. In contrast to other studies [24,25,29], an asym-
metrical pattern of parenchymal insult involving bilateral cortical and subcortical white
matter occurred more commonly than a diffuse but more symmetrical hemispheric pattern
of restricted diffusion. None correlated with a single-vessel vascular distribution infarct.

McKinney et al. [39], in reviewing 53 children (11/53 highly suspicious for AHT) less
than age 3 years with acute traumatic head injury, described an asymmetrical pattern of
presumed hypoxic-ischemic injury (HII) with small-volume subdural hemorrhage. Four of
fifty-three cases overall had HII on CT or MR, with 3/4 of cases (75%) highly suspicious for
abusive head trauma. Of these, two had a primarily unilateral pattern of hemispheric insult
with small-volume subdural hemorrhage and no associated skull fracture. Although the
etiology of this unilateral pattern of insult is incompletely understood, in both of their cases,
no arterial abnormalities were found on dedicated MR imaging with magnetic resonance
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angiography (MRA), and the distribution in each case extended beyond typical, isolated
anterior or posterior distribution infarcts.
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Figure 1. Subdural hemorrhage and subdural collections in an unresponsive 2-month-old male
presenting with forehead bruising and respiratory depression. (a) Axial noncontrast head CT image
demonstrates thin, high attenuation subdural hemorrhage along the posterior left occipital lobe
(black arrow) and bilateral, low attenuation frontal subdural collections (white arrowheads). There
is also subtle loss of gray-white matter differentiation bilaterally; (b) axial T2-weighted MR image
on day 4 shows regions of decreased gray-white matter differentiation throughout both cerebral
hemispheres with T2 hyperintense subdural collections (white arrowheads) and hypointense subdural
hemorrhage posteriorly (white arrows); (c) axial b-1000 diffusion-weighted image demonstrates
diffuse areas of abnormal, restricted diffusion (white arrowheads) in both cerebral hemispheres
consistent with cytotoxic edema/hypoxic-ischemic injury; (d) apparent diffusion coefficient image
shows corresponding regions of diffusion restriction predominantly in cortical and subcortical regions
of both cerebral hemispheres (black arrowheads); (e) axial susceptibility-weighted image shows small,
bilateral retinal hemorrhages (white arrows), confirmed clinically; (f) axial CT image at 2 month
follow-up show diffuse brain parenchymal volume loss with now large, bilateral subdural collections
(white arrows).
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Figure 2. Diffuse, bilateral hemispheric attenuation abnormality in a 3-month-old male presenting in
status epilepticus with multifocal facial, extremity, and trunk bruises. (a) Initial axial noncontrast
head CT image with diffuse, abnormal attenuation throughout both cerebral hemispheres (white
arrowheads); (b) coronal noncontrast CT image shows thin subdural hemorrhage along the left
tentorial leaflet (white arrow); (c) coronal reconstruction bone algorithm image from an abdominal
CT at presentation shows healing, bilateral posterior rib fractures (black arrowheads); (d) axial
T2-weighted image on day 4 demonstrates diffuse, hemispheric loss of gray-white matter differen-
tiation (black arrowheads); (e) axial b-1000 diffusion-weighted image demonstrates diffuse areas
of abnormal, restricted diffusion (black arrows) in both cerebral hemispheres consistent with cyto-
toxic edema/hypoxic-ischemic injury; (f) apparent diffusion coefficient image shows corresponding
regions of diffusion restriction predominantly in cortical and subcortical regions of both cerebral
hemispheres (black arrows).

In another abusive head injury study, Foster et al. [23] described that when this unilat-
eral pattern of hemispheric involvement was observed, coexistent subdural hemorrhage
was located either bilateral or ipsilateral to the parenchymal insult but not solely contralat-
eral in distribution [23], and the associated mass effect was often out of proportion to the
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volume of subdural hemorrhage (Figure 3). Some authors [40,41] have suggested that this
constellation of predominantly unilateral parenchymal insult with associated SDH has sim-
ilarities to a rare entity described in young athletes suffering repetitive trauma/concussions
and might result from cerebral dysautoregulation. However, this remains uncertain and
controversial [42], especially in reference to this younger pediatric population. As with
cases presenting with a large volume subdural hemorrhage resulting in significant mass
effect, these patients may undergo a decompressive hemicraniectomy in an attempt to
relieve mass effect and midline shift, thus potentially alleviating subsequent infarction to
areas of the contralateral brain that are more typical of herniation effects.
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Figure 3. Mixed attenuation right subdural hemorrhage in a 3-year-old female fatality presenting with
abrupt mental status change and multifocal bruises after a reported fall. (a) Initial axial noncontrast
head CT demonstrates a mixed attenuation subdural hemorrhage (white arrow) with mass effect,
midline shift (black arrowhead), and effaced right temporal horn (black arrow); (b) next-day CT
image shows changes of a decompressive hemicraniectomy with diffuse, abnormal attenuation of the
right cerebral hemisphere (white arrow), which herniates through the cranial defect.

The exact etiology of this extensive, bilateral or unilateral restricted diffusion on MR
or corresponding findings on CT remains incompletely understood although is likely
multifactorial with potential contributions from apnea [43], hypoperfusion and loss of
vascular autoregulation, neuroinflammation [44], and excitotoxic mechanisms resulting
in secondary neuronal injury [45,46]. This incomplete understanding may be, in part, a
result of the inability to routinely have detailed histological studies performed on each
child fatality [47] as well as the varying traumatic mechanisms of injury and timing of a
death in relation to the initial insult. A two-part publication in 2001 by Geddes et al. [31,32]
described the histologic evaluation of 53 AHT fatalities. Diffuse hypoxic-ischemic neuronal
injury was found most frequently on evaluation, being present in 77% of total cases and
in 84% of infants, thus emphasizing its potential role in parenchymal injuries in abuse. In
contrast, despite the presumed traumatic nature of the fatalities, widespread traumatic
axonal injury was found infrequently, present in only 3/53 cases, two of which were
infants having suffered severe cranial injuries. However, cervical epidural hemorrhage and
more localized axonal injury near the lower brainstem and craniocervical junction were
found in 11 study infants, but these were not present in age-matched controls, potentially
indicating a role for respiratory depression or compromise as a cause of the more diffuse
hypoxic-ischemic neuronal injury, as apnea was listed as a clinical feature in 75% of their
abuse cases.
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More recently, Matschke et al. [33] reviewed histopathology and/or autopsy data of
50 abusive head trauma cases, almost half being fatal within the first 24 h. None clearly had
diffuse, traumatic axonal injury. However, in select cases with immediate death, localized
traumatic axonal injury in the brainstem was observed close to known respiratory centers.
All cases had findings indicating hypoxic-ischemic injury.

3. Imaging of Diffuse Insults

On initial CT imaging, these diffuse or asymmetric patterns of parenchymal injury
may be difficult to perceive but have been reported to be present as early as 72 min from
the insult [11]. Findings may include only subtle loss of the gray-white matter junction and
parenchymal hypoattenuation, progressing to more visible, abnormal attenuation over a
period of hours to days [11]. I often find it helpful to review the images on a 9 on 1 display,
like radiologists reviewed CT cases prior to picture archiving and communication systems
(PACS). Like seeing a finding from the back of the room, this image display often aids
in the detection of subtle gray-white matter differentiation loss and the ability to detect
sulcal effacement. In addition, on early imaging, the ventricles and extra-axial spaces may
be preserved, making detection of subtle changes even more difficult. Progressive brain
swelling may ensue and may be out of proportion to coexistent subdural hemorrhage.
There may be involvement of both cortical and deep gray matter, subcortical and deep
white matter, as well as the supratentorial and infratentorial brain. Extent of the injury
as well as the timing of the imaging in relation to the insult can alter the conspicuity and
distribution of imaging abnormalities, including the distribution of diffusion restriction, as
many of these patients may be too unstable to undergo early MR imaging. However, once
the child is stabilized, brain MRI with diffusion-weighted imaging will be key in further
delineating the extent of parenchymal injury in these patients.

4. Focal Parenchymal Insults

Additional parenchymal injuries may occur in abusive head injury as a direct/primary
result of the traumatic mechanism although these too may evolve with ongoing secondary
injury [48]. These injuries primarily include traumatic or diffuse axonal injury, parenchymal
contusions, and lacerations. Unlike the diffuse hemispheric insults, these focal parenchymal
insults are not a significant distinguishing feature for abusive head injury [22] although
combinations of injuries, including spinal injuries, may coexist. Moreover, patients with
more focal parenchymal insults less commonly present with significantly altered mental
status [22–24].

Traumatic or diffuse axonal injury (DAI) is found frequently following severe acci-
dental trauma, such as bicycle accidents, high-speed motor vehicle collisions, and pedes-
trians hit by motor vehicles. However, this pattern of injury is infrequently observed
on imaging [22,24–27] or at dedicated histopathologic evaluation [31–33] in young pe-
diatric patients suffering inflicted injuries. In MR studies evaluating different patterns
of diffusion restriction in abusive head injury, Zimmerman et al. [25] observed DAI in
only 2/33 cases. Ichord et al. [24] observed traumatic axonal imaging in only 1/30 cases
of inflicted trauma and in 1/22 similarly aged accidental cases, each based on a typical
distribution of axonal injury in the frontal subcortical white matter and corpus callosum,
respectively. Orru’ et al. [27] characterized 5/30 DWI-positive cases of AHT as traumatic
axonal injury, each patient 3 months of age or younger, as they observed small, linear, or
punctate foci of diffusion restriction in the corpus callosum or near the gray-white matter
junction, again, typical locations for diffuse axonal injury. The infrequent finding of diffuse
axonal injury in abused infants and young children has been the experience at my institution
as well. Although infrequently observed on imaging studies, traumatic axonal injury near
the craniocervical junction and involving the lower brainstem in autopsy subjects [32,33],
particularly in younger, abused infants, has been demonstrated and hypothesized to be
the potential source of the respiratory depression and apnea frequently observed in this
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population, thus potentially contributing to associated secondary hypoxic-ischemic injury
in the more global brain.

Axonal injuries may be very subtle on CT imaging but may appear as multiple, punc-
tate, low-attenuation foci or petechial hemorrhages, usually involving hemispheric white
matter, the corpus callosum, cerebellum, and brainstem. Deep subarachnoid hemorrhage
and brain swelling may be seen as associated findings on both CT and MRI. Susceptibility-
weighted imaging is a key MR sequence for detecting the punctate hemorrhagic foci, and
diffusion-weighted imaging aids in the detection of non-hemorrhagic, traumatic axonal
injury Figure 4.
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Figure 4. Axonal injury and lacerations/contusional tears in a 4-month-old male presenting with
seizure and lethargy. (a) Initial axial CT image demonstrates right parafalcine high-attenuation sub-
dural hemorrhage (white arrow); (b) coronal reconstruction in bone algorithm demonstrates a right
parietal bone fracture (black arrow) with overlying soft tissue swelling (white arrowhead); (c) axial
T2-weighted MR image on day 4 demonstrates bilateral lacerations/contusional tears with fluid-
hemorrhagic levels near the temporal-occipital lobe junctions (white arrows); (d) axial susceptibility-
weighted image demonstrates layering hemorrhage in lacerations/contusional tears (white arrows)
and axonal injury near the cortical-white matter junction in each frontal lobe (black arrows).
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Traumatic head injury may also result directly in parenchymal contusions and lacera-
tions. These injuries are also less commonly observed in abusive head trauma [24–26,28]
but, when present, are frequently seen in conjunction with other traumatic injuries, such
as overlying extra-axial hemorrhage or fractures (Figure 5). Given their more focal nature,
these insults typically result in more localized neurologic deficits instead of a diffuse en-
cephalopathy, although they certainly can be seen in conjunction with more diffuse injuries.
In Zimmerman et al.’s review of DWI in abusive head trauma [25], parenchymal contusions
were one of the least frequent patterns of described parenchymal injury, occurring in only
2/33 cases, potentially reflecting different mechanisms of injury in the abusive head injury
population as opposed to a direct cranial insult from an accident, such as when a child acci-
dentally falls from a second-story window. Other studies have also demonstrated the more
infrequent occurrence of contusions in this population [24,27]. Contusions more commonly
affect older children, are often multiple, maybe hemorrhagic or non-hemorrhagic, and
are usually centered near the surface of the frontal and temporal lobes near the adjacent
bone surfaces and dural reflections. Multiplanar CT reconstructions will allow increased
detection of subtle contusions in the inferior frontal and anterior temporal lobes. On MRI,
gradient echo or susceptibility-weighted imaging will aid in detection of more subtle hem-
orrhagic contusions, while non-hemorrhagic contusions may be more readily detected on
diffusion-weighted imaging along the surface of the brain. Contusions often increase in
size over the first few days as well as develop surrounding edema.
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Figure 5. Skull fracture and hemorrhagic contusion in a 2-month-old female presenting with the
history of a fall off a couch. (a) Initial axial CT demonstrates a hemorrhagic contusion at the posterior
temporal-parietal lobe junction (white arrow) with mixed but predominantly low-attenuation hemor-
rhagic subdural (black arrow). More focal loss of gray-white matter differentiation (black arrowhead)
may also suggest coexistent venous infarction or bland contusion; (b) coronal CT reconstruction
shows the hemorrhagic contusion (white arrow) deep to a diastatic right parietal bone fracture (white
arrowhead); (c) three-dimensional reconstruction of the skull demonstrates a mildly complex right
parietal bones fracture (black arrows) and right frontal bone fracture (white arrow).
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Slit-like lacerations or tears/clefts at the cortical-white matter junction, mainly in
the frontal and anterior temporal lobes, have been described in young infants as a result
of trauma. On imaging, these lesions may appear as focal cerebrospinal fluid-like clefts
or lesions with layering fluid–fluid levels or layering hemorrhage [47,49,50] (Figure 6).
Palifka et al. [50] described these focal lacerations in 18/137 abusive head injury patients of
less than 3 years of age, with almost 90% (16/18) occurring in patients less than 1 year of
age. However, none were demonstrated in a comparison cohort of patients with moderate
to severe accidental head injury (n = 28 with 8 less than 1 year of age), including those
that sustained injuries from falls, motor vehicle collisions, and young pedestrians hit by
automobiles. In their series, the lacerations or tears were detected on noncontrast CT in
9/18 cases as linear or fluid/hemorrhagic attenuation clefts in the subcortical white matter
in the supratentorial brain, with sixty percent (11/18) demonstrating associated fractures or
regional scalp swelling. MR imaging demonstrated a linear cleft or focal fluid-fluid level or
hemorrhagic level in the subcortical white matter and in over half, was best demonstrated
on gradient echo or susceptibility-weighted sequences. In 2/18 patients, however, these
lacerations were most easily detected on DWI. Lesions most commonly occurred in the
frontal lobes, and although some were isolated, seven patients had multiple lacerations.
In most cases, other traumatic lesions, including retinal and extra-axial hemorrhages or
injuries to other extracranial locations, were detected either clinically or on imaging.

Similar slit-like tears or clefts in young infants near the cortical-white matter junction,
predominantly in the anterior temporal and frontal lobes, have been described in the
perinatal period, especially following instrument-assisted deliveries [51,52]. Although
these cerebrospinal fluid-like clefts may, in some ways, resemble small areas of cystic
encephalomalacia, careful evaluation on imaging should help confirm their characteristic
appearance and eventual evolution over time. In the absence of prior documented trauma
and when observed on imaging in young infants, these lacerations or clefts should raise
concerns for potential inflicted head injury [49,50].

Another less commonly encountered pattern of parenchymal injury in abuse is that
of a venous infarction [24,25], found in 4/33 cases in one series. This pattern should be
suspected with more focal attenuation abnormality on CT or diffusion restriction on MR
deep to an injured/avulsed bridging vein or subdural hemorrhage but also when other
traumatic lesions are seen in association with parenchymal hemorrhages [24] and are
identified in typical venous vascular distributions, such as the parasagittal frontoparietal
locations and the posterior temporal lobes [53]. These imaging findings may overlap or
be difficult to distinguish from parenchymal contusions. In general, large parenchymal
hemorrhages are infrequently seen in abusive head trauma. However, cases presenting
with rapid expansion of hemorrhage may suggest the development of an underlying
coagulopathy, as acquired coagulopathies have been reported as a complication of inflicted
head injury [54].
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Figure 6. Focal laceration or contusional tear in a 2-month-old former preterm male infant presenting
with seizure. (a) Initial axial noncontrast CT demonstrates a small, focal, left frontal lobe lacera-
tion/tear with layering posterior hemorrhage (white arrow); (b) axial T1-weighted image shows
a hypointense, well defined laceration/tear with subtle layering hemorrhage posteriorly (white
arrow); (c) axial multiplanar gradient recalled acquisition in the steady-state (MPGR) image shows
the layering posterior hemorrhage (white arrow); (d) follow-up skeletal survey demonstrates healing
right acromion fracture (black arrow) and distal humeral periosteal reaction (white arrow) suggesting
a healing fracture.

5. Imaging Evaluation

As with other causes of acute traumatic head injury in pediatric patients, CT remains
the initial imaging modality of choice when an infant or young child presents with suspi-
cions of abusive injury [55,56]. Additional guidelines for head imaging based on clinical
examination findings, modality appropriateness stratification, and information regarding
relative radiation level per modality can be found under the American College of Radiology
Appropriateness Criteria [56] as well as supplemented by more local hospital or institu-
tional guidelines. As with imaging all pediatric patients, CT imaging should be performed
utilizing pediatric dose-reduction techniques and parameters [57].

Although MRI with DWI is invaluable in evaluating these young brains, it remains
paramount that radiologists scrutinize head CT examinations for not only cranial injuries
and/or extra-axial/subdural hemorrhage but also for the presence of these potential
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parenchymal injuries, including cytotoxic edema/hypoxic-ischemic injury. In severe cases
with fatalities, the initial CT may be the only head imaging performed prior to death.
Multiplanar and 3-dimensional (3D) CT reconstructions of the head can be routinely gen-
erated without additional radiation exposure to the child. These aid in evaluation of
craniocervical junction hemorrhage [58] and injury, identifying small posterior fossa and
convexity subdural hemorrhages [59] and potential bridging vein injury or thrombosis
over the cerebral convexities [60,61] as well as providing more optimal evaluation of the
pediatric skull [62,63]. In my practice, in addition to the axial standard and bone algorithm
images, we routinely reconstruct and send 3D bone reconstructions as well as coronal and
sagittal reconstructions in both standard and bone algorithm. CT imaging is rapid, often
alleviating the need for sedation, and it can be used to evaluate for potentially coexistent
spinal, thoracic, and abdominal injuries.

MRI should be considered and is frequently utilized in the non-acute setting or when
the child is stabilized to further evaluate the brain as well as to assess for potential spinal
injuries in patients presenting with suspicions of abusive head injury [55,56]. Diffusion-
weighted imaging is invaluable for detecting brain parenchymal injury [55], especially the
hemispheric insults with cytotoxic edema/hypoxic-ischemic injury, and should routinely
be included when evaluating this population of infants and young children. In addition,
standard T1- and T2-weighted sequences provide increased anatomic detail over CT. On
T2-weighted imaging of the brain, look for subtle loss of the normal cortical ribbon, often
well-seen in infants due to the lack of myelinated white matter. Fluid attenuated inversion
recovery (FLAIR) sequences may be considered but, at my institution, are not routinely
performed in infants due to the unmyelinated white matter. However, as with the first-
echo T2 images, FLAIR sequences may aid in detection of small subdural collections or
hemorrhage [64]. As with other trauma protocols, multiplanar gradient recalled acquisition
(MPGR) or susceptibility-weighted sequences should be included to assess for the presence
of blood products [56].

To avoid radiation associated with CT, some authors have advocated for the use of
initial MRI instead of CT in patients less than 24 months of age presenting with suspicions
of abuse but lacking neurologic symptoms [57]. Although the length of an MRI may
preclude evaluation of a child without the use of and potential risks of anesthesia [65,66],
imaging using more rapid imaging protocols and sequences have been suggested and may
be a feasible alternative in young children presenting with concerns of traumatic head
injury [67–69]. However, other studies have described limitations associated with these
techniques [70,71] in the setting of suspected trauma, including lack of 24 h MRI coverage
at many institutions. Currently, at my institution, CT remains the initial imaging modality
of choice in this population.

Severity and timing of the head imaging in relation to presentation and insult may
alter the conspicuity of findings on both CT and MRI. Therefore, serial imaging should be
considered to more thoroughly demonstrate the imaging abnormalities but also to poten-
tially provide improved imaging correlation with the historical and clinical examination
findings while keeping in mind potential limitations in timing abusive injuries based on
imaging alone [11,72].

6. Clinical and Surgical Considerations and Outcomes

Treating physicians and radiologists not only need to be vigilant in their acute man-
agement of pediatric head trauma patients, but they also need to remain keenly aware
that abusive head trauma patients may present with rather nonspecific clinical features,
such as irritability or lethargy, that may not, at least initially, point directly to a traumatic
etiology. Historical “red flags” may potentially alert treating physicians and thus cause
them to consider abusive head injury in the potential differential. These may include when
a child presents with clinical or radiographic signs of head injury but with no or with a
changing history of trauma, reports of only minor trauma out of proportion to what is
observed or inconsistent developmentally, or when the caretaker blames findings on rescue
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or resuscitation efforts that occurred prior to hospital arrival [73,74]. A multidisciplinary
approach to these cases is necessary to acutely manage the patient but also to provide
subsequent evaluation and diagnosis as well as continuing assessment and rehabilitation
beyond the inpatient period.

In the acute period, neurosurgical intervention may be necessary to evacuate a large
subdural hemorrhage or decompress the brain in cases of significant brain swelling or
elevated intracranial pressure in an attempt to alleviate progressive brain herniation or
insult and has been shown to be performed more frequently in cases of abusive rather
than accidental head trauma [75,76]. In a comparative study [76] evaluating decompressive
craniectomies performed in both accidental and abusive head injury cases for mass lesions
and elevated intracranial pressure, mortality rates were significantly higher in abusive head
trauma cases despite the surgical decompression. Additionally, abused patients were more
likely to have a poor clinical outcome, including worse visual impairment in survivors.
Study recommendations included evaluating each patient on a case-by-case basis but
because of the poorer outcomes observed in abused patients, potentially considering earlier
surgical intervention.

Another study [77] analyzed 213 abusive head trauma patients, including need for
neurosurgical procedures and hospital costs. Fifty-eight patients underwent neurosurgical
interventions that primarily included decompressive hemicraniectomies or burr hole pro-
cedures for subdural hemorrhage treatment. Additional procedures included placement
of intracranial pressure monitors, external ventricular drains or internalized shunts for
post-traumatic hydrocephalus, and subdural taps. This study also highlighted the overall
increased healthcare costs for those patients requiring neurosurgical intervention.

Most patients suffering abusive head injury have poor outcomes, with nearly 20%
of cases resulting in fatalities. Only about one-fifth may be left with mild to little appre-
ciable impairment, leaving over half with moderate to severe neurologic, developmental,
and/or visual impairments [78]. Predictive factors associated with more severe impair-
ments include apnea or respiratory depression requiring intubation, cardiac arrest, acute
ischemic-injury/infarction on imaging, as well as the presence of early post-traumatic
seizures or status epilepticus [24,79–81]. The presence of hypoxic-ischemic injury with cor-
responding diffusion restriction on MRI has been found to be the most significant finding
that correlates with poor clinical outcome and also contributes strongly to the presence
of post-traumatic seizures [22,24,27,82]. Early post-traumatic seizures may be present at
initial presentation but have their greatest severity within the second 24 h period [80]. Since
they may go unrecognized in this population, prolonged or continuous electroencephalo-
gram (EEG) may be warranted to aid with detection and subsequent treatment to avoid
additional secondary insult to the brain [83,84].

Significant rates of visual impairment are also observed in abusive head-injured
patients and correlate with retinal hemorrhage score as well as a more dismal overall
outcome [85]. However, retinal hemorrhages may be absent in up to one-third of these
patients [86]. Given that the complete extent of developmental, neuropsychiatric, and visual
impairments may not be completely apparent at discharge, long-term, comprehensive
follow-up, including post-injury clinics, is needed to aid with ongoing and future therapy
and assistance [87]. Although many patients are left with moderate to severe impairments,
abusive head trauma patients benefit from both inpatient and long-term rehabilitation,
which may lead to significant functional achievements [79]. However, others may show
progressive disability over time potentially due to existing comorbidities, including post-
traumatic epilepsy, as well as additional social and emotional influences [85].

7. Conclusions

Abusive head injury is a serious form of child physical abuse and results in significant
morbidity and mortality in this young pediatric population. As radiologists, we encounter
a wide variety of cases each day, including cases of accidental trauma. Therefore, we are
in a unique position to recognize when certain imaging findings stretch beyond what is
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typically expected. Therefore, radiologists need to be familiar not only with the more
commonly known fracture patterns and presence of subdural hemorrhage that may be seen
in these cases but also the patterns of parenchymal insults that may occur, especially those
diffuse patterns of hemispheric involvement that may be subtle initially but may ultimately
direct the radiologist to consider abusive head injury as a potential etiology.
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