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ABSTRACT

Aim Parental care improves offspring survival and therefore has a major impact on reproductive
success. Whilst the influence of ambient environment on parental care is increasingly recognised, the
impacts of environmental fluctuations remain largely unexplored. Assessing the impacts of
environmental stochasticity, however, is essential for understanding how populations will respond to
climate change. Here we investigate the influence of environmental stochasticity on biparental care in a
worldwide avian genus.

Location Global

Methods We assembled data on biparental care in 36 plover populations (Charadrius spp.), from six
continents, collected over several decades between 1981 and 2012. Using a space-for-time approach we
investigate how average temperature, temperature stochasticity (i.e. year to year variation) and
seasonality during the breeding season influences parental cooperation during care.

Results We show that both average ambient temperature and its fluctuations influence parental
cooperation during incubation. Male care relative to females increases with both mean ambient
temperature and stochasticity in temperature. Remarkably, local climatic conditions fully explained
within-species, population differences in parental cooperation, but not differences among species.
Main conclusions Taken together, these results imply that climate change might have a multifaceted
influence upon the reproductive behaviour and demography of populations by influencing parental care

strategies and breeding systems.

INTRODUCTION
Climate change influences the ecology and life-history of animals (Both & Visser 2001, Bradshaw &
Holzapfel 2006; Dunn & Winkler 2010). It is associated with phenological shifts in life-history (e.g.

earlier spring and/or later autumn migration, earlier breeding), changes in geographical ranges and
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physiology, as well as population trends (Walther ef al., 2002; Winkler et al., 2002; Végvari et al., 2010;
Thompson et al., 2013; Vasseur et al., 2014; IPCC, 2014; Lawson et al., 2015). Although climate
change has severe impacts on natural systems, our knowledge about how animals responds
behaviourally to altered climate is surprisingly limited. Monitoring behaviour would however enable us

to predict to what extent can behavioural plasticity mitigate the effects of climate change.

Investigations of climate change often only focus on the impacts of average temperatures on
populations (Walther et al., 2002). Nevertheless, there is a growing awareness that increased
temperature variability, as well as a greater frequency and magnitude of climate extremes may also have
a significant effect on biological systems (Lawson ef al., 2015, Thompson et al., 2013; Vasseur et al.,
2014; IPCC 2014). Environmental uncertainty appears to increase with changing climatic conditions
(Thompson et al., 2013; Vasseur et al., 2014; Lawson et al., 2015), therefore temperature fluctuations
may represent a potentially large, but to date mostly neglected threat to living organisms. In this study
we aim to understand how animals respond to climate change in terms of behaviour and how
behavioural plasticity may mitigate the ecological impact of climate change. We investigate parental
care that is a major contributor to reproductive success in a wide range of taxa. Therefore, parental
behaviour might represent an important link between climate change and its impacts on populations,
and it might change both in function of both average climatic conditions, as well as with its between-

year and within-season variation (stochasticity and seasonality).

Parental care (i.e. parental behaviour that enhances the fitness of offspring and evolved for this
function) is one of the most diverse social behaviours (Clutton-Brock 1991; McGraw et al., 2010; Royle
et al., 2012). There is immense variation in the type and duration of care parents provide, the timing and

duration of care-giving by each sex, and in ecological and morphological adaptations associated with

6
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care (Clutton-Brock 1991; McGraw et al., 2010; Royle et al., 2012; Székely 2014; Bulla et al., 2014).
Whilst parental behaviour has been studied extensively in wild populations (Royle et al., 2012),
evidence on how climate influences parental strategies is scant. Theoretical and empirical studies
suggest that climate influences both the costs of care, i.e. the time and energy parents spend on rearing
the young and the benefits of care, i.e. improved survival and recruitment of young (Clutton-Brock,
1991; Bonsall & Klug, 2011; Klug et al., 2012). For instance, ambient temperature may influence the
energetic costs of care (e.g. food provisioning, offspring brooding), and thus affect parental survival
(Webb et al., 2002; Bonsall & Klug, 2011; Klug et al., 2012). Climatic conditions also influence the
dependence of young on care, that particularly increases in extremely cold or hot climates, or during
times of resource shortages. Parental protection and provisioning substantially improve offspring
survival under these harsh conditions, as opposed to more favourable conditions (Wilson, 1975;
Clutton-Brock, 1991; Alrashidi et al., 2011, Bonsall & Klug, 2011). Although theoretical models
suggest that increased climate variability will influence life-history trade-offs and thus parental care
(Bonsall & Klug, 2011; Klug et al., 2012; Tokdlyi et al., 2012), surprisingly little is known about the

impact of these fluctuations on wild populations.

To explore the impact of climate on parental care, we investigate incubation behaviour, the most
common form of care in birds (Deeming, 2002; Székely et al., 2013). In nearly all bird species one (or
both) parents incubate the eggs for several weeks, and in some cases for over two months (Deeming,
2002). By incubating the eggs, the parents keep egg temperature near the optimal for embryonic
development by turning and warming or cooling the eggs in cold or hot climates, respectively
(Deeming, 2002; AlRashidi et al., 2011; Vincze et al., 2013; Ghalambor & Martin, 2002; Royle et al.,
2012). Ambient temperature is expected to have a particularly significant impact on incubation in

ground-nesting birds, because their eggs and the incubating parent are not buffered against extreme

7
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temperatures (Webb 1987; Deeming 2002; AlRashidi et al., 2011).

In environments with ambient temperatures close to optimal embryonic development (35-39°C: Webb,
1987), in the absence of other constraints, one parent may provide sufficient incubation (Deeming 2002;
AlRashidi et al., 2011; Vincze et al., 2013). If the environmental conditions, however, deviate from the
optimal in either direction, one would expect increased parental effort by both sexes. However, male
involvement in parental care during incubation is usually less remarkable than that of females,
providing them with increased potential to alter their effort if needed (Auer et al., 2007). Consequently,
we expect males' share relative to females' to increase under harsh ambient conditions. Under harsh
environmental condition we mean high or low average temperatures or high interannual fluctuations of
temperatures (stochasticity), since high between-year environmental fluctuations may increase the
probability of extreme events to occur. Additionally, we test the effect of within breeding season
environmental change. We predict increased male share in less seasonal, as well as in highly seasonal
environments, in contrast to environments with medium seasonality. Under constant environmental
circumstances extended parental care is predicted for both sexes as part of the tropical life-history
syndrome (Wilson 1985), therefore in less seasonal environments male share should increase. Highly
seasonal environments on the other hand restrict breeding time and remating opportunities, therefore it
might increase the value of current relative to future broods. Therefore, highly seasonal environments

may also select for increased male share relative to females.

In this study we use data from 36 plover populations. Plovers (Charadrius spp.) are ground nesting
shorebirds with body mass ranging from approximately 20g to 50g. The ancestor of this monophyletic
group likely evolved in temperate or cold climates of the Northern hemisphere (dos Remedios ef al.

2015). Plovers breed on all continents except Antarctica in habitats as varied as arctic tundra, temperate
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grassland, tropical beaches, salt marshes, sand dunes, semi-deserts, deserts and high altitude mountain
lake shores (Piersma & Wiersma 1996). This immense variation in breeding environment provides an
excellent opportunity to conduct a geographically large-scale study, capturing a substantial range of
global ecological diversity. Plovers usually lay 2-4 eggs in uninsulated scrapes. Incubation is usually
carried out by both parents, although the extent of male involvement in incubation is highly variable
among species and populations (Vincze et al., 2013). In addition, the share of incubation by each sex
may vary throughout the day: in most species males tend to incubate at night, whereas females carry out

most of the daytime incubation (Vincze et al., 2013; but see St Clair et al., 2010a).

Here we investigate how climate influences parental behaviour using an extensive data set on parental
care that cover temperate and tropical habitats in both the northern and southern hemispheres (between
55°N to 52°S latitude, and between 145°E to 121°W longitude). To see how climate influence incubation
behaviour, we used the space-for-time substitution approach, i.e. we infer temporal trends from spatial
data, a powerful method in ecology (Pickett, 1989). First, we establish that how the division of parental
care varies across species, populations and over the day. Second, we test whether ambient temperature

and fluctuations in temperature influence the division of care between males and females.

METHODS

Fieldwork

Fieldwork was carried out in 36 breeding populations, and ranged from one to 16 breeding seasons per
population (Table S1). Parents were captured on their nest using funnel traps, noose mats, box traps or
bownet traps while incubating (see Székely et al., 2008 for general methodology, and specific
references in Table S1). For each captured bird we recorded the time of capture and sex of the captured

individual. In three populations (Florida, Monterey Bay, Cape Peninsula) capture data were augmented

9
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by opportunistic observations of the incubating parent. Sex determination was based on plumage
characteristics in the field and/or measurements (e.g. vent), sex-specific DNA markers (following
methods in Parra ef al., 2014; Gratto-Trevor, 2011), and, in a few cases, based on observations of

copulation behaviour (Table S1).

Egg-laying date was defined as the date of clutch completion. This was either known, for nests that
were found during egg-laying, or estimated by floating eggs or measuring egg mass relative to egg size
(Székely et al., 2008; Fraga & Amat, 1996). Egg-laying dates were standardised separately for each
population by subtracting the mean and dividing by the standard deviation of laying dates for a given
population. Since males have a greater tendency to be at the nest during egg-laying and egg-hatching
(Székely T & Kosztolanyi A, pers. obs), we only included nests that were incubated for at least three
days and but not longer than 20 days (incubation usually lasts for 25-26 days in small plovers, Piersma
& Wiersma, 1996). If an individual was captured (or observed) several times, we only included its first
record, in order to exclude birds with potentially altered behaviour due to previous disturbance. To
investigate daily patterns of incubation behaviour, we divided the day into twelve 2-hour time periods
following previous analyses of incubation patterns in small plovers (AlRashidi ef al., 2011; Vincze et
al.,2013). Records between 00h and 04h were not included in data analyses, since we lacked such data
from most populations. To estimate parental care division between the sexes, we used the sex of
incubating parent as binary response variable in statistical models. In total, 5,591 individuals were

included in the dataset (Table S1).

Consistency between captures and behavioural observations
To test whether capture times reflected the daily routine of shared incubation between the sexes, we

compared male share as estimated based on capture data with male share as estimated based on

10



Global Ecology and Biogeography Page 12 of 45

é 229  continuous behavioural observations in six populations of two species, from which both capture data
g 230 and behavioural data were available (see Vincze et al., 2013 for details on behavioural observations).
? 231 Based on capture data, male share (%, capture) was calculated as the percentage of male captures of all
?O 232 captures (males plus females) at the nests during a given 2-hour time period. Based on behavioural

1o 233 observations, male share (%, behaviour) was calculated as the % of time when males incubated of the
14 234 total time the nest was incubated by either parent in a given 2-hour time period. The relationship

16 235  between capture-based and behavioural observation-based male share estimates was analysed using

19 236  linear regressions for the six populations separately, where each 2-hour time period represented a

21 237  datum. These data points were weighted by the number of captures in each 2-hour time period, since the
gi 238 precision of the male share (%, capture) estimate is expected to increase with the total number of

o6 239 individuals captured in a given time period.

241 Climate data

2
33 242 We extracted ambient temperature data from the University of East Anglia Climate Research Unit
gg 243  database (CRU, http://www.cru.uea.ac.uk/; version 3.10.01; Mitchell & Jones, 2005). The CRU

gg 244  database is a global dataset containing interpolated monthly average temperatures (°C) from 1901

39
40 245 onward in a grid of spatial coordinates (0.5 x 0.5 degrees). For each population we selected
41

f’é 246 temperatures from 20 years prior to the last year of data collection (including the latter); this seemed

44 : . . . :
45 247 sufficient to represent the ambient temperatures the plovers experienced in our study given that the

46

47 248 largest temporal dataset based on captures spanned 16 years. Since our study focused on parental
48

gg 249  behaviour, we only used ambient temperatures from those months when capture data were collected in

]
52 250  each population; these months are referred to as ‘the breeding season’. Using the same number of years
53

54 251 for each population enabled us to estimate the three climate variables used here (see bellow) with

55

gg 252  similar precision in each population, irrespective of the number of data collection years in each of these.
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Note that although results presented are based on climate data of 20 years, we carried out sensitivity
analyses by repeating the analyses using 15, 10 and 5 years climate data prior to the last year of field

data collection. These models yielded highly consistent results (see SI Appendix, Table S2).

We derived three variables to characterise ambient environment. (i) Average temperature at each site
refers to mean temperature over the breeding season, calculated from monthly means for each breeding
season and averaged over 20 years. (i1) Between-year variation was calculated as the standard deviation
of each month’s average temperature across the 20 years, averaged over the breeding season for each
population. (iii) Within-season temperature variation was obtained by calculating the average
temperature for each month of the breeding season over 20 years, and then calculating the difference
between the maximum and minimum monthly average temperatures. Therefore, the latter two variables
refer to the average between-year and within-season variation in ambient temperature during breeding at
a given site. Climate variables tend to be correlated (see for example T6kolyi et al., 2014), therefore to
test whether collinearity exists in models containing all three temperature variables, we calculated
variance inflation factors (VIFs) for models without interactions, using the “vif.mer” function (available
at: https://github.com/aufrank/R-hacks/blob/master/mer-utils.R, last accessed on: 15 September 2014) in
R (R Core Team, 2014). None of the three climatic variables had VIF > 2.52. Additionally, none of the
correlation coefficients between pairs of climate variables across populations exceeded 0.55 (Pearson
correlation). Therefore, collinearity between temperature variables does not seem to be a major issue in

our analyses.

Statistical analyses
Since no population-level phylogenetic hypothesis is available for the 36 plover populations studied

here, we used mixed-effects models to analyse relationships between care division and environmental
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data. To account for the phylogenetic non-independence we included population and species identity as
random factors. We used the sex of parents (male or female) captured on the nest as the response
variable in binomial models. Species, population and nest identity were included as nested random
factors in all models. Although we only used one capture per individual, nest identity was included as a
random factor in the models to control for potential non-independence of male and female behaviour for
a given nest. Time period was included in models as a fixed factor with 10 levels (i. e. 2 hour windows,
between 04h and 24h). The three temperature variables were standardised, using the “scale” function
implemented in R, to ease model fitting and comparing the effects. The standardised variables were
included in the models as second order orthogonal polynomials, because of the expected non-linear
effects (see above, Vincze ef al. 2013). Although we also tested the effects of laying date, it was

excluded from further models because it did not correlate with the sex of the parent captured.

We built four mixed effects models. First, to test how care division varies throughout the day and across
species and populations we constructed a model that included time period and the random factors of
species, population and nest IDs (model 1). Second, to test whether the daily pattern of incubation
differed between plover species and populations, we built two models: in one of these models
additionally to the terms in model 1 we included the species x time period interaction (model 2),

whereas in the other the population x time period interaction was included (model 3).

Third, to investigate the effects of ambient temperature, and its fluctuations between years and within-
seasons, we constructed a model (model 4) that included the time period factor, the three temperature

variables (i.e., mean, within-season and between year variation), and two-way interactions between the
time period and temperature variables. The significance of each predictor was assessed by removing it

from the model and comparing the resulting model to the original using likelihood ratio statistics (see

13
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”
2 301 Figure S1 for schematic illustration of hypothesis testing).

3

4

5 302

6

7 303 Mixed models were built using the “glmer” function, as implemented in the “lme4” package (version
8

?o 304 1.1-7, Bates et al., 2015) in R (version 3.1.1, R Core Team, 2014).

11

12 305

13

14 306 Daily routines of parental care in different climate scenarios

15

16 307  To investigate the impact of climate on daily routines during incubation, we removed from model 4 the
19 308  non-significant interaction and quadratic terms for between-year variation(Table 1), and used this
21 309 resulting model for predictions. We predicted the effect of the three temperature variables on daily
gi 310 routines of care division for nine climate scenarios. For each temperature variable, we calculated the
o6 311 predicted values for the 10 time periods at the 2.5% quantile, median and 97.5% quantile value of the
28 312  temperature variable in question, while the other two temperature variables were kept at their median
313  values. Only fixed effects were taken into account when extracting model predictions.

2
33 314

351315 RESULTS
36

37 . . .
3g 316 Consistency between captures and behavioural observations

39
40 317 Capture-based behavioural estimates reflect parental care division in plovers, since capture-based
41

f’é 318 estimates of male share were highly correlated with estimates of male share obtained by behavioural

44
45 319  observations (Figure 1, R?=10.61 - 0.97, n = 6 populations).
46

47 320
48

gg 321 Incubation routines in different populations

]
52 322 Incubation routines differed between different plover species and populations (models 2 & 3, Table 1).
53

gg 323 On the one hand, in species like C. melodus, males and females spent comparable time on incubation
gg 324  throughout the day (Figure 2). On the other hand, incubation routines followed a diurnal pattern in
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species such as C. alexandrinus, ruficapillus and modestus (Figure 2). Furthermore, there were
considerable differences in daily pattern of incubation among the different populations of the same

species (Figure 2).

Ambient environment, between- and within-season variation

Mean ambient temperature, as well as between- and within-season variation in temperature strongly
influenced parental care division (model 4, Table 1). Male share of incubation generally increased with
mean ambient temperature. This effect was, however, dependent on time of the day as indicated by the
significant interaction between time period and mean ambient temperature. For example, during
daylight hours (8 - 20 h) males’ share of incubation increased with mean ambient temperature, though

the increase was non-linear and varied depending on the specific time window (Figure 3a).

Temperature fluctuations also predicted incubation (Figure 3b and c¢). Between-year variation tended to
have a linear influence on daily shifts: male share of incubation increased with variation in temperature
between years and this effect was similar throughout the day (Figure 3b). Within-season temperature
change also predicted shifts in daily routines of males relative to females: with increasing change in
temperature during the breeding season, male share decreased between 6 h and 16 h. The effect of
within-season temperature variation was however strongly non-linear early in the morning and in the

evening (Figure 3c¢).

Once the three temperature variables were included in the models, the variance explained by population

decreased considerably from 0.115 (model 1) to 0.005 (model 4). In contrast, the variance explained by

species changed very little from 0.184 (model 1) to 0.191 (model 4).
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Daily routines in different climate scenarios

With increasing mean ambient temperature and between-year variation, male share increases during
daylight hours, while in the case of mean temperate this happened at the expense of a lowered share of
care during the early morning hours (Figure 4a,b). Furthermore, with increasing within-season

temperature variation, male share in incubation decreases during daylight hours (Figure 4c).

DISCUSSION

Three major insights have emerged from our study regarding the effect of environment on parental
behaviour. First, male contribution to parental care was strongly influenced by ambient temperature.
Second, temperature effects on behaviour varied with time of the day. Therefore, not just overall care
division changed with changing environmental conditions, but the daily routine of care division was
also affected. Specifically, male share of parental care increased with mean temperature and between-
year variation in temperature during daylight hours. When conditions became harsher, i.e. the mean
temperature and or the between-year unpredictability of temperature was high, males generally
increased their effort relative to females during incubation. Finally, geographic variation in care division
within species was largely explained by local ambient temperatures, although the differences between
different species persisted even after controlling for climatic effects. The latter suggests that different
plover populations respond in similar ways to ambient environment, reflecting phenotypic plasticity in
behaviour. In contrast, there is substantial species difference in parental care, reflecting a strong

phylogenetic effect.

Our results highlight that not only the average environmental conditions, but also their between- and
within-season variation play a pivotal role in shaping care division and daily routines of parental care in

biparental species. Environmental uncertainty influences reproduction (e.g. breeding initiation, song
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display) and life-history (e.g. egg size, clutch size, age of sexual maturity; Lips, 2001; Dewar &
Richard, 2007; Botero et al., 2009; Bonsall & Klug, 2011). In addition, unpredictable environmental
variation influences mating systems (Botero & Rubenstein, 2012), and may promote the evolution of
cooperative breeding strategies (Rubenstein & Lovette, 2007; Jetz & Rubenstein, 2011; but see
Gonzalez et al., 2013 for opposite effect). Here we show that parental cooperation is also strongly

influenced by predictable and stochastic climate variations.

We propose that more cooperative male behaviour is driven by the need to protect the embryo better
under higher frequencies of extreme events (Deeming, 2002; AlRashidi et al., 2011). The expected
changes in care division are most likely to occur during mid-day leading to altered daily routines of
parental care. As climate change models predict both an increase in temperature and greater frequency
of extreme events (Vasseur et al., 2014; IPCC, 2014; Lawson et al., 2015), our findings suggest that
pattern of parental care will shift in the near future in biparental species. Such shifts may include greater
diurnal incubation responsibilities for the sex with the more variable parental contribution (usually
males in birds and mammals, Clutton-Brock, 1991). On the one hand, these shifts may help to maintain
hatching success and hatchling condition in the provisioned brood under worsening environmental
conditions (Reid ef al., 2002). On the other hand, they may preclude the sex that increases parental
effort from performing other activities (Dunning, 2002; Reid et al., 2002; Bulla et al., 2014). For
instance, a greater share of care division by a given sex may constrain its foraging time, or may reduce
its ability to attract further mates or provision other broods, therefore may directly influence mating
systems (e.g. Reid et al., 2002). These effects would be especially important in species with flexible and

variable parental care and mating systems (e.g. Reid ef al., 2002; Kosztolanyi et al., 2006).

Periodicity over the day drives daily behavioural routines (Houston & McNamara 1999). Similar to
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earlier studies (AlRashidi ef al. 2011, Vincze et al., 2013), we found significant daily variation in care
provisioning by each sex in specific plover populations. A novel aspect of our current study is that we
relate variations in daily routines of care to variation in environmental variables. Our results suggest
that behavioural response to temperature changed during the day, in particular, behaviour around mid-
day seemed to be most influenced. This suggests that breeding routines are driven by avoiding extreme
hot temperatures. These results may contribute to a detailed theoretical treatment of daily parental
routines. The current lack of such models hampers our ability to provide a more detailed explanation for
the effect of environmental conditions on daily routines and hence to guide further empirical

investigations.

Since male contribution to care correlates with other aspects of breeding systems (e.g. 0% male care
usually associated with polygyny, whereas 100% male care may be associated with polyandry and sex
role reversal, Searcy & Yasukawa, 1995, Liker et al., 2013), our work suggests that breeding systems
will also respond to changes in ambient temperature. To follow up this line of investigation, it would be
interesting to study how brood care patterns, frequency of polygamy and extra pair paternity may vary
in relation to environmental fluctuations (e.g. in temperatures, food, resource quality, and territory
quality). Since these reproductive behaviours make fundamental contributions to reproductive success,
we believe it is imperative to assess the impact of climate change not only on parental behaviour, but on

other aspects of breeding systems including mate choice, mating system, and pair bonding.

Care division within a species varied with between-population differences in climatic conditions. Local
adaptation is unlikely since many plover species show low genetic differentiation (Funk et al. 2007,
Kiipper et al., 2012, Eberhardt-Phillips et al., 2015). It is more likely that sex roles during biparental

care are phenotypically plastic within species, and are modulated by local conditions. This interpretation
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is consistent with previous studies, which have demonstrated behavioural plasticity according to local
environments during incubation (Al Rashidi et al., 2011, Vincze et al., 2013). Another consequence of
the observed flexibility in parental behaviour is that these populations might effectively be able to cope
with changing climate at least within the climate range studied here. More climate resilience may be

achieved by phenological changes (e.g. Chambers ef al., 2008).

Although we found highly significant relationships between environmental fluctuation, its within-year
variability, parental care division and its daily routines, the theoretical bases of these relationships have
not been fully explored (Klug ef al., 2012). Previous theoretical analyses of care and life history traits
pointed out that environmental unpredictability can have sophisticated and counter-intuitive influences
on provision of care (Klug et al., 2012). To model these future scenarios, it is essential to assess how
different aspects of climate influence contemporary populations. Since changing climate may alter the
costs and benefits of parental care (Clutton-Brock, 1991; Royle et al., 2012; IPCC, 2014), climate
change is likely to affect the reproductive success of individuals that, in turn, will be likely to have an
impact on population growth and resilience. We call for new theoretical models to tease apart the effects

of ambient environment, social environment and life-histories on care provisioning and its daily pattern.

Using parental care data from an exceptionally wide geographic range, we have shown that incubation,
a major component of parental care in birds, is significantly related to mean and variation of ambient
temperatures. Daily patterns of care division between the sexes are strongly affected by temperatures.
Theoretical explorations show that ambient temperature, as well as its predictable and unpredictable
fluctuations, will influence diurnal incubation patterns (Bonsall & Klug, 2011; Klug et al., 2012). We
recommend follow up studies building upon our research framework by augmenting these analyses with

other climatic variables (e.g. precipitation, wind), and using a variety of response variables such as
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mating system, brood survival and life-histories. In addition, we encourage the development of
theoretical models investigating the influence of environmental fluctuations on parental care and

breeding system.
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Table 1 Male incubation (binary response variable) in different plover species and populations (n =

5591 individuals). Mixed effects models. x2 values, degrees of freedom (df) and probability (p) of
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likelihood ratio tests are given.

x2 (df) P

Model 1  |Fixed term

Time period 1017.95 (9) <0.0001

Random terms

Species 9.65 (1) 0.0019

Population 4491 (1) <0.0001

Nest ID 0.00 (1) 1.000
Model 2 |Fixed term

Time period 64.58 (9) <0.0001

Random terms

Population 38.26 (1) < (.0001

Species x time period 36.87 (1) <0.0001
Model 3 |Fixed term

Time period 176.43 (9) <0.0001

Random terms

Species 11.37 (1) 0.0007

Population x time period 85.05 (1) <0.0001
Model 4 |Fixed terms

Time period 1216.20 (63) <0.0001

Mean temperature (°C)
Interaction with time period 84.42 (18) <0.0001
Quadratic effect 32.03 (10) 0.0004
Between-year temperature variation (°C)

Interaction with time period 15.23 (18) 0.6462

Quadratic effect 2.82 (1) 0.0929

Linear effect 7.34 (1) 0.0067

Within-season temperature variation (°C)

Interaction with time period 70.81 (18) <0.0001

Quadratic effect 33.68 (10) 0.0002

Random terms

Species 14.07 (1) 0.0002

Population 0.05 (1) 0.8298

Nest identity 0.00 (1) 1.0000

other variables. Interaction terms were tested by removing the interaction from full

model and comparing the resulting model to the original. Quadratic terms were tested
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Figure legends

Figure 1. Male share of nest attendance estimated from capture data (%, capture) in relation
to male share of nest attendance as obtained from behavioural observations (%, behaviour).
Each point represents a 2-hour time period. Dashed lines represent equal estimates by the two
methods. Statistics on each panel show the results of a least-squares regression weighted by
the number of captures in each time period. R” represents the coefficient of determination.
Figure 2. Male share of nest attendance (%) calculated from capture data in 36 populations.
Each species is plotted on different panel, except Kentish plover and snowy plover which are
shown on 3 and 2 panels, respectively. Each line represents a population. Legends refer to
location numbers on the map (see Table S1 for population names and exact coordinates).
Figure 3 Daily changes in predicted probability of male care (i.e. capture) in relation to (a)
mean temperature, (b) between-year variation and (c) within-season variation. Each panel
shows a different time period (see panel title for time period). Dashed lines represent 95%
confidence intervals. Predictions are based on minimal model 4 from which the non-
significant interaction and quadratic terms for between-year variation were removed (Table
1).

Figure 4. Predicted probability of male care (i.e. male capture) throughout the day under
different climate scenarios. Each panel shows a climate scenario where the candidate
temperature variable (i.e. shown by the main title of each sub-graph) takes three values (i.e.,
2.5% quantile, median, 97.5% quantile), while the other two temperature variables are set to
their median. Predictions are based on minimal model 4 from which the non-significant

interaction and quadratic terms for between-year variation were removed (Table 1).
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Figure S1. Schematic presentation of how the effect of each variable was tested. All derived models

(i.e. shown by arrowheads) were compared to the model from which they originate (i.e. shown by

Model 4

Fixed terms

Time period

Mean temp. (2nd order polynomial)

Between-season temp. variation (2nd order polynomial)
Within-season temp. variation (2nd order polynomial)

Time period:Mean temp. (2nd order polynomial)

Time period:Between-season temp. variation (2nd order polynomial)
Time period:Within-season temp. variation (2nd order polynomial)
Random terms

Fixed terms

Time period
Removing
Time period
Time period:Mean temp. (2nd order polynomial)
Time period:Between-season temp. varation (2nd order polynomial)
Time period:Within-season temp. variation {2nd order polynomial)

Mest identity within Population within Species

Random terms

Nest identity
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Population
Removing
Population

Species
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Specdies

Y

Time period:Mean temp. interaction
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Time period:Within-season temp. variation interaction
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Time period:Within-season temp. variation (2nd order polynomial)
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the base of the arrows). Models were compared using likelihood ratio statistics.
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Table S1 Summary of parental care data from different populations of plovers Charadrius spp. Sexing method refers to molecular sexing (M), plumage

and/or other morphometric measurements or behaviour based (P). Numbers in square brackets in the Population column refer to the localities on the

map in Figure 2. See Appendix S1 for references cited here.

[20]

Number | ,
of /o male Sexing
Species Population Coordinates Years of data collection captures References
captures method
C. alexandrinus Maio Island (Cape Verde) [15] 15°09'N, 23°13'W  2007-2010 244 40.57 M, P |Székely T., A.A. Tico & A. Kosztolanyi unpubl data
C. alexandrinus ‘Farasan Islands (Saudi Arabia) [26] 16°48'N, 41°53'E 2008-2009, 2011 45 35.56 ‘ P ‘AlRashidi etal, 2011
C. alexandrinus 1 WVathba Wetland (United Arab 24°16N, 54°36E  2005-2006 175 | 4800 P Kosztolanyi et al., 2009, AlRashidi ef al., 2010
Emirates) [27]
C. alexandrinus ‘Tuzla Lake (Turkey) [25] 36°42'N, 35°03'E  1996-2000, 2004 604 | 46.19 \ P ‘Kosztolényi & Székely 2002
C. alexandrinus ‘Fuente de Piedra Lake (Spain) [16] 37°06'N, 04°45'W  11991-1996 174 49.43 ‘ P ‘Fraga & Amat (1996), Amat & Masero 2004
C. alexandrinus ‘Bohai Bay (China) [28] 39°05'N, 118°12'E 2012 38 | 31.58 ‘ M, P ‘Que, P. & Y. Liu unpubl. data
C. alexandrinus ~ Llobregat Delta (Spain) [17] 41°18'N, 02°08'E ;(9)(9)24995 - 1998,2000- 105 41 P Figuerola & Cerda 1998
C. alexandrinus [L2a3g]°°“ of Venice and Po Delta (Italy) | ys01 0 12004F 19931995 157 | 4586 = P Serra, L. unpubl. data
C. alexandrinus | Great Hungarian Plain (Hungary) [24] 46°40'N, 19°10'E 1988-1994 186 39.25 ‘ P ‘Székely & Lessells 1993, Székely et al., 1994
C. alexandrinus Schleswig-Holstein (Germany) [21] 54°45'N, 08°01'E ;ggi:;gg? 2001-2002, 530 44.34 P Schulz, R. unpubl. data
. . o1 cr o A1 1981-1988, 1990-1991, R
C. alexandrinus ~ Falsterbo Peninsula (Sweden) [22] 55°15'N, 12°34'E 1993-1994. 1996 44 47.73 P Jonsson, P. unpubl. data
C. falklandicus ‘Sea Lion Island (Falklands) [13] 51°41'S, 59°10'W  2005-2008 63 42.86 ‘ M, P ‘St Clair et al., 2010a
C. falklandicus ‘Peninsula Valdés (Argentina) [12] 42°30'S, 63°56'W  2006-2007 62 36.51 ‘ M, P ‘Garcia-Peﬁa 2009
C. marginatus ‘Cape Peninsula (South Africa) [18]  34°08'S, 18°20'E | 1999-2003 162 | 3272 ‘ P ‘Lloyd, P. unpubl. data
C. marginatus Lake Tsimanampetsotsa (Madagascar) - » 4040 4349’8 2005-2006, 2011-2012 41 43.90 ‘ M Zefania, S, J. Parra & T. Székely unpubl. data
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C. marginatus ﬁg‘]lavadoaka saltmarsh (Madagascar) 10049 430148 2010-2012 48 4375 M Zefania, S, J. Parra & T. Székely unpubl. data

C. melodus ‘Saskatchewan Coteau (Canada) [1] 49°44'N, 105°23'W 2002-2006 139 49.64 ‘ P ‘Cohen & Gratto-Trevor 2011; Gratto-Trevor 2011

C. melodus [S;]Skat‘:hewan Diefenbaker (Canada) 55043 107030W  2002-2007 268 | 4944 = P Cohen & Gratto-Trevor 2011; Gratto-Trevor 2011

C. melodus ‘Saskatchewan Quill (Canada) [3] 51°55'N, 104°22'W 2002-2006 176 49.15 ‘ P ‘Cohen & Gratto-Trevor 2011; Gratto-Trevor 2011

C. modestus ‘Sea Lion Island (Falklands) [13] 51941'S, 59°10'W  2005-2008 99 | 55.56 ‘ M, P ‘St Clair et al., 2010a, St Clair et al., 2010b

C. nivosus Texcoco (Mexico) [11] 19°30'N, 98°29'W  2009-2012 57 21.05 DeSucre-Medrano, A. E. & 8. Gomez del Angel
unpubl. data

C. nivosus ‘Nayarit (Mexico) [10] 22°16'N, 105°12'W 2010-2012 44 4091 ‘ p ‘Villar, C. & J. Cavitt unpubl. data

C. nivosus ‘Ceuta Bay (Mexico) [9] 23°54'N, 106°57'W  2006-2012 451 48.12 \ p ‘Kﬁpper, C. & M. Cruz-Lopez unpubl. data

C. nivosus ‘Florida (USA) [4] 29°%4'N, 85°06'W  2008-2010 300 | 1033 ‘ ‘Pruner, R. unpubl. data

C. nivosus ‘San Quintin Bay (Mexico) [7] 30°40N, 116°0W 2012 45 19.57 ‘ P ‘Galindo-Espinosa, D. unpubl. data

C. nivosus Texas (USA) [8] 33°12'N, 102°30'W  1999-2000,2008-2009 127 | 33.86 | P.M Saalfeld er al., 2011

C. nivosus ‘Monterey Bay (USA) [6] 36°45'N, 121°25'W  1984-1999 581 | 18.93 ‘ P ‘Warriner et al., 1986, Stenzel et al., 2011

C. nivosus Great Salt Lake (USA) [5] 41°41'N, 112°55'W  2007-2010 80 2250 | P Cavitteral, 2008, Hall & Cavitt 2012

C. pecuarius [Lzaé‘]e Tsimanampetsotsa (Madagasear) | »jo40:5 43049 2005, 2007, 2012 37 43.24 ‘ M Zefania, S., J. Parra & T. Székely unpubl. data

C. pecuarius ﬁg‘]lavadoaka saltmarsh (Madagasean) )45 43014E 2010, 2012 118 | 4915 M Zefania, S, J. Parra & T. Székely unpubl. data

C. peronii ‘Prachuap Khiri Khan (Thailand) [29] | 12°00'N, 99°53'E  2004-2005 65 46.97 ‘ P ‘Yasué & Dearden 2006a,b, 2007a,b

C. ruficapillus ‘Altona Saltworks (Australia) [30] 37°53'S, 144°47E  |2008-2012 71 36.62 ‘ P ‘Lomas et al., 2014, Weston, M.A. unpubl. data

C. sanctaehelenae ‘St. Helena Island (St. Helena) [14] 15°58'S, 05°43'W 2004, 2007-2009 48 | 41.67 \ P,M ‘Burns etal., 2013

C. thoracicus [Lza(;e Tsimanampetsotsa (Madagasear) |5 jop016 43040F 2004-2009, 2011-2012 93 31.18 ‘ M Zefania, S, J. Parra & T. Székely unpubl. data

C. thoracicus ‘ﬁg‘]iavadoaka saltmarsh (Madagascar) | »ya049 43014F 2010 19 31.58 ‘ M  Zefania, S, J. Parra & T. Székely unpubl. data

C. wilsonia ‘Ceuta Bay (Mexico) [9] 23°54'N, 106°57'W 2009, 2012 27 | 37.04 ‘ PM ‘Kﬁpper, C. & M. Cruz-Lopez unpubl. data

Footnote: Molecular sexing markers: P2P8, Z-002B and Calex-31 (Griffiths et al., 1998, Dawson 2007, Kiipper et al., 2007)
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Table S2. Sensitivity analyses for the length of the time period on which the calculation of the three climate variables was based on.

Model 4 Fixed terms 5 years 10 years 15 years
Time period 1214.40 (63) <0.0001  1219.2(63) <0.0001 1217.70(63) <0.0001

Mean temperature (°C)

Interaction with time
period

Quadratic effect 32.93(10)  0.0003 | 32.76(10)  0.0003  33.26(10)  0.0002

79.96 (18) = <0.0001 = 77.28(18)  <0.0001 = 85.49(18)  <0.0001

Between-season temperature variation (°C)

Interaction with time 37.86 (18)  0.0040  2335(18)  0.1777  15.76(18)  0.6091

period
Quadratic effect 16.32 (10) *  0.0907 1.52 (1) 0.2173 1.22 (1) 0.2690
Linear effect 6.19 (2) * 0.0452 4.67 (1) 0.0307 6.03 (1) 0.0140

Within-season temperature variation (°C)

Interaction with time 4071 (18)  0.0017  32.57(18) = 0.0188  70.65(18)  <0.0001

period

Quadratic effect 23.97 (10) 0.0077 32.76 (10) 0.0003 29.36 (10) 0.0011
Random terms

Species 16.40 (1) <0.0001 14.49 (1) 0.0001 14.46 (1) 0.0001
Population 0.22 (1) 0.6367 0.60 (1) 0.4400 0.07 (1) 0.7919
Nest identity 0.00 (1) 0.9984 0.00 (1) 1.0000 0.00 (1) 1.0000

*Interaction with time period retained in model (similarly to the other two temperature variables) due to its significant effect.
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Appendix S1. Supplementary references for Table S1
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