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ARTICLE

Parent of origin genetic effects on methylation in
humans are common and influence complex trait
variation
Yanni Zeng1, Carmen Amador 1, Charley Xia1,2, Riccardo Marioni3,4, Duncan Sproul 1,5, Rosie M. Walker3,4,

Stewart W. Morris4, Andrew Bretherick1, Oriol Canela-Xandri1,2, Thibaud S. Boutin 1, David W. Clark6,

Archie Campbell 4, Konrad Rawlik 2, Caroline Hayward 1, Reka Nagy1, Albert Tenesa 1,2,

David J. Porteous 3,4, James F. Wilson 1,6, Ian J. Deary3,7, Kathryn L. Evans3,4, Andrew M. McIntosh 3,8,

Pau Navarro 1 & Chris S. Haley 1,2

Parent-of-origin effects (POE) exist when there is differential expression of alleles inherited

from the two parents. A genome-wide scan for POE on DNA methylation at 639,238 CpGs in

5,101 individuals identifies 733 independent methylation CpGs potentially influenced by POE

at a false discovery rate≤ 0.05 of which 331 had not previously been identified. Cis and trans

methylation quantitative trait loci (mQTL) regulate methylation variation through POE at

54% (399/733) of the identified POE-influenced CpGs. The combined results provide strong

evidence for previously unidentified POE-influenced CpGs at 171 independent loci. Methy-

lation variation at 14 of the POE-influenced CpGs is associated with multiple metabolic traits.

A phenome-wide association analysis using the POE mQTL SNPs identifies a previously

unidentified imprinted locus associated with waist circumference. These results provide a

high resolution population-level map for POE on DNA methylation sites, their local and

distant regulators and potential consequences for complex traits.
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D
NA methylation plays a crucial role in regulating gene
expression and maintaining genomic stability1. Inter-
individual variation of DNA methylation levels at CpG

sites (henceforth methylation CpGs) has been associated with
complex diseases, quantitative traits, environmental exposures
and the aging process2–6. Previous studies have estimated that on
average across sites, 19% of variation in DNA methylation level is
contributed by the additive genetic effects7. A number of genetic
variants have been shown to regulate methylation CpGs (such
variants being termed methylation quantitative trait loci (mQTL))
in an additive manner, acting locally (cis) or distantly (trans)8,9.
In contrast, shared family environment has been shown to have a
relatively smaller overall contribution (3% on average across sites)
to variation in DNA methylation7,10.

DNA methylation can also be affected by parent-of-origin
effects (POEs), which are non-additive genetic effects that man-
ifest as phenotypic differences depending on the allelic parent-of-
origin11. There are several possible causes of observed POEs,
but the most common is genomic imprinting11. These POEs
caused by imprinting can lead to different phenotypic patterns,
including classical paternal or maternal imprinting, and other
complex forms (Supplementary Fig. 1)11. (We use the standard
definition of maternal imprinting, where the maternal allele is
silenced and the paternal expressed and vice versa for paternal
imprinting.) Although previous studies estimated the number of
imprinted expressed genes in the human genome at around
10012, POEs caused by imprinting can spread to wider genomic
regions through regulatory variants located in imprinted regions
transmitting the POEs to their genomic targets (Supplemen-
tary Fig. 1)13,14. POEs caused by imprinting have been detected
at the DNA methylation, gene expression and phenotypic
levels13–15. The precise regulation of expression of genes influ-
enced by imprinting is crucial for embryonic development,
metabolism and behavioural traits, and the effect can last into
later life16–18. Given the regulatory role of DNA methylation on
gene expression, the identification of POEs on DNA methylation
is of particular importance to facilitate understanding of the
molecular mechanism of the POEs observed at the gene expres-
sion or phenotypic level16.

Recent progress has been made towards profiling genome-wide
imprinted regions and POE caused by imprinting in DNA
methylation13,19–21. Imprinted regions can be identified by
bisulfite sequencing detecting CpGs that display imbalanced or
bimodal methylation between paired chromosomes, which could
be caused by imprinting19,21. POEs in these regions can be
explicitly modelled in association tests between SNPs and
methylation levels for each CpG, assuming allelic effects differ
between maternally and paternally inherited alleles13,14. Whereas
this approach enables both the identification of imprinting-
associated POE in methylation levels and the localisation of the
SNPs associated with that POE, the limitation lies in the huge
multiple testing burden introduced by the number of SNP–CpG
pairwise tests for a genome-wide scan. Furthermore, the locali-
sation of POEs from individual SNP does not ensure the eluci-
dation of the overall genetic architecture underlying methylation
levels at each CpG, particularly when multiple POEs from mul-
tiple independent SNPs target the same CpG. Therefore, further
methodological advances are required in order to improve
understanding of the role of POEs in the genetic control of
methylation levels and hence potentially better explain the
influence of POEs on phenotypic variation.

Imprinting-caused POEs on DNA methylation may have
downstream effects on complex traits. Others have shown that
applying models which account for POEs in genome-wide asso-
ciation studies (GWAS) can identify genetic variants that underlie
POEs on multiple complex traits and diseases18,20,22, and that

SNPs which play a regulatory role in DNA methylation through
POEs also have significant associations in GWAS performed
using an additive model13. Combining these with previous
observations that disease-associated loci are enriched in reg-
ulatory regions23, analyses that link POE regulation to DNA
methylation and POE regulation to complex traits potentially
provide important insights for the understanding of both non-
additive genetic and epigenetic control mechanisms for complex
traits and diseases.

We propose here a variance component method to detect
signatures of POEs caused by imprinting in the human DNA
methylome, by identifying methylation CpGs showing an unu-
sually increased full-sibling and/or one-parent–offspring simi-
larity. Using this method, we perform a genome-wide scan for
POE on each of 639,238 methylation CpGs in a homogenous
Scottish sample (N= 5101) with complex pedigree structure24, in
which both previously unknown and known POE-influenced
CpG sites are identified. We then perform a POE–mQTL analysis
to identify local and distant regulatory genetic variants of
methylation at the POE-influenced CpG sites identified in the
variance component analyses. This is followed by an analysis to
identify complex traits associated with the detected POE-
influenced methylation CpGs. We also use identified
POE–mQTL SNPs to guide a phenome-wide association analysis,
through which we identify one locus affecting waist cir-
cumference through a previously unidentified POE, demonstrat-
ing that the use of methylation data and the proposed set of
analyses contribute to increase our understanding of the non-
additive genetic control of complex traits.

Results
Overview of the study design. Table 1 shows a summary of the
study design. An established five-component variance component
analysis accounting for genetic and environmental variation was
first used to partition DNA methylation variation for each mea-
sured CpG. Following this, a two-stage pipeline was applied to
identify potential POE-influenced methylation CpGs among all
measured CpGs. The first stage applied a POE variance compo-
nent method that targeted the localisation of POE-influenced
methylation CpGs. The second stage applied a POE–mQTL
(parent-of-origin effect mQTL) analysis that accounted for POE
to localise the SNPs that introduce the POE on the identified CpG
candidates from the first stage. This was followed by two addi-
tional analyses to profile the phenotypic consequence of the POE-
influenced methylation CpGs and their POE–mQTL SNPs on
complex traits.

Genetic and environmental contributions to DNA methyla-
tion. Using the GKFSC variance component model, we decom-
posed methylation variation at 639,238 CpGs into contributions
from two genetic and three family environmental effects,
including the additive genetic effect of common SNPs (h2g), an

additional additive genetic effect associated with pedigree (h2k),
shared environmental effects between nuclear family members
(e2f ), shared environmental effects between full siblings (e2s ) and

shared environmental effects between members of couples (e2c ).
The additive genetic effect (h2g þ h2k) was the largest contributor

(Table 2), explaining an average of 16.7% of the variation in DNA
methylation (this average includes sites for which the additive
genetic effect does not explain any variation), with an estimate of
9.5% and 7.2% of the DNA methylation variation explained by
the common SNP-associated and the pedigree-associated additive
genetic components, respectively. The contribution from com-
mon SNPs varied across genomic regions, with an increased
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contribution for CpGs within enhancer regions (h2g ¼ 13% for

CpGs in enhancers vs. h2g ¼ 9% for CpGs outside them), and a

decreased contribution for CpGs surrounding TSSs (Supple-
mentary Fig. 2). Shared environmental effects contribute an
average of 1.2–2.1% of the variation in DNA methylation
(Table 2), but the contributions also vary across genomic regions
(Supplementary Fig. 3).

The number of CpGs with a statistically significant proportion
of methylation variance explained by G, K, F, S or C, in
the GKFSC model was 24101, 1531, 0, 78 and 0, respectively
(Table 2). CpGs that showed genome-wide significance for
the full-sibling component e2s (N=78) were in regions highly
enriched in published genomic imprinting regions (with 58 of the
78 CpGs being located within 2 kb of known imprinted regions,
P(Fisher exact test)= 1.3 × 10−80), suggesting that (1) POEs caused
by imprinting are likely to contribute to the variation of a subset
of CpGs, (2) besides any shared environmental effect, the full-
sibling associated component (e2s ) also captures POE caused by
imprinting (for a more detailed discussion see the Methods
section) and (3) variance component analysis that accounts for
the increased similarity between full siblings can be applied to
identify CpGs potentially influenced by POEs caused by
imprinting (see below).

POE-targeted variance component analysis. We developed a
model selection-based approach to perform a genome-wide
scan to identify methylation CpGs potentially influenced by
POEs caused by imprinting targeting three main patterns of
imprinting: paternal, maternal and complex (Fig. 1)11. Since
each pattern reflects different phenotypic similarities between
nuclear family members, for each CpG we tested three alter-
native models (complex, paternal and maternal), and per-
formed model selection to select the best model for each CpG,
that is, the model that better describes the observed phenotypic
similarity (Aim 2 in Table 1).

This genome-wide scan identified 984 methylation CpGs that
exceeded genome-wide significance for POEs at a FDR ≤ 0.05
level (Supplementary Fig. 4). Of these 984 POE-influenced CpG
candidates, the selected model was complex imprinting for 606,
paternal imprinting for 158 and maternal imprinting for 220
CpGs (Supplementary Data 1). An example of the genome-wide
scan results for one of the previously unidentified maternal
imprinting sites is shown in Fig. 2. The 984 CpGs included some
in well-known imprinted genes, such as IGF2 and PEG3
(Supplementary Fig. 5, Supplementary Data 1), but more
generally were located in genomic regions highly enriched in
known imprinted regions, particularly when extending those

Table 2 DNA methylation variation decomposed into genetic and environmental components

Source Mean PV Maximum PV First quartile PV Third quartile PV Nominal Sig. sites Genome-wide Sig. sites

G 9.5% 99.20% 0.67% 12.98% 162,800 24,101

K 7.2% 97.10% 0.00% 11.05% 59,117 1531

F 1.2% 19.10% 0.00% 1.84% 1946 0

S 1.4% 46.30% 0.00% 2.24% 23,600 78

C 2.1% 33.50% 0.00% 3.18% 14,514 0

Proportion of variation in methylation levels at the 639,238 studied CpG sites explained (PV) by G (common SNP-associated additive genetic component), K (pedigree-associated additive genetic

component), F (shared environmental effects between nuclear family members), S (non-additive genetic or shared environmental effects between full siblings) and C (shared environmental effects

between members of a couple). The number of CpG sites that were significant in the component of interest, both at nominal and genome-wide level (Sig. sites at nominal and genome-wide levels) is also

shown for each of the five components fitted

Table 1 Study design

ANALYSIS AIM MODEL NTESTS NSIGRESULTS

GKFSC VC Understand sources of variation of

methylation at CpG sites

CpG ~ G+ K+ F+ S+C 639,238 (CpGs) G: 24,101

K: 1531

F: 0

S: 78

C: 0

POE-targeted VC Find POE-influenced CpGs Base: CpG ~ G+ K

Complex: CpG ~ G+ K+ S

Maternal: CpG ~ G+ K+ SM
Paternal: CpG ~ G+ K+ SP

639,238 (CpGs) Complex: 606

Maternal: 220

Paternal: 158

Total: 984

POE–mQTL (a) Find POE-influenced CpGs

(b) Find SNPs associated with POE-

influenced CpGs

CpG ~ SNPADD+ SNPDOM+

SNPPOE

7e9 (984 CpGs*7e6 SNP) CpGs: 586

POE–mQTLs:

cis: 1814

trans: 103

POE–EWAS Phenotypic consequence of POE-

influenced CpGs

Trait~CpG 26,568 (984 CpGs*27 independent

traits)

CpGs: 14

Traits: 10

POE–PheWAS Phenotypic consequence of POE–mQTL

SNPs

Trait~SNPADD+ SNPDOM+

SNPPOE

51,165 (1895 independent mQTLs*27

independent traits)

Traits: 1

SNPs: 1

The table shows an overview of the analyses performed (ANALYSIS), describing their aims (AIM) and the models used (MODEL), as well as the number of tests performed (Ntests) and the number of

significant results obtained (NSIGRESULTS)

GKFSC VC variance component analyses to partition methylation level variation into its additive genetic (G: SNP associated, K: pedigree associated) and non-additive/environmental (F: family, S: sibling,

C: couple) components, SNP single-nucleotide polymorphism

POE-targeted VC modified variance component analysis detects candidate methylation sites with parent-of-origin inheritance pattern (parent-of-origin effect, POE). Base: model without POE; complex:

model including a complex POE component allowing for increased similarity between siblings; maternal: model including a POE component (SM) allowing for increased similarity between father and

offspring and siblings; paternal: model including a POE component (Sp) allowing for increased similarity between mother and offspring and siblings;

POE–mQTL parent-of-origin effect methylation quantitative trait loci analyses, ADD Additive effect, DOM dominance effect,

POE–EWAS, complex trait association with methylation levels of POE CpGs,

POE–PheWAS, phenotype-wide association study accounting for parent-of-origin effects for parent-of-origin methylation level associated loci (POE–mQTL)
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known regions by 2 kb (OR= 15.3 (13.1–17.7), P(Fisher exact test)=
5.3 × 10−171, Supplementary Table 1). When overlapping these
984 CpGs with regions of different chromatin states and sub-
genic structures, these CpGs were in regions enriched in
noncoding RNA (P(Fisher exact test)= 1.05 × 10−5), Polycomb
repressed regions (P(Fisher exact test)= 1.59 × 10−8), weak enhancers
(P(Fisher exact test)= 6.57 × 10−11) and were depleted in active
promoter regions (P(Fisher exact test)= 2.11 × 10−9) (Supplementary
Data 2, Fig. 3, Supplementary Fig. 6). Compared with published
epigenome-wide association studies (EWASs) (Supplementary
Table 2), the 984 CpGs were also enriched in genic regions of
genes containing methylation sites associated with body mass
index (BMI) (P(Fisher exact test)= 4.85 × 10−9)3 and alcohol
consumption (P(Fisher exact test)= 2.67 × 10−6)25 (Supplementary
Data 2, Fig. 3). CpG sites were assigned to the nearest gene if they
were located between 5 kb 5ʹ and 1 kb 3ʹ of the gene boundary. A
gene set (pathway) analysis shows that the annotated genes were
enriched in the Type I diabetes mellitus pathway (P(EASE test)=

4.92 × 10−5) (Supplementary Data 3).
Clumping (see the Methods section) the 984 CpGs based on

their methylation correlations resulted in 733 independent sites of
which 331 were previously unidentified (Supplementary Data 1),
as they are located more than 2Mb away from previously
reported imprinting-influenced regions13.

POE–mQTL analysis. Imprinted genetic variants potentially
underlie the observed POEs affecting methylation levels at the
984 candidate CpGs identified by the variance components ana-
lyses (Supplementary Fig. 1)11. To identify variants causing POEs
on methylation CpGs, a POE–mQTL analysis was performed for
each of the 984 CpGs (Table 1, Aim 3). We used genome-wide
imputed common SNPs, and assigned alleles to a paternal or
maternal origin for individuals with pedigree information. This
information was used to model an additive, a dominant and a

POE effect, and these were fitted as explanatory variables for
methylation levels at each CpG site (see the Methods section).
This revealed that among the 984 CpGs (733 independent loci),
60% (586/984) of CpGs and 54% (399/733) of independent loci
have at least one cis- or trans-POE–mQTL identified (Table 3,
Supplementary Data 1, Supplementary Fig. 4); 58% (569/984) of
CpGs have at least one cis-POE–mQTL (Supplementary Data 4),
and 6.8% (67/984) have at least one trans-POE–mQTLs (Sup-
plementary Data 5). For these 586 CpG sites, the identification of
POE–mQTL SNPs provides strong evidence for the POE caused
by imprinting (Table 3). A total of 1814 independent cis-
POE–mQTLs were identified, 1% (18/1814) were also trans-
POE–mQTLs, and 22% (409/1814) and 11% (202/1814) were
previously identified as eQTLs and mQTLs, respectively, using
additive genetic models8,9,26,27. Both cis- and trans-POE–mQTL
SNPs were in regions highly enriched for known imprinted
regions (cis: P(Fisher exact test)= 0, OR= 7.8 (7.6–8.1); trans: P(Fisher
exact test)= 2.0 × 10−78, OR= 10.2 (8.4–12.2)), and non-genetic
regulated imbalanced methylation regions as reported in ref. 19

(cis: P(Fisher exact test)= 0, OR= 3.2(3.1–3.4); trans: P(Fisher exact

test)= 1.1 × 10−61, OR= 6.5 (5.4–7.8)). They were enriched but to
a lesser extent in previously defined28,29 imprinting control
regions (ICR) (cis: P(Fisher exact test)= 9.8e-293, OR= 2.4 (2.5–2.6);
trans: P(Fisher exact test)= 0.23, OR= 1.3 (0.8–1.8)). For each
independent CpG site with at least one POE–mQTL (Ntotal= 586,
Nindependent= 399), a median of six independent cis-POE–mQTLs
and one independent trans-POE–mQTLs were identified. For
CpGs showing POE with a maternal or paternal pattern as
identified in the variance component analysis, we could infer the
parental origin of the effective and silenced alleles in the
POE–mQTL SNPs, based on the relative signs of the additive
effect and the POE in the POE–mQTL model. This comparison
could only be made when minor homozygotes at the SNP were
present in the sample (so that the additive effect can be dis-
tinguished from the dominance effect) and the additive effect was

Modelling POEs caused by imprinting

Paternal imprinting

A2 A2A1 A1A1 A1 A2 A2 A2 A2A1 A1A1 A1 A2 A2 A2 A2A1 A1A1 A1 A2 A2A2 A2A1 A1A1 A1 A2 A2

Complex imprintingMaternal imprinting

Outcome:

SM
SP S

Outcome: Outcome:

Increased father–offspring similarity Increased mother–offspring similarity

Increased full sibling similarity

Increased full sibling similarity

No increased parent–offspring similarityIncreased full sibling similarity

1 2 21 1 2

3 4 53 4 53 4 5

POE: maternal
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POE: paternal Polar dominance POE: complex (bipolar)

Fig. 1 The expected phenotypic covariance structures between nuclear family members introduced by different POE patterns. The bar charts show putative

levels of methylation associated with the four possible genotypes at a SNP controlling imprinting (paternal allele in blue, maternal allele in red). The family

pedigrees show as shaded the family members between which similarity in methylation is increased due to these patterns of imprinting
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significant (P(t test) ≤ 0.001). The results showed a consistency of
over 99% in the inference of the nature of parental effect (paternal
or maternal) inferred from POE–mQTL analysis with that
inferred from the variance component analysis.

Two independent trans-POE–mQTLs were identified as
regulatory hubs, as they regulated more than one independent
CpG target, both in cis and in trans. As an example, SNP
rs231356 (chr11:2705343) was identified as a cis-POE–mQTL for
three CpG sites (cg14958441, cg09518720 and cg02219360) on
the same chromosome 11, the three displayed a complex bipolar
imprinting pattern (Fig. 4, Supplementary Table 3). rs231356 also
acted as a trans-POE–mQTL for another two CpGs, one on
chromosome 18 (cg05884032) and one on chromosome 13
(cg23776532), both displaying a paternal imprinting pattern
(Supplementary Table 3, Fig. 4). Notably, we failed to identify any
cis-POE–mQTL for these two CpGs, suggesting that the trans
effects from SNP rs231356 were potentially the cause of the
parent-of-origin inheritance pattern detected in the variance
component analyses for the two CpGs.

We compared our results with those published in a recent
study, which also applies a POE–mQTL analysis on DNA

methylation data (437,542 CpG sites) measured longitudinally
in blood on a smaller sample (Noffspring= 740)13. Among the
327 CpGs that were associated with the POE from genetic
variants (199 SNPs) detected13, 260 CpGs were also analysed in
our study. In our variance component analysis, 65% of
those CpGs (162/260) showed a significant POE that exceeded
the Bonferroni-corrected threshold for a replication and
50% of them (129/260) reached genome-wide significance
(Supplementary Data 6). As we performed POE–mQTL
analysis only for the 984 CpGs showing significant POE in
our variance component analysis, we can only compare
POE–mQTL results for the 129 CpGs analysed in both studies.
We detected genome-wide significant POE–mQTL SNPs for all
of the 129 CpGs in our cohort, and 94% (121/129) of those
CpGs found an association with the same POE–mQTL SNPs
reported13.

To explore if candidate POE-influenced CpGs with at least one
POE–mQTL SNP association (classified as strong POE evidence
in Table 3, N= 586) differ from candidates without a
POE–mQTL (classified as moderate POE evidence in Table 3,
N= 398), we performed additional enrichment analysis for each
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group separately (Supplementary Data 7, 8). The results showed
that CpGs in both groups were in regions depleted in promoters
and enriched in Polycomb-repressed regions (Supplementary
Fig. 7). The stronger POE evidence group displayed a much
higher enrichment in known imprinted regions (based on a 2 kb
distance from the regions, P(Fisher exact test)= 3.2 × 10−214),
noncoding RNA (P(Fisher exact test)= 2.6 × 10−11), genic regions

of genes containing methylation sites associated with BMI
(P(Fisher exact test)= 2.3 × 10−9) and alcohol consumption (P(Fisher
exact test)= 8 × 10−6) (Supplementary Data 7), whereas the
moderate POE evidence group showed enrichment in genic
regions of genes containing methylation sites associated with
smoking (P(Fisher exact test)= 2.8 × 10−5) (Supplementary Data 8,
Supplementary Fig. 7).
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Fig. 3 Genomic annotations significantly enriched in (red) or depleted of (blue) POE-influenced methylation CpGs. Error bars: 95% confidence interval

Table 3 Classification of the identified 984 CpGs potentially influenced by POEs

Strength of Evidence POE–mQTL Other studies NCpG VC POE model NCpG per POE model

Strong √ Replication (<2 kb) 223 Maternal/paternal

Complex

104

119

Strong √ Overlap (2 kb−2Mb) 172 Maternal/paternal

Complex

79

93

Strong √ Not identified (>2Mb) 191 Maternal/paternal

Complex

70

121

Total strong 586 586

Moderate × Replication (<2 kb) 11 Maternal/paternal

Complex

2

9

Moderate × Overlap (2 kb–2Mb) 190 Maternal/paternal

Complex

71

119

Moderate × Not identified (>2Mb) 197 Maternal/paternal

Complex

52

145

Total moderate 398 398

Total 984 984

The table classifies the 984 candidate CpG sites identified with the targeted POE variance component (VC) analysis into groups representing the support for the detected POE (strength of evidence)

based on having or not an identified POE–mQTL (POE–mQTL), and if their position overlaps with previously published studies (other studies: replication: the CpG is in a region within 2 kb of a known

imprinted region; overlap: the CpG is in a region between 2 kb and 2Mb of a known imprinted region; not identified: the CpG is more than 2Mb away from a known imprinted region). NCpGs is the

number of CpG sites in each category. VC POE model indicates the selected VC model (maternal/paternal or complex imprinting) and NCpGs per POE model is the number of CpG sites in each subgroup
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POE–EWAS for associations between complex trait and POE
CpGs. To examine the potential consequences of variation in
POE-influenced methylation CpGs on complex traits, we tested
their association with 34 traits available in GS:SFHS24, including
anthropometric, cardiometabolic, psychiatric and psychological
traits (Supplementary Table 4). Considering the potential biolo-
gical difference between the CpG group with strong evidence and
the group with moderate evidence of POEs (Supplementary
Fig. 7), we performed the analyses separately for each group.
These analyses identified 22 methylation–trait associations
between 14 methylation sites and 10 traits at the multi-trait sig-
nificance level (Table 4), and 81 methylation–trait associations
between 47 methylation sites and 17 traits at the per-trait sig-
nificance level in at least one group (Supplementary Data 9).
These methylation sites were in regions highly enriched in
paternal imprinting (P(chi-squared test)= 2.2 × 10−9), particularly
for CpGs with strong POE evidence (Supplementary Table 5).
Sixteen independent loci (defined as a region containing
trait-associated CpGs mapped to the same gene, with between-
locus-distance ≥ 1Mb) were associated with more than one trait
(Supplementary Data 9). In both groups, association signals
(including those not reaching the significance threshold) for high-
density lipoprotein (HDL) cholesterol, vegetable consumption
frequency, body mass index (BMI), weight and intelligence
(G), were ranked significantly higher than the other traits; waist
circumference was ranked significantly higher than other traits
only for the strong POE evidence group, whereas creatinine,
education, alcohol consumption and blood pressure (systolic)
were ranked higher only for the moderate POE evidence group
(Mann–Whitney U test; Supplementary Tables 6, 7).

POE-accounted phenotype-wide association study. A pheno-
type-wide association study, accounting for POE,
(POE–PheWAS) was performed for 34 phenotypes (Supple-
mentary Table 4) using those POE–mQTL SNPs identified in the
previous analyses (for quantile–quantile plot: see Supplementary

Fig. 8). One locus (rs6100212, chromosome 20: 57361064)
exceeded phenome-wide significance for an association with waist
circumference (P(t test)= 8.57 × 10−7, Table 5). The index SNP
was located 5ʹ of the PIEZO1P2 gene (Fig. 5). The same locus was
also associated with waist-to-hip ratio (P(t test)= 1.22 × 10−5), BMI
(P(t test)= 1.27 × 10−5), and body fat (P(t test)= 2.09x10−5) at the
per-trait significance level (Table 5). This cis-POE–mQTL was
consistent in producing complex imprinting patterns at 12 DNA
methylation sites, and also in waist circumference, BMI, body fat
and waist-to-hip ratio (Fig. 5). Published GWAS that only
accounted for additive genetic effects have failed to detect the
association between this locus and the above traits as would be
expected for a locus with a complex imprinting pattern (Sup-
plementary Data 10). For the index SNP (rs6100212), we further
detected a significant POE-by-sex interaction effect on waist
circumference (P(t test)= 1.31 × 10−3, Supplementary Table 8).
When dividing the sample into age deciles, a nominally sig-
nificant POE-by-age interaction effect on waist circumference was
detected in the 10th decile (age >47) (P(t test)= 4.91 × 10−2,
Supplementary Table 8). Combining these results, the largest
POE of SNP rs6100212 on waist circumference was detected in
females over 47 years old (Supplementary Table 9, Supplementary
Fig. 9).

A replication analysis was performed using the subset of
UK Biobank (UKB) with inferred parent-of-origin information
(N= 4378). The significant POE from rs6100212 on waist
circumference was not statistically significant in UKB
(P(t test)= 0.65), although a similar trend was observed with
the point estimate of POE increasing at older ages and in
females (Supplementary Table 10). The lack of significance in
UKB data is potentially due to the age difference between the
discovery and replication sample (Supplementary Fig. 10),
particularly the small number of UKB participants who also
have parents in the cohort (which is a pre-requisite for the
inference of parental allele origin) and hence have SNP parent-
of-origin information categorised as females over 47 (N= 130),

rs231356 (chr11:2705343,KCNQ1)

chr11:2721591

0.4 1.0 0.6

0.3

0.0

–0.3

–0.6

0.5

0.0

–0.5

0.0

–0.4

–0.8

A
d

ju
s
te

d
 m

e
th

y
la

ti
o

n

A
d

ju
s
te

d
 m

e
th

y
la

ti
o

n

A
d

ju
s
te

d
 m

e
th

y
la

ti
o

n

AA AT

Genotype Genotype Genotype

TA TT AA AT TA TT AA AT TA TT

chr18:76740088 chr13:53029591

KCNQ10T1

KCNQ1

SALL3

CKAP2VPS36

cg09518720 cg05884032 cg23776532

AS Cis-POE-mQTL
AS Trans-POE-mQTL

Fig. 4Methylation CpGs regulated by SNP rs231356. SNP rs231356 acts both as a cis-POE–mQTL and a trans-POE–mQTL. Red arrows: location of the CpG

in the chromosome. Boxplots show the allelic effects of rs231356 on methylation of three CpG sites (cg09518720, in cis, and cg05884032 and

cg23776532, in trans). Boxplots: centre line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09301-y ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1383 | https://doi.org/10.1038/s41467-019-09301-y | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


where the largest POE was detected in GS:SFHS (Supplemen-
tary Table 9).

Discussion
We present here a population-based analysis of POEs caused by
imprinting in human DNA methylation. Using a variance com-
ponent method, we identified 733 independent CpGs (984 total),
of which 331 were previously unidentified, where methylation
levels displayed an increased full-sibling and/or one-
parent–offspring methylation level similarity relative to expecta-
tions under additive inheritance patterns, suggesting putative
POEs caused by imprinting. For 399 independent CpGs (171
previously unidentified), we identified genetic variants
(POE–mQTLs) that regulate the CpGs through POEs. This

provided additional evidence for POEs caused by imprinting on
those CpGs (Table 3). CpG sites with putative POEs (candidate
POE CpGs) without an associated POE–mQTL displayed distinct
enrichment patterns in a range of genomic features and may
represent a different biological phenomenon. A large proportion
of the identified POE–mQTL associations followed a complex
imprinting pattern (Fig. 1). Such a pattern is likely to be unde-
tected in GWAS and classical mQTL studies which only model
additive genetic effects, as the complex imprinting pattern pro-
duces no phenotypic difference in genotype means associated
with allele substitution. We identified 22 significant associations
between 14 of these candidate POE CpGs and 10 complex traits.
We further examined the parent-of-origin effect of the identified
POE–mQTL SNPs on complex traits and identified a locus
associated with a complex imprinting effect on waist cir-
cumference and related traits that was not detectable by a stan-
dard additive effect GWAS. If such complex POEs proved to be
widespread, they would contribute towards sibling similarity and
hence some traditional pedigree estimates of trait heritability
without contributing to SNP-based heritability estimates. Such
effects could thus contribute towards the discrepancy between
these two heritability estimates, i.e., the missing heritability30.

The variance component analysis applied to detect POE sig-
natures required data from parents and offspring but has
advantages that include: (1) the ability to detect methylation sites
with POEs without the need to know where the genetic variants
responsible for the effect are located, or even without genotype
data (although we used genotypes to construct the genomic
relationship matrix, a pedigree-based relationship matrix could be
used to replace this); (2) the ability to detect a number of CpGs
displaying a complex imprinting pattern, substantially increasing
the number of such sites reported with respect to previous stu-
dies. In particular, the proportion of sites displaying complex
POE is higher among the previously unidentified sites than that
for the previously known sites (67% vs. 57%), which means that
our method potentially enables discovery of previously uni-
dentified imprinted regions. The reliability of the parent-of-origin

Table 4 Associations between POE CpGs and traits significant at the multi-trait level

CpG Evidence Chr Position (bp) VC Genic region Gene name Trait* P-value Est SE

cg11078090 Strong 1 23878540 C Upstream; downstream E2F2; ID3; LOC101928163 BMI 2.22 × 10−7 0.033 0.006

WC 5.49 × 10−7 0.030 0.006

cg08259905 Strong 3 62171428 P Intronic PTPRG Weight 1.85 × 10−6 −0.027 0.006

cg00329615 Strong 3 118706648 C Intronic IGSF11 SBP 2.48 × 10−7 0.024 0.005

cg10755899 Strong 4 1772151 C Upstream; downstream FGFR3; TACC3 HDL 1.75 × 10−8 −0.029 0.005

BMI 2.46 × 10−8 0.020 0.004

%Fat 4.18 × 10−8 0.985 0.179

cg01290904 Moderate 4 5708474 P Intronic EVC2 HDL 2.36 × 10−7 −0.046 0.009

cg11064966 Strong 5 32506514 C Intergenic None Weight 5.11 × 10−7 0.056 0.011

cg12577411 Strong 6 15551489 P Intronic DTNBP1 %Fat 9.60 × 10−9 −2.27 0.394

BMI 1.03 × 10−8 −0.045 0.008

WC 3.47 × 10−7 −0.038 0.007

Weight 3.50 × 10−7 −0.044 0.009

cg15773890 Strong 6 17259549 P Upstream RBM24 Alcohol 1.63 × 10−7 −0.315 0.060

cg05246100 Strong 7 55246275 C Intronic EGFR BMI 1.02 × 10−6 −0.037 0.008

cg11613559 Strong 10 121577971 C Intronic INPP5F Alcohol 2.96 × 10−7 −0.132 0.026

cg14391737 Moderate 11 86513429 C Intronic PRSS23 Hips 1.85 × 10−7 0.014 0.003

Weight 6.86 × 10−7 0.025 0.005

BMI 8.50 × 10−7 0.023 0.005

cg27272202 Moderate 12 5158794 P Downstream KCNA5 CREAT 2.49 × 10−7 0.049 0.009

cg08698721 Strong 14 101294147 P ncRNA intronic MEG3 Height 1.89 × 10−7 −1.08 0.206

cg21740139 Moderate 17 60753158 P Exonic MRC2 CREAT 1.83 × 10−6 0.045 0.009

The table shows the CpGs displaying POE (CpG), their location (Chr: chromosome and position in bp, location relative to the nearest gene (genic region) and name of the nearest gene(s) (gene name)),

the pattern of imprinting detected in the variance component analysis (VC, C: complex, P: paternal), the strength of the evidence supporting the inference of POE (evidence) and the estimated correlation

between methylation level and traits (Est, Trait), together with standard errors (SE) and an indication of significance (P-value of t test). *Further details on traits are given in Supplementary Table 4

Table 5 Significant POE from cis-POE–mQTL rs6100212 on

phenotypes and CpGs

Type Trait*/CpG P-value Est SE

Trait WC 8.57 × 10−7 −0.005 0.001

Trait WHR 1.22 × 10−5 −0.004 0.001

Trait BMI 1.42 × 10−5 −0.005 0.001

Trait % Fat 2.09 × 10−5 −0.212 0.050

Methylation cg03837903 5.04 × 10−6 0.028 0.006

Methylation cg04677683 2.34 × 10−14 −0.045 0.006

Methylation cg06200857 1.96 × 10−4 −0.017 0.005

Methylation cg08091561 2.57 × 10−4 −0.020 0.005

Methylation cg09437522 5.56 × 10−7 −0.018 0.004

Methylation cg11480267 6.06 × 10−6 0.029 0.006

Methylation cg15160445 4.60 × 10−16 −0.047 0.006

Methylation cg23249369 1.37 × 10−10 −0.027 0.004

Methylation cg24203465 8.53 × 10−10 −0.018 0.003

Methylation cg24617313 1.12 × 10−16 −0.159 0.019

Methylation cg25326570 2.12 × 10−12 −0.042 0.006

Methylation cg26102503 2.51 × 10−24 −0.045 0.004

*Further details on traits are given in Supplementary Table 4
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inheritance patterns inferred for those sites is supported by the
fact that of the 331 previously unidentified sites, 51.7% (N= 171)
have at least one POE–mQTL identified in our study, and the
replication rate of 65% for the POE-influenced CpGs identified
using a different and genetic-variant dependent method
(POE–mQTL) by an independent study13.

For more than half of the 984 CpGs displaying parent-of-origin
inheritance in the variance component analysis, we detected
associated genetic variants that influence the methylation varia-
tion through a POE. This provided strong evidence that the POEs
on those CpGs were caused by imprinting (Table 3). The fact that
the CpGs that display global parent-of-origin inheritance were
associated with SNPs suggests that (1) the POE–mQTL SNPs
were potentially located in imprinted regions and (2) the POEs
affecting CpGs detected in this study were potentially the
downstream consequence of imprinted states in regions where
POE–mQTLs were located (Supplementary Fig. 1). This is sup-
ported by the substantial enrichment of detected POE–mQTLs in
known imprinted regions and non-genetically regulated imbal-
anced methylation regions. In addition, a high level of complexity
in the association between POE–mQTL SNPs and their regulated
CpGs has been revealed in this study. Previous studies suggested
that complex imprinting patterns were a consequence of regula-
tion by two genetic regulators with opposite direction of POEs11,
whereas a paternal or maternal imprinting pattern could be
regulated by single POE. Here, we observed cases where an

individual CpG displayed different imprinting patterns when
stratified by genotypes at different independent SNPs (Supple-
mentary Fig. 11), showing that multiple regulations targeted the
same CpGs. We also observed cases where single POE–mQTLs
introduce different imprinting patterns to different CpG targets
(Fig. 4), suggesting that the same SNP interacted with other
regulators differently depending on which CpG it targeted.

The enrichment analysis revealed both similarities and differ-
ences between the groups of candidate POE CpGs with and
without POE–mQTL associations (with strong and moderate
evidence of POE). In both groups, the CpGs were in regions
enriched in Polycomb repressed regions and depleted in pro-
moters. The group with POE–mQTLs was enriched in noncoding
RNA regions. This was in line with previous findings suggesting
that Polycomb proteins and imprinted ncRNA acted either
cooperatively or independently to regulate imprinted gene
clusters31,32. The group with POE–mQTL was also located in
regions highly enriched in known imprinted region, whereas that
was not the case for candidate POE CpGs with moderate evi-
dence, suggesting that the former group mainly reflects POEs that
are mechanistically similar with those reported in well-established
studies of imprinting, whereas the latter group may reflect a
separate group of CpGs influenced by POE, but further work is
needed to understand the mechanisms behind our observations.
Further differential enrichment between the two groups was
observed in genic regions of genes containing published EWAS
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CTCF signals. The SNP was also significant for imbalanced methylation (GIT), but not significant in allelic-specific methylation (ASM) or mQTL (classical

additive model) analysis as reported by an independent study. Left bottom: the SNP acted as a cis-POE–mQTL for methylation sites causing a complex

imprinting pattern (cg26102503 as an example). Middle and right bottom: the SNP was also shown a regulatory role in waist (Phenome-wide significance),

BMI, body fat and WHR (per-trait significance), introducing a similar complex imprinting pattern. Boxplots: centre line, median; box limits, upper and lower

quartiles; whiskers, 1.5× interquartile range; points, outliers
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hits for various traits. The candidate POE CpGs without asso-
ciated POE–mQTLs were enriched in genic regions of genes
containing smoking-associated methylation CpGs, whereas the
candidate POE CpGs with associated POE–mQTLs were in
regions enriched in genes previously identified to contain CpGs
associated with BMI and alcohol consumption. These results
suggested the potential downstream consequence of the variation
in these methylation CpGs on these specific traits. This was
further supported by the observation that the majority of sig-
nificantly associated traits for POE-influenced CpGs were meta-
bolic traits (Table 4, Supplementary Data 9). Finally, our
POE–PheWAS analysis for POE–mQTL SNPs identified an
association between one POE–mQTL and waist circumference
and other obesity-related traits. These convergent results imply
that a potentially important consequence of identified POE is
methylation-mediated variation on metabolic traits.

In contrast to additive genetic models which are used in clas-
sical GWAS, the model that we used for POE–mQTL and
POE–PheWAS analysis (Table 1) allowed us to detect
SNP–phenotype (phenotype being either CpGs or complex traits)
associations, in which the SNP causes a phenotypic difference
between reciprocal heterozygous groups but not necessarily
between the two homozygous groups. Using this model, we
identified a locus (tagged by SNP rs6100212) that causes a con-
sistent complex imprinting pattern in both methylation CpGs and
waist circumference and related phenotypes. This locus was not
significant either in published mQTL analyses, or published
GWAS for waist circumference or any other related traits,
potentially because of the lack of phenotypic difference between
the two homozygous groups (Fig. 5). Our findings are in agree-
ment with those of a recent independent study that found this
locus was located in an imbalanced methylation region between
paired chromosomes (Fig. 5)19. Given the fact that for waist
circumference, this POE is particularly strong in the older female
group (Supplementary Table 9, Supplementary Fig. 9), replication
analysis of this finding in GS:SFHS would be best performed in a
sample with a large number of older females with parental origin
assigned for the alleles they carry. In UK Biobank, the number of
females with parental allelic origin assigned in the >47 class was
small (Supplementary Fig. 10), which may explain the lack of
significant replication. rs6100212 was located in a regulatory
region (supported by high-signal intensity of H3K27ac and CTCF
binding as shown in Fig. 5) upstream of the pseudogene PIE-
ZO1P2. Intriguingly, a previous GWAS identified a locus located
within an enhancer (GH20H058887, located in the intron of
nearby gene GNAS) targeting the same gene (PIEZO1P2) (http://
www.genecards.org/) to be associated with waist circumference
adjusted for body mass index33. Given these convergent lines of
research, PIEZO1P2 and its regulatory regions should be treated
as targets of obesity-related research.

We combined results from different analyses to evaluate the
strength of evidence for POEs caused by imprinting for each CpG
(Table 3, Supplementary Data 1). CpGs with strong or very strong
evidence of POEs (those with an associated POE–mQTL, N=
586) displayed clear patterns of overall POEs in the variance
component analysis and had associated mQTL that drove the
observed POE. CpGs in this group should be the focus of future
studies targeting the downstream consequences of POE. Whereas
candidate CpGs classified as not being supported by strong evi-
dence (those without a POE–mQTL associated, N= 398), should
be treated more cautiously. Although they displayed an overall
POE pattern and some distinct features compared with the other
group (Supplementary Fig. 7), the location and the type of genetic
variants causing this pattern are yet to be identified and therefore
need further validation. Other factors might also result in the
increased full-sibling similarity observed in these CpGs, such as a

full-sibling environmental effect, including some forms of
maternal or paternal environmental effects, or a dominance or
other non-additive effect. In the POE–mQTL analysis, a SNP
dominance effect was also estimated in the model, allowing us to
rule this out as responsible for the increased full-sibling similarity
for the majority of candidate CpGs. For three CpGs (cg27572120,
cg14614539, cg25885219), we failed to detect a POE–mQTL
effect, but detected significant dominance effects from at least one
SNP. In addition, POEs could be caused by other mechanisms,
such as a genetic difference of reciprocal heterozygotes caused by
gender-specific biased trinucleotide expansions, or situations
where the expression of a locus in the mother (or father) influ-
ences the phenotypes in the offspring11. The contribution of those
mechanisms to the observed POEs should be explored in future
analyses.

A limitation of this study is the relative lack of power to
detect trans-POE–mQTLs (Nindividuals= 1668) and to detect
SNP–trait associations in our POE–PheWAS (Nindividuals=

7106), given our sample size. This highlights a challenge for
future POE studies because despite the very large size of some
cohort studies, a focus on contemporary and unrelated indivi-
duals means that very limited parent–offspring data are avail-
able. This highlights the need to increase the number and size
of family-based cohorts that allow the detection of potentially
important sources of variation that may be difficult or impos-
sible to study otherwise. An interesting topic of further research
building on our own work would be a systematic investigation
of the translation of POE-associated variation in methylation to
POE-associated gene expression. Finally, longitudinal or stra-
tified analysis could elucidate the stability of POE patterns at
different developmental stages, disease, aging stages and
genetic/environmental backgrounds and perhaps most impor-
tantly, tissue and cell types.

In conclusion, a methylome-wide scan in 5101 individuals
identified 984 candidate CpGs as the targets of POEs caused by
imprinting at the DNA methylation level. Of these 984 candidate
CpGs, there is strong evidence that 191 are previously uni-
dentified POE-influenced CpGs from 171 independent regions.
DNA methylation, genome-wide genotypes and intensive phe-
notyping data were further combined in a series of comprehen-
sive analyses, where some of the potential causes (POE–mQTLs)
and consequences (associated complex traits) of these POEs were
uncovered, providing important targets for future studies.

Methods
Population samples. Generation Scotland: The Scottish Family Health Study (GS:
SFHS) contains 21,387 subjects (Nmales= 8,772, Nfemales= 12,615; average age=
47.2 (SD= 15.1)) from ~7000 families who were recruited from the registers of
collaborating general practices in Scotland between 2006 and 201124. A subset of
5101 GS:SFHS participants have DNA methylation data (see below). The family
structure for that subset includes 1692, 616, 1102 and 306 full siblings,
father–offspring, mother–offspring and couple pairs, respectively. The average age
of parents is 58 (5%–95%:45–78) and the average age of offspring is 34
(5%–95%:19–53). All components of GS:SFHS received ethical approval from the
NHS Tayside Committee on Medical Research Ethics (REC Reference number: 05/
S1401/89). GS:SFHS has also been granted Research Tissue Bank status by the
Tayside Committee on Medical Research Ethics (REC Reference number: 10/
S1402/20), providing generic ethical approval for a wide range of uses within
medical research. Participants all gave written consent after having an opportunity
to discuss the project and before any data or samples were collected.

UK Biobank data were obtained under application number 19655. We used
records on waist circumference on 4378 white-British unrelated individuals for
whom parent-of-origin information could be imputed. The UK Biobank project
was approved by the National Research Ethics Service Committee North West-
Haydock (REC reference: 11/NW/0382). An electronic signed consent was
obtained from the participants.

Genotyping, phasing and imputation in GS:SFHS. Genotyping data were gen-
erated using the Illumina Human OmniExpressExome −8- v1.0 array34–36.
Phasing was performed using SHAPEIT option–duohmm, and imputation was
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performed using the Haplotype Reference Consortium (HRC) reference panel
release 1.137,38. A total of 497,401 genotyped common autosomal SNPs and
7,108,491 imputed common SNPs for 19,994 participants passed Quality Control
(QC) criteria and were used in the subsequent analyses. Details of QC, phasing and
imputation are given in Supplementary Methods. Chromosomal position for
markers are based on human genome assembly GRCh37 (hg19).

DNA methylation data on a subset of GS:SFHS. DNA methylation data were
available for a subset of 5200 participants from the GS:SFHS cohort, as part of the
Stratifying Resilience and Depression Longitudinally (STRADL) project39. DNA
methylation was measured at 866,836 CpGs from whole blood genomic DNA,
using the Illumina Infinium MethylationEPIC array. Two formats of data were
produced after QC and normalisation: (1) Beta values which measure the pro-
portion of methylation at a given CpG (ranging from 0 to 1); and (2) M values
which are the logit transformation of the Beta values. M values were used in
downstream analysis as a previous study suggested these to be more statistically
robust in analysis40. For each methylation site, a linear mixed model was used to
pre-correct M values to remove effects of technical factors. The model converged
successfully for 639,238 CpG sites, and the resulting residualised-M values were
used as DNA methylation phenotypes in downstream analysis (Nparticipants= 5101,
NCpG= 639,238). Details of QC, normalisation, assessment of cell composition,
and pre-correction for M-values are given in Supplementary Methods.

Identification of parent-of-origin of alleles in offspring. Among GS:SFHS par-
ticipants with genotype data (N= 19,994), there were 2680 trios (i.e., both parents
and one offspring), 1185 father–offspring duos, and 3274 mother–offspring duos.
We inferred parent-of-origin allelic transmission for 7,108,491 imputed common
SNPs (MAF ≥ 0.01) in 7106 of the 7139 offsprings. We compared offspring hap-
lotypes to their parents’ using informative loci (i.e., heterozygous) in offspring. We
then evaluated the accuracy of the assigned parent-of-origin haplotype at a gen-
otype level, and found an accuracy of over 99.9% across all SNPs. For details,
see Supplementary Methods. We used parent-of-origin information in the
POE–mQTL analyses and the Phe-WAS described below.

Assessment of number of independent methylation CpGs. Methylation levels
between CpG sites can be highly correlated. The pairwise correlation in
methylation levels between sites was estimated and used to produce a list of
independent sites, which we henceforth refer to as index CpGs, using a similar
algorithm to that used for LD-clumping (i.e., grouping on the basis of linkage
disequilibrium) of SNPs in PLINK, using a window size of 250 kb and a R2 cut-
off of 0.1 (Supplementary Methods)41. The number of independent index CpG
sites and their location was used to compare our results to those described in the
literature.

Variance component analyses of methylation at CpG sites. A variance com-
ponent analysis framework based on multiple genomic and family–environmental
relationship matrices has been previously developed to dissect phenotypic variation
into contributions from additive genetic effect of common SNPs (h2g ), additional

additive genetic effect associated with pedigree (h2k), and a number of shared family

environmental effects (e2f ) for nuclear family relationship, e2s for full-sibling rela-

tionship and e2c for couple relationship)
42,43. We refer to the model applied in these

analyses as the GKFSC model. Here, we applied this method to dissect phenotypic
variation in DNA methylation levels (measured as residualised M values) for each
individual CpG site into these different genetic and family environmental com-
ponents (Aim 1 in Table 1). We then reparameterised the model to identify can-
didate methylation CpGs with parent-of-origin inheritance (Aim 2 in Table 1).

GKFSC variance component analyses. The GKFSC model42,43 includes two
genomic relationship matrices, G (genomic relationship matrix) and K (kinship
relationship matrix)42,44, and three environmental relationship matrices, F (envir-
onmental matrix representing nuclear family-member relationships), S (environ-
mental matrix representing full-sibling relationships) and C (environmental matrix
representing couple relationships) (see Supplementary Methods)42,43. These five
matrices were fitted simultaneously as random effects in a mixed linear model for
methylation at each CpG, together with covariates (i.e., age, age2, sex, cell-counts for
granulocytes, B-lymphocytes, natural killer cells, CD4+ T-lymphocytes and CD8+
T-lymphocytes, season of the visit, appointment time of the day, appointment day of
the week) fitted as fixed effects. The model facilitates estimation of the proportion of
methylation variation explained by each fitted random effect, while accounting for the
effects from the remaining components. The significance of the estimated variance
explained by the random effects was tested using a Wald test (one-sided). A Bon-
ferroni correction was applied to account for multiple testing (Ntest= 639,238).

POE-targeted variance component analyses. The full-sibling associated variance
component (e2s ), modelled in the S matrix, may capture not only the shared
environmental effect between siblings, but also non-additive genetic effects that
increase similarity between siblings. For additive genetic effects, the phenotypic

covariance between parents and their offspring is of similar magnitude to that
between siblings, whereas for phenotypes influenced by POEs caused by imprint-
ing, the covariance between parents (one or both, depending on the POE model,
see Fig. 1) and their offspring is reduced relative to that between full siblings45.
Therefore, for CpGs sites for which methylation levels are influenced by POEs
caused by imprinting, matrix S when fitted simultaneously with the additive genetic
components, can capture the additionally increased similarity between full siblings
caused by POE (see the Results section), and can be used to identify methylation
CpGs potentially influenced by POE (detailed discussion see Supplementary
Methods).

There are several possible imprinting inheritance patterns11, each of which is
expected to produce a characteristic covariance structure between parents and
offspring and between full siblings (see Fig. 1 for examples). To maximise the power
to detect methylation sites influenced by different patterns of POE, we designed three
POE relationship matrices that specifically target the POE generated by complex
imprinting (S, this is the sibling matrix of the GKFSC model), paternal imprinting
(SP) and maternal imprinting (SM), respectively (Fig. 1, Supplementary Methods). For
each CpG, we compared a model that only includes the additive genetic components
G and K (base model in Table 1), against each of the three alternative imprinting
models with one of the POE relationship matrices fitted as random effect, jointly with
the genetic additive effects (G and K). We then selected the alternative imprinting
model with the largest significant improvement of model fit, based on a log-
likelihood-ratio test (LRT, one-sided, degree of freedom= 1. Supplementary
Methods). Multiple testing correction was performed using a false discovery rate
(FDR) at 0.05 level (Ntest= 639,238). These analyses were performed in GCTA46. The
visualisation of results was performed using the R package coMET47.

Parent-of-origin effect mQTL analyses. To locate the loci that cause the POE in
the 984 methylation CpGs identified in the variance component analysis, a
POE–mQTL analysis was performed by testing 7,108,491 imputed SNPs (MAF ≥
0.01) against methylation levels for each of these 984 methylation CpGs. There
were 1668 offsprings in GS:SFHS with both parent-of-origin assigned to alleles and
DNA-methylation data that could be used in our POE–mQTL analysis. For each
CpG, methylation values were pre-corrected to account for relatedness by fitting a
genomic relationship matrix (G) as a random effect and fitting the following
variables as fixed effects: age, age2, sex, cell count, season of the visit, appointment
time of the day, appointment day of the week in a linear mixed model. The
residualised M values from the model described above were regressed against three
orthogonal genetic effects (two-sided): an additive effect (genotypes coded as 0, 1, 1
and 2 for AA, Aa, aA and aa), a dominance effect (genotypes coded as 0, 1, 1, 0 for
AA, Aa, aA and aa), and a POE (genotypes coded as 0, −1, 1 and 0 for AA, Aa, aA
and aa) (Table 1)13. SNPs showing a significant POE for a methylation CpG and
within less than 1Mb from that CpG were defined as cis-POE–mQTLs8. SNPs
showing a significant POE for a methylation CpG located more than 5Mb away
from that CpG were defined as trans-POE–mQTLs48. SNPs located between 1 and
5Mb from their POE-associated methylation CpG were not considered. To
determine the significance threshold for association, a permutation-based multiple
testing correction was performed for cis-POE–mQTLs and trans-POE–mQTLs
analyses separately at the FDR ≤ 0.05 level. For the permutation test, individual
identifiers were shuffled and the correlation structure between SNPs and between
CpGs was retained9,48. Ten replicates were used to establish a stable distribution of
the test statistic under the null hypothesis, as suggested in previous studies9,48,
which led to an estimate of the FDR ≤ 0.05 p-value threshold of 3.6 × 10−4 for cis-
POE–mQTLs and 2.19 × 10−9 for trans-POE–mQTLs. PLINK was used to produce
a set of independent POE–mQTLs by clumping POE-associated SNPs within a
window size of 250 kb around the most significant associated SNP (the index SNP)
with an R2 threshold of 0.1 and a p-value threshold of 1 for PPOE–mQTL

41.

POE–EWAS for associations between complex traits and POE CpGs. To assess
the phenotypic effect of variation in methylation levels at the 984 CpGs identified
as potentially influenced by POE, methylation levels at these sites were correlated
with phenotypic values for 34 anthropometric, cardiometabolic, psychiatric and
psychological traits available in GS:SFHS (details of traits and pre-processing are in
Supplementary Table 4)24. A linear mixed model was used to pre-correct each of
the 34 traits for covariates (age, age2, sex, clinic) by including them in the model as
fixed effects, and for relatedness by fitting the G and K matrices as random effects,
following previous work49. Methylation levels were pre-adjusted for cell count,
season of the visit, appointment time of the day, appointment day of the week,
never/ever smoking and pack years of smoking. Pairwise association tests were
performed by regressing each pre-corrected phenotype against adjusted methyla-
tion levels at each CpG site using a linear regression model (tested two-sided). A
principal component analysis of the 34 traits revealed that the top 27 principal
components explained more than 95% of the variation and any component beyond
it has an eigenvalue <0.5 (Kaiser’s rule), hence the number of independently tested
traits (Ninde_traits) was estimated to be 27. Bonferroni-based multiple testing cor-
rection was performed, with the p-value significance threshold for multiple traits
level estimated to be 1.88 × 10−6 (Ntest= 27*984= 26,568), and for per-trait level
estimated to be 5.08 × 10−5 (Ntest= 984).
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POE-accounted phenotype-wide association study. To explore if the
POE–mQTL were also associated with POE effects on phenotypes, the 7106 GS:
SFHS offspring with parent-of-origin assigned alleles were used in a POE–PheWAS
for 34 traits (trait list and pre-correction process were the same as used in the
previous section; see Table s1). Only SNPs that were significant in the POE–mQTL
analyses described above were used (Ntotal_snps= 38,122, Ninde_snps= 1895) in this
analysis. The same regression model applied to the residualised M values in
POE–mQTL analysis was used to perform the POE–PheWAS on the 34 pre-
corrected phenotypes (Table 1). As above, the POE–PheWAS model accounts for
additive effects, dominance and POEs (tested two-sided). The number of inde-
pendently tested traits (Ninde_traits) was estimated to be 27 (see the previous sec-
tion), and multiple test correction was performed using Bonferroni method (Ntest

=Ninde_snps*Ninde_traits= 51,165).
In order to validate the PheWAS results obtained in GS:SFHS, UK Biobank

(UKB) data (Nparticipants= 501,726) were used in a replication analysis50. For details
of sample information, the identification of nuclear family members, phasing,
imputation and QC and parent-of-origin information assignment,
see Supplementary Methods. Parent-of-origin information was assigned to alleles
of the target SNP (i.e., significant in the GS:SFHS PheWAS) for 4378 white-British
unrelated UKB offspring (Kinship coefficient ≤ 0.05) used in the replication
analysis (Supplementary Methods). Log-transformed waist circumference was
tested for POE using a linear regression model accounting for additive effects,
dominance and POEs as well as a number of covariates (age, sex, processing batch,
assessment centre, genotype array and top 15 principal components of ancestry) as
fixed effects (tested two-sided).

Functional enrichment of POE-influenced CpGs. To further characterise the
methylation CpGs identified as displaying POEs, ANNOVAR51 was used to
annotate CpGs to regions of (1) different chromatin- and histone-modification
states, as DNA methylation dynamics is associated with altered chromatin struc-
ture52, and coupled with histone modifications in relevant tissues53, and tran-
scription factor binding sites. A lymphoblastoid cell line (GM12878) and an
immortalised myelogenous leukaemia cell line (K562) were used in this annotation
as they are the two cells produced from blood among primary cell lines with
abundant annotation information in the ENCODE project54. Methylation CpGs
were also annotated to (2) regions that are significant in published GWAS and
EWAS and (3) substructure regions of genes (for databases used see Supplementary
Methods). Fisher’s exact test was used to test for enrichment/depletion of POE-
influenced CpGs sites in target annotations. The Bonferroni method was used for
multiple testing correction (Ntest= 212 (see Supplementary Data 2), p-value
threshold of significance= 2.36 × 10−4).

Gene set-based enrichment of POE-influenced CpGs. A further characterisation
of the POE-influenced methylation CpGs involved annotating these to genes and
then testing for enrichment of those annotated genes in specific gene set.
ANNOVAR51 was used to annotate CpGs to genes. A CpG site was assigned to its
nearest gene if it was located between 5 kb of the gene’s transcription start site
(TSS) and 1 kb distance from the transcription end site (TES). The online tool
DAVID was used to perform an enrichment analysis in GO-ontology terms, bio-
logical pathways, GAD (Genetic Association Database) diseases, protein domains
and interactions55. The enrichment test was performed using the EASE score test
(a modified Fisher exact test which is more conservative than the standard Fisher
exact test) to see whether the proportion of genes falling into the tested annotation
differs in a target group compared with the background group.

Data availability
We have made summary statistics of significant results in all tests available in Tables and

Supplementary Information. Full summary statistics are available from authors upon

reasonable request and consistent with participant consent. Data are available from the

MRC IGMM Institutional Data Access/Ethics Committee for researchers who meet the

criteria for access to confidential data. GS:SFHS data are available to researchers on

application to the Generation Scotland Access Committee (access@generationscotland.

org). The managed access process ensures that approval is granted only to research which

comes under the terms of participant consent which does not allow making participant

information publicly available. UK biobank data are available from UK Biobank, for

details see: http://www.ukbiobank.ac.uk/wp-content/uploads/2012/09/Access-

Procedures-2011-1.pdf.
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